Computer Security Course. Dawn Song

Software Security (Il):
Buffer-overflow Defenses

Dawn Song 1

Preventing hijacking attacks

Fix bugs:
e Audit software

» Automated tools: Coverity, Prefast/Prefix, Fortify
 Rewrite software in a type-safe language (Java, ML)

» Difficult for existing (legacy) code ...

Allow overflow, but prevent code execution

Add runtime code to detect overflows exploits:
e Halt process when overflow exploit detected
e StackGuard, Libsafe

Control-hijacking Attack Space

Code Injection

Heap

Exception
Handlers

Dawn Song

Defense |: non-execute (wAXx)

Prevent attack code execution by marking stack and
heap as non-executable

« NX-bit on AMD Athlon 64, XD-bit on Intel P4
Prescott

— NX bit in every Page Table Entry (PTE)

 Deployment:

—Linux (via PaX project); OpenBSD

—Windows: since XP SP2 (DEP)
. Boot.ini : /noexecute=0Optin or AlwaysOn
. Visual Studio: /NXCompat[:NO]

Effectiveness and Limitations

* Limitations:
— Some apps need executable heap (e.g.JITs).
— Does not defend against ‘return-to-libc’ exploits

Exce pﬁon Non-Execute (NX)*
Handlers

.,\(\S
il et
esN\\ Code Injection
S
e
oe Stack Non-Execute (NX)*
Heap Non-Execute (NX)*

* When Applicable Dawn Song

Defense |l: Address Randomization

ASLR: (Address Space Layout Randomization)

Start stack at a random location
Start heap at a random locatioin

Map shared libraries to rand location in process
memory

=> Attacker cannot jump directly to exec
function

Deployment: (/DynamicBase)

 Windows Vista: 8 bits of randomness for DLLs

— aligned to 64K page in a 16 MB region =
256 choices

* Linux (via PaX): 16 bits of randomness for
libraries

More effective on 64-bit architectures

Other randomization methods:

Sys-call randomization: randomize sys-call id’s

Instruction Set Randomization (ISR)

OxFFFFFFFF
BT
OxBFFO9AB20
user stack
il

shared libraries F0x40000000

run time heap

static data segment
text segment (program)

0x08048000
O0x00000000

Effectiveness and Limitations

* Limitations
— Randomness is limited
— Some vulnerabilities can allow secret to be leaked

. ,\(\S
e .
a5

e -
Stack Non-Execute (NX) ASLR
ASLR
Heap Non-Execute (NX)* ASLR
ASLR

Exception Non-Execute (NX)*
ASLR
Handlers

* When Applicable Dawn Song

Defense |ll: StackGuard

* Run time tests for stack integrity

arguments

* Embed “canaries” in stack frames return address

stack frame pointer

and verify their integrity prior to ANARY

fu nCl'Ion rEtu rn local variables

Canary Types

e Random canary:

— Random string chosen at program startup.
— Insert canary string into every stack frame.

— Verify canary before returning from function.
* Exit program if canary changed. Turns potential exploit into DoS.

— To exploit successfully, attacker must learn current random string.

* Terminator canary: Canary = {0, newline, linefeed, EOF}

— String functions will not copy beyond terminator.
— Attacker cannot use string functions to corrupt stack.

StackGuard (Cont.)

StackGuard implemented as a GCC patch.
— Program must be recompiled.

Low performance effects: 8% for Apache.

Note: Canaries don’t provide full proof protection.
— Some stack smashing attacks leave canaries unchanged

Heap protection: PointGuard.

— Protects function pointers and setjmp buffers by
encrypting them: e.g. XOR with random cookie

— Less effective, more noticeable performance effects

StackGuard enhancements: ProPolice

 ProPolice iBM) - gcc3.4.1. (-fstack-protector)
— Rearrange stack layout to prevent ptr overflow.

String
Growth arguments Protects pointer args and local
eturn address pointers from a buffer overflow
stack frame pointer
CANARY

local string buffers
local string variables

Stack

Growth oot oufier | pointers, but no arrays

copy of pointer args

MS Visual Studio /GS isince 2003]

Compiler /GS option:
— Combination of ProPolice and Random canary.
— If cookie mismatch, default behavior is to call _exit(3)

Function prolog: Function epilog:
sub esp,8 //allocate 8 bytes for cookie mov ecx, DIWORD PTR [esp+8]
mov eax, DWORD PTR ___security_cookie Xor ecx, esp
Xor eax,esp //xor cookie with current esp call @__security_check_cookie@4
mov DWORD PTR [esp+8], eax // save in stack add esp, 8

Enhanced /GS in Visual Studio 2010:

— /GS protection added to all functions, unless can be proven unnecessary

/GS stack frame

String
Growth

arguments

return address

stack frame pointer

exception handlers

CANARY

local string buffers

local string variables

local non-buffer
variables

Stack
Growth

Canary protects ret-addr and
exception handler frame

} pointers, but no arrays

Effectiveness and Limitations

* Limitation:

— Evasion with exception handler * When Applicable
3"\@(\5
\N\’\“% Code Injection
&\,“566
O stack Non-Execute (NX)* ASLR
ASLR StacKGuard(Canaries)
StacKGuard(Canaries) ProPolice
ProPolice /GS
/GS
Heap Non-Execute (NX)* ASLR
ASLR PointGuard
PointGuard
Exception | Non-Execute (NX)*
Handlers |

14

Evading /GS with exception handlers

* When exception is thrown, dispatcher walks
up exception list until handler is found
(else use default handler)

After overflow: handler points to attacker’s code -
exception triggered = control hijack

crafted

. o t
Main point: exception is triggered PH
before canary is checked ITET

SEH frame

Defense Ill: SAFESEH and SEHOP

e /SAFESEH: linker flag
— Linker produces a binary with a table of safe exception handlers

— System will not jump to exception handler not on list

 /SEHOP: platform defense (since win vista SP1)

— Observation: SEH attacks typically corrupt the “next” entry in SEH list.

