Crypto concepts

Background

Guest lecturer: Mario Frank Slide credits: Dan Boneh

Cryptography

ls:

- A tremendous tool
- The basis for many security mechanisms

Is not:

- The solution to all security problems
- Reliable unless implemented and used properly
- Something you should try to invent yourself
 - Need to subject your designs to outside review
 - Need considerable experience

Goal 1: Secure communication

Secure Sockets Layer / TLS

Standard for Internet security

 Goal: "... provide privacy and reliability between two communicating applications"

Two main parts

- 1. Handshake Protocol: **Establish shared secret key** using public-key cryptography
- 2. Record Layer: Transmit data using negotiated key

This module: Using a key for encryption and integrity

Goal 2: protected files

Analogous to secure communication:

Alice today sends a message to Alice tomorrow

Building block: sym. encryption

E, D: cipher k: secret key (e.g. 128 bits)

m, c: plaintext, ciphertext n: nonce (aka IV)

Encryption algorithm is publicly known

Never use a proprietary cipher

Use Cases

Single use key: (one time key)

- Key is only used to encrypt one message
 - encrypted email: new key generated for every email
- No need for nonce (set to 0)

Multi use key: (many time key)

- Key used to encrypt multiple messages
 - SSL: same key used to encrypt many packets
- Need either unique nonce or random nonce

First example: One Time Pad

(single use key)

Vernam (1917)

Shannon '49:

OTP is "secure" against one-time eavesdropping

The OTP encryption formula is $c = E(k, m) = m \oplus k$

What is the decryption formula?

- \bigcirc D(k, c) = k + c
- \bigcirc D(k, c) = k × c
- \bigcirc D(k, c) = k \oplus c
- \bigcirc D(k, c) = k ÷ c

Stream ciphers

(single use key)

Problem: OTP key is as long the message

<u>Solution</u>: Pseudo random key -- stream ciphers

Examples: Salsa20/12 (643MB/s), Sosemanuk (727MB/s), RC4 (126MB/s)

Dangers in using stream ciphers

One time key!! "Two time pad" is insecure:

$$C_1 \leftarrow m_1 \oplus PRG(k)$$

 $C_2 \leftarrow m_2 \oplus PRG(k)$

Eavesdropper does:

$$C_1 \oplus C_2 \rightarrow$$

Enough redundant information in English that:

$$m_1 \oplus m_2 \rightarrow m_1, m_2$$

End of Segment

Crypto concepts

Block ciphers

Block ciphers: crypto work horse

Canonical examples:

- 1. 3DES: n = 64 bits, k = 168 bits
- 2. AES: n=128 bits, k=128, 192, 256 bits

Block Ciphers Built by Iteration

R(k,m): round function

for 3DES (n=48), for AES-128 (n=10)

Standard Block Ciphers

Input: (m, k)

Repeat simple mixing operation several times

• 3**DES**: Repeat 48 times:

$$\begin{cases} m_{L} \leftarrow m_{R} \\ m_{R} \leftarrow m_{L} \oplus F(k_{i}, m_{R}) \end{cases}$$

• **AES-128**: Mixing step repeated 10 times

Difficult to design: must resist subtle attacks

• differential attacks, linear attacks, brute-force, ...

What is the inverse of the DES round function?

$$\bigcirc$$
 $(x, y) = (v \oplus F(k, w), w)$

$$(x, y) = (w \oplus F(k,v), v)$$

$$(x, y) = (v, w \oplus F(k,v))$$

$$\bigcirc (x, y) = (w \oplus F(k, w), v)$$

$$(v, w) = (y, x \oplus F(k,y))$$

Abstract Block Ciphers: PRPs and PRFs

```
PRF: F: K \times X \rightarrow Y such that:
exists "efficient" algorithm to eval. F(k,x)
```

- **PRP**: E: $K \times X \rightarrow X$ such that:
 - 1. Exists "efficient" algorithm to eval. E(k,x)
 - 2. The func $E(k, \cdot)$ is one-to-one
 - 3. Exists "efficient" algorithm for inverse D(k,x)

A block cipher is a PRP

Secure PRF and Secure PRP

- A **PRF** F: $K \times X \rightarrow Y$ is secure if $F(k, \cdot)$ is indistinguishable from a random func. f: $X \rightarrow Y$
- A **PRP** E: $K \times X \rightarrow X$ is secure if $E(k, \cdot)$ is indisting. from a random perm. $\pi: X \rightarrow X$

What means indistinguishable?

- Secure PRF/PRP → indistinguishable from random function/ permutation
- (Efficient) statistical tests

Advantage

PRF Switching Lemma

PRF Switching lemma:

A secure PRP is also a secure PRF

⇒ AES and 3DES are secure PRFs

Suppose F(k,x) is a secure PRF.

