
1

Networking Overview +

Network Protocol

Security

Slides credit: Vern Paxson

2

Today’s Lecture

• Part 1: Networking Overview

• Part 2: Security issues

Keep in mind, networking is:

• Complex topic with many facets
– We will omit concepts/details that aren’t very security-

relevant

– We’ll mainly look at IP, TCP, DNS and DHCP

• Networking is full of abstractions
– Goal is for you to develop apt mental models /

analogies

– ASK questions when things are unclear
o (but we may skip if not ultimately relevant for security,

 or postpone if question itself is directly about security)

3

Networking Overview

4

Key Concept #1: Protocols

• A protocol is an agreement on how to

communicate

• Includes syntax and semantics
– How a communication is specified & structured

o Format, order messages are sent and received

– What a communication means
o Actions taken when transmitting, receiving, or timer expires

• E.g.: asking a question in lecture?
1.Raise your hand.

2.Wait to be called on.

3.Or: wait for speaker to pause and vocalize

4. If unrecognized (after timeout): vocalize w/ “excuse me”

Example: IP Packet Header

4-bit

Version

4-bit

Header

Length

8-bit

Type of Service

(TOS)

16-bit Total Length (Bytes)

16-bit Identification
3-bit

Flags 13-bit Fragment Offset

8-bit Time to

Live (TTL)
8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Payload

20-byte

header

IP = Internet Protocol

6

Key Concept #2: Dumb Network

• Original Internet design: interior nodes (“routers”)

have no knowledge* of ongoing connections

going through them

• Not: how you picture the telephone system works
– Which internally tracks all of the active voice calls

• Instead: the postal system!
– Each Internet message (“packet”) self-contained

– Interior “routers” look at destination address to forward

– If you want smarts, build it “end-to-end”

– Buys simplicity & robustness at the cost of shifting

complexity into end systems

* Today’s Internet is full of hacks that violate this

7

Key Concept #3: Layering

• Internet design is strongly partitioned into layers
– Each layer relies on services provided by next layer

below …

– … and provides services to layer above it

• Analogy:
– Consider structure of an

application you’ve written

and the “services” each

layer relies on / provides

Code You Write

Run-Time Library

System Calls

Device Drivers

Voltage Levels /

Magnetic Domains }
Fully

isolated

from user

programs

8

Internet Layering (“Protocol Stack”)

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1

9

Layer 1: Physical Layer

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1

Encoding bits to send them

over a single physical link

 e.g. patterns of

 voltage levels /

 photon intensities /

 RF modulation

10

Layer 2: Link Layer

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1

Framing and transmission of a

collection of bits into individual

messages sent across a

single “subnetwork” (one

physical technology)

Might involve multiple physical

links (e.g., modern Ethernet)

Often technology supports

broadcast transmission (every

“node” connected to subnet

receives)

11

Layer 3: (Inter)Network Layer

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1

Bridges multiple “subnets” to

provide end-to-end internet

connectivity between nodes
• Provides global addressing

Works across different link

technologies

} Different for each

Internet “hop”

12

Layer 4: Transport Layer

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1

End-to-end communication

between processes

Different services provided:

 TCP = reliable byte stream

 UDP = unreliable datagrams

13

Layer 7: Application Layer

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1

Communication of whatever

you wish

Can use whatever

transport(s) is convenient

Freely structured

E.g.:

 Skype, SMTP (email),

 HTTP (Web), Halo, BitTorrent

14

Internet Layering (“Protocol Stack”)

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1

} Implemented only at hosts,

not at interior routers

(“dumb network”)

15

Internet Layering (“Protocol Stack”)

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1 } Implemented everywhere

16

Internet Layering (“Protocol Stack”)

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1 } Different for each

Internet “hop”

~Same for each Internet “hop” }

17

Hop-By-Hop vs. End-to-End Layers

Host A

Host B
Host E

Host D

Host C

Router 1 Router 2

Router 3

Router 4

Router 5

Router 6 Router 7

Host A communicates with Host D

18

Hop-By-Hop vs. End-to-End Layers

Host A

Host B
Host E

Host D

Host C

Router 1 Router 2

Router 3

Router 4

Router 5

Router 6 Router 7

Host A communicates with Host D

Different Physical & Link Layers (Layers 1 & 2)

E.g., Wi-Fi

E.g., Ethernet

19

Hop-By-Hop vs. End-to-End Layers

Host A

Host B
Host E

Host D

Host C

Router 1 Router 2

Router 3

Router 4

Router 5

Router 6 Router 7

Host A communicates with Host D

Same Network / Transport / Application Layers (3/4/7)

(Routers ignore Transport & Application layers)

E.g., HTTP over TCP over IP

20

Layer 3: (Inter)Network Layer

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1

Bridges multiple “subnets” to

provide end-to-end internet

connectivity between nodes
• Provides global addressing

Works across different link

technologies

IP Packet Structure

4-bit

Version

4-bit

Header

Length

8-bit

Type of Service

(TOS)

16-bit Total Length (Bytes)

16-bit Identification
3-bit

Flags 13-bit Fragment Offset

8-bit Time to

Live (TTL)
8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

IP Packet Structure

4-bit

Version

4-bit

Header

Length

8-bit

Type of Service

(TOS)