— SEHOP: add a dummy record at top of SEH list

— When exception occurs, dispatcher walks up list and verifies dummy
record is there. If not, terminates process.

Effectiveness and Limitations

* Limitations:

— Require recompilation * When Applicable
. AOO
. -%’d‘\q(\ ..
e&\,“"e
Ol stack Non-Execute (NX)* ASLR
ASLR StacKGuard(Canaries)
StacKGuard(Canaries) ProPolice
ProPolice /GS
/GS
Heap Non-Execute (NX)* ASLR
ASLR PointGuard
PointGuard
Exception Non-Execute (NX)*
ASLR
Handlers SAFESEH and SEHOP

17

Defense |V: Libsafe

 Dynamically loaded library

return address

no need to recompile app. .
(pile app.) main

stack frme pointer

* Intercepts calls to strcpy (dest, src)

buf
— Validates sufficient space in current

stack frame:

Libsafe strcpy

| frame-pointer — dest| > strlen(src)

— If so, does strcpy. Otherwise,
terminates application

Effectiveness and Limitations

Limitations:

— legted protection

* When Applicable

N\\’(.\%
es\ Code Injection
e\’
Stack Non-Execute (NX)* ASLR
ASLR StacKGuard(Canaries)
StacKGuard(Canaries) ProPolice
ProPolice /GS
/GS libsafe
libsafe
Heap Non-Execute (NX)* ASLR
ASLR PointGuard
PointGuard
Exception Non-Execute (NX)*
ASLR
Handlers | ¢\ cecen and serop

Dawn Song 19

Other Defenses

» StackShield

= At function prologue, copy return address RET and SFP
to “safe” location (beginning of data segment)

= Upon return, check that RET and SFP is equal to copy.

* Implemented as assembler file processor (GCC)

» Control Flow Integrity (CFl)

= A combination of static and dynamic checking
= Statically determine program control flow

= Dynamically enforce control flow integrity

Effectiveness and Limitations

 Many different kinds of attacks. Not one silver

buIIe(’Esdefense. + When Applicable
g0
e

Stack Non-Execute (NX)* ASLR
ASLR StacKGuard(Canaries)
StacKGuard(Canaries) ProPolice
ProPolice /GS
/GSI libsafe
ibsafe StackShield
StackShield

Heap Non-Execute (NX)* ASLR
ASLR PointGuard
PointGuard

Excepﬁon Non-Execute (NX)*
ASLR

Handlers SAFESEH and SEHOP

Dawn Song 21

Computer Security Course. Dawn Song

Software Security (ll):
Other types of software vulnerabilities

Dawn Song 22

Common Coding Errors

* |nput validation vulnerabilities

* Memory management vulnerabilities

Input validation vulnerabilities

* Program requires certain assumptions on
inputs to run properly

* Without correct checking for inputs
— Program gets exploited

 Example:
— Buffer overflow

— Format string

Example |

Example Il
1: char buf[80];
2: void vulnerable() {
3: int len = read_int_from_network();
4: char *p = read_string_from_network();
5: if (len > sizeof buf) {
6: error(“length too large, nice try!”);
7: return;
8: +
9: memcpy (buf, p, len);
10: }

What's wrong with this code?
Hint —memcpy () prototype:

— voild *memcpy (void *dest, const void *src,

size t n);

Definition of size t! typedef unsigned int size t;

Do you see it now?

Dawn Song

25

Implicit Casting Bug

* Attacker provides a negative value for 1len
— if won’ t notice anything wrong
— Execute memcpy () with negative third arg

— Third arg is implicitly cast to an unsigned int, and
becomes a very large positive int

— memcpy () copies huge amount of memory into buf,
vielding a buffer overrun!

* A signed/unsigned or an implicit casting bug
— Very nasty — hard to spot

* C compiler doesn’ t warn about type mismatch
between signed int andunsigned int

— Silently inserts an implicit cast

Example Il (Integer Overflow)

Example llI

1: size_t len = read_int_from_network();
2: char xbuf;

3: buf = malloc(len+5)

4: read(fd, buf, 1len);

ﬁ
e What s wrong with this code?

— No buffer overrun problems (5 spare bytes)

— No sign problems (all ints are unsigned)
 But, 1en+5 can overflow if 1en is too large

— If len = OxXFFFFFFFF, then len+5is 4

— Allocate 4-byte buffer then read a lot more than 4 bytes
into it: classic buffer overrun!

. K,r{_cfnw programming language’s semantics well to avoid
pitfalls

Dawn Song 27

Example Il

Example IV
1: charx ptr = (charx) malloc(SIZE);
2: if (err) {
3: abrt = 1;
4: free(ptr);
5: }
6: ...
7: if (abrt) {
8: logError(“operation aborted before commit”, ptr);
9: }

e Use-after-free
* Corrupt memory

http://cwe.mitre.org Dawn Song

28

Example IV

Example V
1: charx ptr = (charx) malloc(SIZE);
2: if (err) {
3: abrt = 1;
4: free(ptr);
5: }
6: ...
7: free(ptr);

e Double-free error
e Corrupts memory-management data structure

http://owasp.org Dawn Song 29