Is the following G a secure PRF?

$$G(k, x) = \begin{cases} 0 & \text{if } x=0 \\ F(k, x) & \text{otherwise} \end{cases}$$

- No, it is easy to distinguish G from a random function
- Yes, an attack on G would also break F
- It depends on F

End of Segment

Crypto concepts

Using block ciphers

Incorrect use of block ciphers

Electronic Code Book (ECB):

Problem:

- if $m_1=m_2$ then $c_1=c_2$

In pictures

Eavesdropping security 1: CBC mode

E a secure PRP. <u>Cipher Block Chaining</u> with IV:

Use cases: how to choose an IV

Single use key: no IV needed (IV=0)

Multi use key: (CPA Security)

- Best: use a fresh \underline{random} IV for every message (IV \leftarrow X)
- Can use <u>unique</u> IV (e.g counter)
 - but then first step in CBC must be $IV' \leftarrow E(k,IV)$
 - benefit: may save transmitting IV with ciphertext

CBC with Unique IVs

(nonce-based encryption)

<u>Cipher Block Chaining</u> with unique IV: $key = (k,k_1)$

unique IV means: (key,IV) pair is used for only one message

ciphertext

In pictures

Eavesdropping security 2: CTR mode

Counter mode with a random IV: (parallel encryption)

Why are these modes secure? See the crypto course.

Performance:

Crypto++ 5.6.0 [Wei Dai]

AMD Opteron, 2.2 GHz (Linux)

	<u>Cipher</u>	Block/key size	Speed (MB/sec)
stream	Salsa20/12		643
	Sosemanuk		727
block	3DES	64/168	13
	AES	128/128	109

A Warning

eavesdropping security is insufficient for most applications

Need also to defend against active attacks.

CBC and CTR modes are insecure against active attacks

Next: methods to ensure message integrity

End of Segment

Crypto concepts

Message Integrity

Message Integrity: MACs

- Goal: provide message integrity. No confidentiality.
 - ex: Protecting public binaries on disk.

note: non-keyed checksum (CRC) is an insecure MAC !!

Secure MACs

Attacker's power: chosen message attack.

- for $m_1, m_2, ..., m_q$ attacker is given $t_i \leftarrow S(k, m_i)$

Attacker's goal: existential forgery.

produce some <u>new</u> valid message/tag pair (m,t).

$$(m,t) \notin \{ (m_1,t_1), ..., (m_q,t_q) \}$$

A secure PRF gives a secure MAC:

- S(k,m) = F(k,m)
- V(k,m,t): output 'yes' if t = F(k,m) and 'no' otherwise.

Construction 1: ECBC (encrypted MAC)

Construction 2: NMAC (nested MAC)

Importance of last step (NMAC)

Importance of last step (ECBC)

Construction 3: HMAC (Hash-MAC)

Most widely used MAC on the Internet.

```
H: hash function.
```

example: SHA-256; output is 256 bits

Building a MAC out of a hash function:

```
- Standardized method: HMAC

S(k, m) = H(k \oplus opad, H(k \oplus ipad, m))
```

SHA-256: Merkle-Damgard

- h(t, m[i]): compression function
- Thm 1: if h is collision resistant then so is H
- "Thm 2": if h is a PRF then HMAC is a PRF

Construction 4: PMAC -- a parallel MAC

ECBC and HMAC are sequential. PMAC:

PMAC

Suppose the P(k,·) function was not used.

[i.e. P(k,·) = 0]

Would PMAC be a secure MAC?

- \bigcirc No. Given tag on (m[0],m[1]) attacker obtains tag on (m[1],m[0])
- No. Without P() an attacker could obtain the secret key k
- It depends on what F is used

End of Segment

Crypto concepts

Authenticated Encryption

Combining MAC and ENC (CCA)

Encryption key k_E . MAC key = k_I

Standards (at a high level)

- CCM: CBC-MAC then CTR mode encryption
- GCM: CTR mode encryption then MAC
- EAX: CTR mode encryption then OMAC

All support AEAD: (auth. enc. with associated data)

OCB

More efficient authenticated encryption

Final words

Implementation attacks

Power cryptanalysis. (Kocher-Jaffe-Jun 99)

- Power consumption depends on instruction and data
- Measure power consumption during block cipher operation
- About 1000 ciphertexts suffice to expose secret key.

Generating Randomness

(e.g. keys, IV)

Pseudo random generators in practice: (e.g. /dev/random)

- Continuously add entropy to internal state
- Entropy sources:
 - Hardware RNG: Intel RdRand inst. (Ivy Bridge). 3Gb/sec.
 - Timing: hardware interrupts (keyboard, mouse)

NIST SP 800-90: NIST approved generators

Summary

Shared secret key:

Used for secure communication and document encryption

Encryption: (CPA security) [should not be used standalone]

- One-time key: stream ciphers, CBC or CTR with fixed IV
- Many-time key: CBC or CTR with random IV

Integrity: ECBC or HMAC or PMAC

Authenticated encryption: encrypt-then-MAC

End of Segment