16-bit Total Length (Bytes)

16-bit Identification
3-bit

Flags 13-bit Fragment Offset

8-bit Time to

Live (TTL)
8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

23

IP Packet Header Fields

• Version number (4 bits)
– Indicates the version of the IP protocol

–Necessary to know what other fields to expect

–Typically “4” (for IPv4), and sometimes “6” (for IPv6)

• Header length (4 bits)
–Number of 32-bit words in the header

–Typically “5” (for a 20-byte IPv4 header)

–Can be more when IP options are used

• Type-of-Service (8 bits)
–Allow packets to be treated differently based on needs

–E.g., low delay for audio, high bandwidth for bulk transfer

IP Packet Structure

4-bit

Version

4-bit

Header

Length

8-bit

Type of Service

(TOS)

16-bit Total Length (Bytes)

16-bit Identification
3-bit

Flags 13-bit Fragment Offset

8-bit Time to

Live (TTL)
8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

25

IP Packet Header (Continued)

• Two IP addresses

–Source IP address (32 bits)

–Destination IP address (32 bits)

• Destination address

–Unique identifier/locator for the receiving host

–Allows each node to make forwarding decisions

• Source address

–Unique identifier/locator for the sending host

–Recipient can decide whether to accept packet

–Enables recipient to send a reply back to source

IP Packet Structure

4-bit

Version

4-bit

Header

Length

8-bit

Type of Service

(TOS)

16-bit Total Length (Bytes)

16-bit Identification
3-bit

Flags 13-bit Fragment Offset

8-bit Time to

Live (TTL)
8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

27

IP Packet Header Fields (Continued)

• Total length (16 bits)
–Number of bytes in the packet

–Maximum size is 65,535 bytes (216 -1)

–… though underlying links may impose smaller limits

• Fragmentation: when forwarding a packet, an
Internet router can split it into multiple pieces
(“fragments”) if too big for next hop link

• End host reassembles to recover original packet

• Fragmentation information (32 bits)
–Packet identifier, flags, and fragment offset

–Supports dividing a large IP packet into fragments

–… in case a link cannot handle a large IP packet

28

IP: “Best Effort ” Packet Delivery

• Routers inspect destination address, locate “next

hop” in forwarding table
–Address = ~unique identifier/locator for the receiving host

• Only provides a “I’ll give it a try” delivery service:
–Packets may be lost

–Packets may be corrupted

–Packets may be delivered out of order

source destination

IP network

29

“Best Effort” is Lame! What to do?

• It’s the job of our Transport (layer 4) protocols to
build services our apps need out of IP’s modest
layer-3 service

30

Layer 4: Transport Layer

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1

End-to-end communication

between processes

Different services provided:

 TCP = reliable byte stream

 UDP = unreliable datagrams

31

“Best Effort” is Lame! What to do?

• It’s the job of our Transport (layer 4) protocols to
build services our apps need out of IP’s modest
layer-3 service

• #1 workhorse: TCP (Transmission Control Protocol)

• Service provided by TCP:
–Connection oriented (explicit set-up / tear-down)

o End hosts (processes) can have multiple concurrent long-lived

communication

–Reliable, in-order, byte-stream delivery
o Robust detection & retransmission of lost data

32

TCP “Bytestream” Service

Process A on host H1

Process B
on host H2

Hosts don’t ever see packet boundaries, lost

or corrupted packets, retransmissions, etc.

33

“Best Effort” is Lame! What to do?

• It’s the job of our Transport (layer 4) protocols to
build services our apps need out of IP’s modest
layer-3 service

• #1 workhorse: TCP (Transmission Control Protocol)

• TCP service:
–Connection oriented (explicit set-up / tear-down)

o End hosts (processes) can have multiple concurrent long-lived

dialog

–Reliable, in-order, byte-stream delivery
o Robust detection & retransmission of lost data

–Congestion control
o Dynamic adaptation to network path’s capacity

34

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised window HdrLen Flags 0

Checksum Urgent pointer

Options (variable)

Data

35

TCP Header

Ports are

associated

with OS

processes

Source port Destination port

Sequence number

Acknowledgment

Advertised window HdrLen Flags 0

Checksum Urgent pointer

Options (variable)

Data

36

TCP Header

Ports are

associated

with OS

processes

IP source & destination

addresses plus TCP

source and destination

ports uniquely identifies

a TCP connection

Source port Destination port

Sequence number

Acknowledgment

Advertised window HdrLen Flags 0

Checksum Urgent pointer

Options (variable)

Data

IP Header

37

TCP Header

Ports are

associated

with OS

processes

IP source & destination

addresses plus TCP

source and destination

ports uniquely identifies

a TCP connection

Source port Destination port

Sequence number

Acknowledgment

Advertised window HdrLen Flags 0

Checksum Urgent pointer

Options (variable)

Data

Some port numbers are

“well known” / reserved

e.g. port 80 = HTTP

38

TCP Header

Starting

sequence

number (byte

offset) of data

carried in this

packet

Source port Destination port

Sequence number

Acknowledgment

Advertised window HdrLen Flags 0

Checksum Urgent pointer

Options (variable)

Data

39

TCP Header

Starting

sequence

number (byte

offset) of data

carried in this

packet

Source port Destination port

Sequence number

Acknowledgment

Advertised window HdrLen Flags 0

Checksum Urgent pointer

Options (variable)

Data

Byte stream

numbered

independently in

each direction

40

TCP Header

Starting

sequence

number (byte

offset) of data

carried in this

packet

Source port Destination port

Sequence number

Acknowledgment

Advertised window HdrLen Flags 0

Checksum Urgent pointer

Options (variable)

Data

Byte stream

numbered

independently in

each direction

Sequence number assigned to start

of byte stream is picked when

connection begins; doesn’t start at 0

41

TCP Header

Acknowledgment

gives seq # just

beyond highest

seq. received in

order.

