
Android Security 

Computer Security Course.                                          Dawn Song 



Android 
 
• As of December 2011, over 10 

billion apps downloaded from 
Google Play 

 
• Many vendors on android 

Images: Google 
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Android History 

• Google acquired Android, Inc. in July 2005 

• ‣ Nov. 2007 - initial SDK release (multiple revs: 
M3, M5, 0.9, 1.0) 

• ‣ Sep. 2008 - T-Mobile announces G1 (available 
Oct. 2008) 

• ‣ Oct. 2008 - Source code released (some Google 
apps omitted) 
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Android Security 

• Security goal: 
– Protect user data 
– Provide application 

isolation 
– Protect system 

resources (including 
the network) 
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Android Security Mechanism 

• Robust security at the OS level through 
the Linux kernel 

• Mandatory application sandbox for all 
applications 

• Secure inter-process communication 

• Application signing 

• Application-defined and user-granted 
permissions System: Linux kernel 
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Traditional Linux Security Model 
• Multi-user model 
• A user-based permissions model 
• Process isolation 
• Extensible mechanism for secure IPC 

 
• Linux: 

– Prevents user A from reading user B's files 
– Ensures that user A does not exhaust user B's 

memory 
– Ensures that user A does not exhaust user B's CPU 

resources 
– Ensures that user A does not exhaust user B's devices 

(e.g. telephony, GPS, bluetooth) 

System: Linux kernel 
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Android Security Model 

• Multi-app model 

• Different app installed with 
different UID 

• Runs in a different process 

• Application sandbox 
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Application Sandbox 

System: Linux kernel 
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• The kernel enforces security between applications and the 
system at the process level through standard Linux facilities, 
such as user and group IDs that are assigned to applications. 
 

• By default, applications cannot interact with each other and 
applications have limited access to the operating system.  
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App Signing 

Android Package 
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Memory-safely Enhancements 
• ProPolice to prevent stack buffer overruns (-fstack-protector) 
• safe_iop to reduce integer overflows 
• Extensions to OpenBSD dlmalloc to prevent double free() vulnerabilities and to prevent chunk consolidation attacks. Chunk 

consolidation attacks are a common way to exploit heap corruption. 
• OpenBSD calloc to prevent integer overflows during memory allocation 

• Format string vulnerability protections (-Wformat-security -Werror=format-security) 
• Hardware-based No eXecute (NX) to prevent code execution on the stack and heap 
• Linux mmap_min_addr to mitigate null pointer dereference privilege escalation (further enhanced in Android 4.1) 

• PIE (Position Independent Executable) support 
• Read-only relocations / immediate binding (-Wl,-z,relro -Wl,-z,now) 
• dmesg_restrict enabled (avoid leaking kernel addresses) 
• kptr_restrict enabled (avoid leaking kernel addresses) 

Android 1.5+ 

Android 2.3+ 

Android 4.1+ 

• Address Space Layout Randomization (ASLR) to randomize key locations in memory 

Android 4.0+ 



Permissions 
• Different types of permissions: 

– Camera functions 
– Location data (GPS) 
– Bluetooth functions 
– Telephony functions 
– SMS/MMS functions 
– Network/data connections 

• Different from file permissions 
• User-defined permissions 

 



Android Application Security 

Each application is divided into components 
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Intents 
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Intents 
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Android App Vulnerability 

• Intent 

• Capability leaks 

• Permission misusage 

• Insecure use of system resources 

 



Unauthorized Intent Receipt 
• After processing the card image, OCR fires an 

implicit intent to the Web service to charge the 
card via an online payment gateway 

• The attacker creates a intent filter for that same 
action and receives the intent along with the 
bundle that contains the credit card information 
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Intent Spoofing 
• PayQuick’s OCR service can send a diagnostic 

message for the web service to send back to the 
server for display via implicit intent. 

• An attacker can craft a malicious intent that will 
flood the server with spam. 
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Insecure Storage 
• PayQuick stores a backup of all credit card on SD card 

• All of this data is readable by any application 
– Catville can access the SD card, and the data is not encrypted. 
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Insecure Network Communication 
• PayQuick uses HTTP instead of 

HTTPS to make online charges. 
 
• A network attacker with a sniffer 

such as WireShark can view all 
private data transferred across the 
network. 
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Overprivileged Application 
• The PayQuick App is grossly over-privileged.  
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Location data (GPS) 
Camera Functions 
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• This violates the principle of least privilege, and should the attacker infect PayQuick, this gives 
the attacker more privileges. 
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Android Malware 
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Malware Characterization 

23 

• Installation methods 

• Activation mechanisms  

• Malicious payloads 



Malware Installation 

• Users tend not to install malware intentionally 

• Attackers trick users into installing malware 

– Repackaging 

– Update attack 

– Drive-by download 

 

Cool App! 



Activation Mechanisms 
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• By listening to various system events 
• By hijacking the main activity 



Malicious Payloads 

26 

• Privilege escalation 
• Remote control 
• Financial charges 
• Information collection 
• Example malicious behaviors 

– Exploit vulnerabilities in Android kernel & platform 
– Exploit vulnerabilities in other apps 
– Steal users’ data 
– Send paid SMS 
– Botnets: download malicious payload & launch other malicious activities 

 



What You Have Learned in CS161 

• Software security/Secure coding 

• Secure architecture principles/OS security 

• Applied crypto basics 

• Network security & malicious code 

• Web security 

• Mobile security 



Principles 

• Secure design & architecture 

• Secure code 

• Defending against attacks 

• General practice 



Secure Design & Architecture Principles 

• Isolation 
• Least authority/privilege 

– Capabilities 
– Privilege separation 

• Policy & enforcement 
– Reference monitor 

• Reduce attack surface & TCB 
• Auto-update 

 



Secure Code 

• Simplicity & modularity 

• Auditability 

– Secure code should make it easier to audit 

• E.g., components are side-effect free 

• Do not mix code and data 

– Minimize attacker’s control 



Input validation 
• Make implicit assumptions explicit & enforce it with checks 
• Examples 

– Buffer overflow 
– XSS, SQL 
– Server-side validation checks in web apps 

• Other issues: 
– Sufficient checks 
– TOCTTOU 
– Authorization checks  



Defense 
• Defense in depth 
• Prevention, detection, remediation, recovery 
• Defense should be resilient against evasion 

– Anti-virus 
– If it’s easy to evade, attackers will 
– Use white list instead of black list 
– A proper cost-benefit analysis 

• Accountability 
– Audit 
– Provenance 

 

 



Do not re-invent secure procedures 

• Do not invent your own ciphers 

• Do not invent your own white list 

• Do not invent your own secure communication 
protocols 



Holistic View 

• Usability 

• Economics 