If sender sends

N in-order bytes

starting at seq S

then ack for it will

be S+N.

Source port Destination port

Sequence number

Acknowledgment

Advertised window HdrLen Flags 0

Checksum Urgent pointer

Options (variable)

Data

42

TCP Header

Uses include:

acknowledging

data (“ACK”)

setting up (“SYN”)

and closing

connections

(“FIN” and

“RST”)

Source port Destination port

Sequence number

Acknowledgment

Advertised window HdrLen Flags 0

Checksum Urgent pointer

Options (variable)

Data

43

Establishing a TCP Connection

• Three-way handshake to establish connection
–Host A sends a SYN (open; “synchronize sequence

numbers”) to host B

–Host B returns a SYN acknowledgment (SYN+ACK)

–Host A sends an ACK to acknowledge the SYN+ACK

A B

Each host tells its Initial

Sequence Number

(ISN) to the other host.

(Spec says to pick based

on local clock)

44

Timing Diagram: 3-Way Handshaking

Client (initiator)

Server
Active

Open

Passive

Open

connect()

listen()

accept()

Different starting

sequence numbers in

each direction

45

Layer 7: Application Layer

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1

Communication of whatever

you wish

Can use whatever

transport(s) is convenient

Freely structured

E.g.:

 Skype, SMTP (email),

 HTTP (Web), Halo, BitTorrent

46

Sample Email (SMTP) interaction
 S: 220 hamburger.edu

 C: HELO crepes.fr

 S: 250 Hello crepes.fr, pleased to meet you

 C: MAIL FROM: <alice@crepes.fr>

 S: 250 alice@crepes.fr... Sender ok

 C: RCPT TO: <bob@hamburger.edu>

 S: 250 bob@hamburger.edu ... Recipient ok

 C: DATA

 S: 354 Enter mail, end with "." on a line by itself

 C: From: alice@crepes.fr

 C: To: hamburger-list@burger-king.com

 C: Subject: Do you like ketchup?

 C:

 C: How about pickles?

 C: .

 S: 250 Message accepted for delivery

 C: QUIT

 S: 221 hamburger.edu closing connection

Email header

Email body

Lone period marks end of message

47

GET /index.html HTTP/1.1

Accept: image/gif, image/x-bitmap, image/jpeg, */*

Accept-Language: en

Connection: Keep-Alive

User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)

Host: www.example.com

Referer: http://www.google.com?q=dingbats

Web (HTTP) Request

Method Resource HTTP version Headers

Data (if POST; none for GET)

Blank line

GET: download data. POST: upload data.

48

HTTP/1.0 200 OK

Date: Sun, 19 Apr 2009 02:20:42 GMT

Server: Microsoft-Internet-Information-Server/5.0

Connection: keep-alive

Content-Type: text/html

Last-Modified: Sat, 18 Apr 2009 17:39:05 GMT

Set-Cookie: session=44eb; path=/servlets

Content-Length: 2543

<HTML> Some data... blah, blah, blah </HTML>

Web (HTTP) Response

HTTP version Status code Reason phrase Headers

Data

49

Questions?

50

Host Names vs. IP addresses

• Host names
–Examples: www.cnn.com and bbc.co.uk

–Mnemonic name appreciated by humans

–Variable length, full alphabet of characters

–Provide little (if any) information about location

• IP addresses
–Examples: 64.236.16.20 and 212.58.224.131

–Numerical address appreciated by routers

–Fixed length, binary number

–Hierarchical, related to host location

51

Mapping Names to Addresses

• Domain Name System (DNS)

–Hierarchical name space divided into zones

–Zones distributed over collection of DNS servers

–(Also separately maps addresses to names)

• Hierarchy of DNS servers

–Root (hardwired into other servers)

–Top-level domain (TLD) servers

–“Authoritative” DNS servers (e.g. for berkeley.edu)

52

Mapping Names to Addresses

• Domain Name System (DNS)

–Hierarchical name space divided into zones

–Zones distributed over collection of DNS servers

–(Also separately maps addresses to names)

• Hierarchy of DNS servers

–Root (hardwired into other servers)

–Top-level domain (TLD) servers

–“Authoritative” DNS servers (e.g. for berkeley.edu)

• Performing the translations

–Each computer configured to contact a resolver

53

requesting host
xyz.poly.edu gaia.cs.umass.edu

root DNS server (‘.’)

local DNS server
(resolver)

dns.poly.edu

1

2
3

4

5

6

authoritative DNS server
(‘umass.edu’,
‘cs.umass.edu’)

dns.cs.umass.edu

7
8

TLD DNS server
(‘.edu’)

Example

Host at xyz.poly.edu

wants IP address for
gaia.cs.umass.edu

54

DNS Protocol

DNS protocol: query and reply messages, both with
same message format

(Mainly uses UDP transport rather than TCP)

Message header:

• Identification: 16 bit # for

query, reply to query uses

same #

• Replies can include

“Authority” (name server

responsible for answer) and

“Additional” (info client is

likely to look up soon anyway)

• Replies have a Time To Live

(in seconds) for caching

Additional information

(variable # of resource records)

Questions

(variable # of resource records)

Answers

(variable # of resource records)

Authority

(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

16 bits 16 bits

55

Bootstrapping Problem

• New host doesn’t have an IP address yet
–So, host doesn’t know what source address to use

• Host doesn’t know who to ask for an IP address
–So, host doesn’t know what destination address to use

• Solution: shout to “discover” server that can help
–Broadcast a server-discovery message (layer 2)

–Server(s) sends a reply offering an address

host host host ...

DHCP server

56

Dynamic Host Configuration Protocol

new

client

DHCP server

“offer” message

includes IP address,

DNS server, “gateway

router”, and how long

client can have these
(“lease” time)

57

Questions?

58

Security Issues

59

Layer 1,2 Threats

60

Layers 1 & 2: General Threats?

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1

Encoding bits to send them

over a single physical link

 e.g. patterns of

 voltage levels /

 photon intensities /

 RF modulation

Framing and transmission of a

collection of bits into individual

messages sent across a

single “subnetwork” (one

physical technology)

61

Physical/Link-Layer Threats: Eavesdropping

• Also termed sniffing

• For subnets using broadcast technologies (e.g.,
WiFi, some types of Ethernet), get it for “free”
– Each attached system ’s NIC (= Network Interface

Card) can capture any communication on the subnet

– Some handy tools for doing so
o Wireshark

o tcpdump / windump

o bro

• For any technology, routers (and internal
“switches”) can look at / export traffic they
forward

• You can also “tap” a link
– Insert a device to mirror physical signal

– Or: just steal it!

62

Stealing Photons

63

64

• With physical access to a subnetwork,
attacker can
– Overwhelm its signaling

o E.g., jam WiFi’s RF

– Send messages that violate the Layer-2
protocol’s rules

o E.g., send messages > maximum allowed size,
sever timing synchronization, ignore fairness rules

• Routers & switches can simply “drop”
traffic

• There’s also the heavy-handed approach
…

Physical/Link-Layer Threats: Disruption

65

66

• With physical access to a subnetwork,
attacker can create any message they like
– Termed spoofing

• May require root/administrator access to
have full freedom

• Particularly powerful when combined with
eavesdropping
– Because attacker can understand exact state of

victim’s communication and craft their spoofed
traffic to match it

– Spoofing w/o eavesdropping = blind spoofing

Physical/Link-Layer Threats: Spoofing

67

Layer 3 Threats

68

Layer 3: General Threats?

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1

Bridges multiple “subnets” to

provide end-to-end internet

connectivity between nodes

4-bit

Version

4-bit

Header

Length

8-bit

Type of Service

(TOS)

16-bit Total Length (Bytes)

16-bit Identification
3-bit

Flags 13-bit Fragment Offset

8-bit Time to

Live (TTL)
8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Payload
IP = Internet Protocol

69

• Major:
– Can set arbitrary source address

o “Spoofing” - receiver has no idea who you are

o Could be blind, or could be coupled w/ sniffing

– Can set arbitrary destination address
o Enables “scanning” - brute force searching for hosts

• Lesser:
– Fragmentation mechanism can evade network

monitoring

– Identification field leaks information

– Time To Live allows discovery of topology

– IP “options” can reroute traffic

Network-Layer Threats

(FYI; don’t worry about unless later explicitly
covered)

70

Issues with TCP

71

Layer 4: General Threats?

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1

End-to-end communication

between processes

 (TCP, UDP)

Source port Destination port

Sequence number

Acknowledgment

Advertised window HdrLen Flags 0

Checksum Urgent pointer

Options (variable)

Data

72

Layer 4: General Threats?

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1

Source port Destination port

Sequence number

Acknowledgment

Advertised window HdrLen Flags 0

Checksum Urgent pointer

Options (variable)

Data

These plus IP addresses

define a given connection

73

Layer 4: General Threats?

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1

Source port Destination port

Sequence number

Acknowledgment

Advertised window HdrLen Flags 0

Checksum Urgent pointer

Options (variable)

Data

Defines where this

packet fits within the

sender’s bytestream

74

• Normally, TCP finishes (“closes”) a connection
by each side sending a FIN control message
– Reliably delivered, since other side must ack

• But: if a TCP endpoint finds unable to continue
(process dies; info from other “peer” is
inconsistent), it abruptly terminates by sending a
RST control message
– Unilateral

– Takes effect immediately (no ack needed)

– Only accepted by peer if has correct* sequence
number

TCP Threat: Disruption

75

Source port Destination port

Sequence number

Acknowledgment

Advertised window HdrLen Flags 0

Checksum Urgent pointer

Options (variable)

Data

76

Source port Destination port

Sequence number

Acknowledgment

Advertised window HdrLen

R
S

T

0

Checksum Urgent pointer

Options (variable)

Data

77

Abrupt Termination

• A sends a TCP packet with RESET (RST) flag to B
– E.g., because app. process on A crashed

• Assuming that the sequence numbers in the RST fit with what B
expects, That’s It:

– B’s user-level process receives: ECONNRESET
– No further communication on connection is possible

time
A

B

78

• Normally, TCP finishes (“closes”) a connection
by each side sending a FIN control message
– Reliably delivered, since other side must ack

• But: if a TCP endpoint finds unable to continue
(process dies; info from other “peer” is
inconsistent), it abruptly terminates by sending a
RST control message
– Unilateral

– Takes effect immediately (no ack needed)

– Only accepted by peer if has correct* sequence
number

• So: if attacker knows ports & sequence numbers,
can disrupt any TCP connection

TCP Threat: Disruption

79

TCP Threat: Injection

• What about inserting data rather than disrupting a connection?
– Again, all that’s required is attacker knows correct ports, seq. numbers

– Receiver B is none the wiser!

• Termed TCP connection hijacking (or “session hijacking”)
– General means to take over an already-established connection!

• We are toast if an attacker can see our TCP traffic!
– Because then they immediately know the port & sequence numbers

time
A

B

80

TCP Threat: Blind Spoofing

• Is it possible for an attacker to inject into a TCP
connection even if they can’t see our traffic?

• YES: if somehow they can guess the port and
sequence numbers

• Let’s look at a related attack where the goal of
the attacker is to create a fake connection, rather
than inject into a real one
– Why?

– Perhaps to leverage a server’s trust of a given client as
identified by its IP address

– Perhaps to frame a given client so the attacker’s
actions during the connections can’t be traced back to
the attacker

81

TCP Threat: Blind Spoofing

Client (1.2.3.4) Server (5.6.7.8)

Each host tells its Initial

Sequence Number (ISN)

to the other host.

(Spec says to pick based on

local clock)

• TCP connection establishment:

• How can an attacker create an apparent but fake
connection from 1.2.3.4 to 5.6.7.8?

82

Blind Spoofing: Attacker’s Viewpoint

Client? (1.2.3.4) Server (5.6.7.8)

Each host tells its Initial

Sequence Number (ISN)

to the other host.

(Spec says to pick based on

local clock)

Attacker can

spoof this

But

can’t

see this

So how do they

know what to

put here?

Hmm, any way

for the attacker

to know this?

Sure - make a non-spoofed

connection first, and see what

server used for ISN y then!

How Do We Fix This?

Use A Random ISN

Attacker

83

TCP’s Rate Management

Unless there’s loss, TCP doubles data in flight

every “round-trip”. All TCPs expected to obey

(“fairness”).

Mechanism: for each arriving ack for new data,

increase allowed data by 1 maximum-sized packet

D0-99 A100
D100-199

D200-299 A200 A300 D D D D

1 2 4 3

A A A A

8

E.g., suppose maximum-sized packet = 100 bytes

Src

Dest
Time

84

Protocol Cheating

How can the destination (receiver) get data to come

to them faster than normally allowed?

D0-99

Src

Dest

1

A25
A50

A75 A100

D100-199

D200-299

2

How do we defend against this?

D300-399

3

D400-499

4

D500-599

5

ACK-Splitting: each ack, even though partial, increases

allowed data by one maximum-sized packet

Time
Change rule to require

“full” ack for all data

sent in a packet

85

Protocol Cheating

How can the destination (receiver) still get data to

come to them faster than normally allowed?

D0-99

Src

Dest

1

A100
A200

A300 A400

D100-199

D200-299

2

How do we defend against this?

D300-399

3

D400-499

4

D500-599

5

Opportunistic ack’ing: acknowledge data not yet seen!

Time

86

• Approach #1: if you receive an ack for data you
haven’t sent, kill the connection
– Works only if receiver acks too far ahead

• Approach #2: follow the “round trip time” (RTT)
and if ack arrives too quickly, kill the connection
– Flaky: RTT can vary a lot, so you might kill innocent

connections

• Approach #3: make the receiver prove they
received the data
– Add a nonce (“random” marker) & require receiver to

include it in ack. Kill connections w/ incorrect nonces
o (nonce could be function computed over payload, so sender

doesn’t explicitly transmit, only implicitly)

Keeping Receivers Honest

Note: a protocol change

87

• An attacker who can observe your TCP connection can
manipulate it:
– Forcefully terminate by forging a RST packet

– Inject (spoof) data into either direction by forging data packets

– Works because they can include in their spoofed traffic the
correct sequence numbers (both directions) and TCP ports

– Remains a major threat today

Summary of TCP Security Issues

88

• An attacker who can observe your TCP connection can
manipulate it:
– Forcefully terminate by forging a RST packet

– Inject (spoof) data into either direction by forging data packets

– Works because they can include in their spoofed traffic the
correct sequence numbers (both directions) and TCP ports

– Remains a major threat today

• An attacker who can predict the ISN chosen by a server
can “blind spoof” a connection to the server
– Makes it appear that host ABC has connected, and has sent data

of the attacker’s choosing, when in fact it hasn’t

– Undermines any security based on trusting ABC’s IP address

– Allows attacker to “frame” ABC or otherwise avoid detection

– Fixed today by choosing random ISNs

Summary of TCP Security Issues

89

• TCP limits the rate at which senders transmit:
– TCP relies on endpoints behaving properly to achieve “fairness” in

how network capacity is used

– Protocol lacks a mechanism to prevent cheating

– Senders can cheat by just not abiding by the limits
o Remains a significant vulnerability: essentially nothing today prevents

• Receivers can manipulate honest senders into sending too
fast because senders trust that receivers are honest
– To a degree, sender can validate (e.g., partial acks)

– A nonce can force receiver to only act on data they’ve seen

– Such rate manipulation remains a vulnerability today

• General observation: tension between ease/power of
protocols that assume everyone follows vs. violating
– Security problems persist due to difficulties of retrofitting …

– … coupled with investment in installed base

TCP Security Issues, con’t

90

DHCP Problems

91

Internet Bootstrapping: DHCP

• New host doesn’t have an IP address yet
–So, host doesn’t know what source address to use

• Host doesn’t know who to ask for an IP address
–So, host doesn’t know what destination address to use

• Solution: shout to “discover” server that can help
–Broadcast a server-discovery message (layer 2)

–Server(s) sends a reply offering an address

host host host ...

DHCP server

92

Dynamic Host Configuration Protocol

new

client

DHCP server

“offer” message

includes IP address,

DNS server, “gateway

router”, and how long

client can have these
(“lease” time)

93

Dynamic Host Configuration Protocol

new

client

DHCP server

“offer” message

includes IP address,

DNS server, “gateway

router”, and how long

client can have these
(“lease” time)

Threats?

94

Dynamic Host Configuration Protocol

new

client

DHCP server

“offer” message

includes IP address,

DNS server, “gateway

router”, and how long

client can have these
(“lease” time)

Attacker on same

subnet can hear

new host’s

DHCP request

95

Dynamic Host Configuration Protocol

new

client

DHCP server

“offer” message

includes IP address,

DNS server, “gateway

router”, and how long

client can have these
(“lease” time)

Attacker can race the actual

server; if they win, replace DNS

server and/or gateway router

96

• Substitute a fake DNS server
– Redirect any of a host’s lookups to a machine of

attacker’s choice

• Substitute a fake “gateway”
– Intercept all of a host’s off-subnet traffic

o (even if not preceded by a DNS lookup)

– Relay contents back and forth between host and
remote server

o Modify however attacker chooses

• An invisible Man In The Middle (MITM)
– Victim host has no way of knowing it’s happening

o (Can’t necessarily alarm on peculiarity of receiving multiple
DHCP replies, since that can happen benignly)

• How can we fix this?

DHCP Threats

Hard

97

DNS Vulnerabilities

98

Non-Eavesdropping Threats: DNS

• DHCP attacks show brutal power of attacker who
can eavesdrop

• Consider attackers who can’t eavesdrop - but still
aim to manipulate us via how protocols function

• DNS: path-critical for just about everything we do
–Maps hostnames IP addresses

–Design only scales if we can minimize lookup traffic
o #1 way to do so: caching

o #2 way to do so: return not only answers to queries, but
additional info that will likely be needed shortly

• Directly interacting w/ DNS: dig program on Unix
–Allows querying of DNS system

–Dumps each field in DNS responses

99

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:

;eecs.mit.edu. IN A

;; ANSWER SECTION:

eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:

mit.edu. 11088 IN NS BITSY.mit.edu.

mit.edu. 11088 IN NS W20NS.mit.edu.

mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:

STRAWB.mit.edu. 126738 IN A 18.71.0.151

BITSY.mit.edu. 166408 IN A 18.72.0.3

W20NS.mit.edu. 126738 IN A 18.70.0.160

Use Unix “dig” utility to look up DNS

address (“A”) for hostname eecs.mit.edu

100

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:

;eecs.mit.edu. IN A

;; ANSWER SECTION:

eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:

mit.edu. 11088 IN NS BITSY.mit.edu.

mit.edu. 11088 IN NS W20NS.mit.edu.

mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:

STRAWB.mit.edu. 126738 IN A 18.71.0.151

BITSY.mit.edu. 166408 IN A 18.72.0.3

W20NS.mit.edu. 126738 IN A 18.70.0.160

These are just comments from dig itself

with details of the request/response

101

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:

;eecs.mit.edu. IN A

;; ANSWER SECTION:

eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:

mit.edu. 11088 IN NS BITSY.mit.edu.

mit.edu. 11088 IN NS W20NS.mit.edu.

mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:

STRAWB.mit.edu. 126738 IN A 18.71.0.151

BITSY.mit.edu. 166408 IN A 18.72.0.3

W20NS.mit.edu. 126738 IN A 18.70.0.160

Transaction identifier

102

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:

;eecs.mit.edu. IN A

;; ANSWER SECTION:

eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:

mit.edu. 11088 IN NS BITSY.mit.edu.

mit.edu. 11088 IN NS W20NS.mit.edu.

mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:

STRAWB.mit.edu. 126738 IN A 18.71.0.151

BITSY.mit.edu. 166408 IN A 18.72.0.3

W20NS.mit.edu. 126738 IN A 18.70.0.160

Here the server echoes back the

question that it is answering

103

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:

;eecs.mit.edu. IN A

;; ANSWER SECTION:

eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:

mit.edu. 11088 IN NS BITSY.mit.edu.

mit.edu. 11088 IN NS W20NS.mit.edu.

mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:

STRAWB.mit.edu. 126738 IN A 18.71.0.151

BITSY.mit.edu. 166408 IN A 18.72.0.3

W20NS.mit.edu. 126738 IN A 18.70.0.160

“Answer” tells us its address is 18.62.1.6

and we can cache the result for 21,600

seconds

104

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:

;eecs.mit.edu. IN A

;; ANSWER SECTION:

eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:

mit.edu. 11088 IN NS BITSY.mit.edu.

mit.edu. 11088 IN NS W20NS.mit.edu.

mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:

STRAWB.mit.edu. 126738 IN A 18.71.0.151

BITSY.mit.edu. 166408 IN A 18.72.0.3

W20NS.mit.edu. 126738 IN A 18.70.0.160

“Authority” tells us the name servers responsible for

the answer. Each record gives the hostname of a

different name server (“NS”) for names in mit.edu.

We should cache each record for 11,088 seconds.

105

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:

;eecs.mit.edu. IN A

;; ANSWER SECTION:

eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:

mit.edu. 11088 IN NS BITSY.mit.edu.

mit.edu. 11088 IN NS W20NS.mit.edu.

mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:

STRAWB.mit.edu. 126738 IN A 18.71.0.151

BITSY.mit.edu. 166408 IN A 18.72.0.3

W20NS.mit.edu. 126738 IN A 18.70.0.160

“Additional” provides extra information to save us from

making separate lookups for it, or helps with bootstrapping.

Here, it tells us the IP addresses for the hostnames of the

name servers. We add these to our cache.

106

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:

;eecs.mit.edu. IN A

;; ANSWER SECTION:

eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:

mit.edu. 11088 IN NS BITSY.mit.edu.

mit.edu. 11088 IN NS W20NS.mit.edu.

mit.edu. 30 IN NS eecs.berkeley.edu.

;; ADDITIONAL SECTION:

eecs.berkeley.edu. 30 IN A 18.6.6.6

BITSY.mit.edu. 166408 IN A 18.72.0.3

W20NS.mit.edu. 126738 IN A 18.70.0.160

What happens if the mit.edu server

returns the following to us instead?

107

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:

;eecs.mit.edu. IN A

;; ANSWER SECTION:

eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:

mit.edu. 11088 IN NS BITSY.mit.edu.

mit.edu. 11088 IN NS W20NS.mit.edu.

mit.edu. 30 IN NS eecs.berkeley.edu.

;; ADDITIONAL SECTION:

eecs.berkeley.edu. 30 IN A 18.6.6.6

BITSY.mit.edu. 166408 IN A 18.72.0.3

W20NS.mit.edu. 126738 IN A 18.70.0.160

We dutifully store in our cache a mapping of

eecs.berkeley.edu to an IP address under

MIT’s control. (It could have been any IP

address they wanted, not just one of theirs.)

108

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:

;eecs.mit.edu. IN A

;; ANSWER SECTION:

eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:

mit.edu. 11088 IN NS BITSY.mit.edu.

mit.edu. 11088 IN NS W20NS.mit.edu.

mit.edu. 30 IN NS eecs.berkeley.edu.

;; ADDITIONAL SECTION:

eecs.berkeley.edu. 30 IN A 18.6.6.6

BITSY.mit.edu. 166408 IN A 18.72.0.3

W20NS.mit.edu. 126738 IN A 18.70.0.160

In this case they chose to make the

mapping disappear after 30 seconds.

They could have made it persist for

weeks, or disappear even quicker.

109

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:

;eecs.mit.edu. IN A

;; ANSWER SECTION:

eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:

mit.edu. 11088 IN NS BITSY.mit.edu.

mit.edu. 11088 IN NS W20NS.mit.edu.

mit.edu. 30 IN NS eecs.berkeley.edu.

;; ADDITIONAL SECTION:

eecs.berkeley.edu. 30 IN A 18.6.6.6

BITSY.mit.edu. 166408 IN A 18.72.0.3

W20NS.mit.edu. 126738 IN A 18.70.0.160

How do we fix such cache poisoning?

110

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:

;eecs.mit.edu. IN A

;; ANSWER SECTION:

eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:

mit.edu. 11088 IN NS BITSY.mit.edu.

mit.edu. 11088 IN NS W20NS.mit.edu.

mit.edu. 30 IN NS eecs.berkeley.edu.

;; ADDITIONAL SECTION:

eecs.berkeley.edu. 30 IN A 18.6.6.6

BITSY.mit.edu. 166408 IN A 18.72.0.3

W20NS.mit.edu. 126738 IN A 18.70.0.160

Don’t accept Additional records unless
they’re for the domain we’re looking up

E.g., looking up eecs.mit.edu only accept
additional records from *.mit.edu

No extra risk in accepting these since server could
return them to us directly in an Answer anyway.

=

111

DNS Threats, con’t

What about blind spoofing?

• Say we look up

mail.google.com; how can

an off-path attacker feed us

a bogus A answer before the

legitimate server replies?

• How can such an attacker

even know we are looking

up mail.google.com?

Additional information

(variable # of resource records)

Questions

(variable # of resource records)

Answers

(variable # of resource records)

Authority

(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

16 bits 16 bits

112

DNS Blind Spoofing, con’t

Additional information

(variable # of resource records)

Questions

(variable # of resource records)

Answers

(variable # of resource records)

Authority

(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

16 bits 16 bits

So this will be k+1

They observe ID k here

Originally, identification field

incremented by 1 for each

request. How does attacker

guess it?

Once they know we’re looking

it up, they just have to guess

the Identification field and reply

before legit server.

How hard is that?

Fix?

113

DNS Blind Spoofing, con’t

Additional information

(variable # of resource records)

Questions

(variable # of resource records)

Answers

(variable # of resource records)

Authority

(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

16 bits 16 bits

Attacker can send lots of replies,

not just one …

However: once reply from legit

server arrives (with correct

Identification), it’s cached and

no more opportunity to poison it.

Victim is innoculated!

Once we randomize the

Identification, attacker has a

1/65536 chance of guessing it

correctly.

Are we pretty much safe?

Unless attacker can send

1000s of replies before legit

arrives, we’re likely safe -

phew! ?

114

DNS Blind Spoofing (Kaminsky 2008)

• Two key ideas:

– Spoof uses Additional field (rather than Answer)

– Attacker can get around caching of legit replies

by generating a series of different name

lookups:

...

115

;; QUESTION SECTION:

;randomk.google.com. IN A

;; ANSWER SECTION:

randomk.google.com 21600 IN A doesn’t matter

;; AUTHORITY SECTION:

google.com. 11088 IN NS mail.google.com

;; ADDITIONAL SECTION:

mail.google.com 126738 IN A 6.6.6.6

Kaminsky Blind Spoofing, con’t

For each lookup of randomk.google.com,
attacker returns a bunch of records like this,
each with a different Identifier

Once they win the race, not only have they poisoned
mail.google.com … but also the cached NS record for
google.com’s name server - so any future X.google.com
lookups go through the attacker’s machine

116

;; QUESTION SECTION:

;randomk.google.com. IN A

;; ANSWER SECTION:

randomk.google.com 21600 IN A doesn’t matter

;; AUTHORITY SECTION:

google.com. 11088 IN NS mail.google.com

;; ADDITIONAL SECTION:

mail.google.com 126738 IN A 6.6.6.6

Kaminsky Blind Spoofing, con’t

For each lookup of randomk.google.com,
attacker returns a bunch of records like this,
each with a different Identifier

Once they win the race, not only have they poisoned
mail.google.com … but also the cached NS record for
google.com’s name server - so any future
X.google.com lookups go through the attacker’s machine

117

Defending Against Blind Spoofing

Additional information

(variable # of resource records)

Questions

(variable # of resource records)

Answers

(variable # of resource records)

Authority

(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

16 bits 16 bits
Central problem: all that tells a

client they should accept a

response is that it matches the

Identification field.

With only 16 bits, it lacks

sufficient entropy: even if truly

random, the search space an

attacker must brute force is too

small.

Where can we get more

entropy? (Without requiring a

protocol change.)

118

Defending Against Blind Spoofing

Additional information

(variable # of resource records)

Questions

(variable # of resource records)

Answers

(variable # of resource records)

Authority

(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

DNS (primarily) uses UDP for

transport rather than TCP.

UDP header has:

 16-bit Source & Destination ports

 (identify processes, like w/ TCP)

 16-bit checksum, 16-bit length

 SRC port DST port

checksum length

16 bits 16 bits

UDP Payload

UDP Header

119

Defending Against Blind Spoofing

Additional information

(variable # of resource records)

Questions

(variable # of resource records)

Answers

(variable # of resource records)

Authority

(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

DNS (primarily) uses UDP for

transport rather than TCP.

UDP header has:

 16-bit Source & Destination ports

 (identify processes, like w/ TCP)

 16-bit checksum, 16-bit length

Src=53 Dest=53

checksum length

16 bits 16 bits

For requestor to receive DNS

reply, needs both correct

Identification and correct ports.

On a request, DST port = 53.

SRC port usually also 53 - but

not fundamental, just convenient

Total entropy: 16 bits

120

Defending Against Blind Spoofing

Additional information

(variable # of resource records)

Questions

(variable # of resource records)

Answers

(variable # of resource records)

Authority

(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

Src=rnd Dest=53

checksum length

16 bits 16 bits
“Fix”: use random source port

Total entropy: ? bits

121

Defending Against Blind Spoofing

Additional information

(variable # of resource records)

Questions

(variable # of resource records)

Answers

(variable # of resource records)

Authority

(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

Src=rnd Dest=53

checksum length

16 bits 16 bits
“Fix”: use random source port

32 bits of entropy makes it

orders of magnitude harder for

attacker to guess all the

necessary fields and dupe victim

into accepting spoof response.

This is what primarily “secures”

DNS today. (Note: not all

resolvers have implemented

random source ports!)

Total entropy: 32 bits

