
Android Security

Computer Security Course. Dawn Song

Android

• As of December 2011, over 10

billion apps downloaded from
Google Play

• Many vendors on android

Images: Google

Estimated Total Android Activations

Android History

• Google acquired Android, Inc. in July 2005

• ‣ Nov. 2007 - initial SDK release (multiple revs:
M3, M5, 0.9, 1.0)

• ‣ Sep. 2008 - T-Mobile announces G1 (available
Oct. 2008)

• ‣ Oct. 2008 - Source code released (some Google
apps omitted)

2005 2007 2008 2009 2010 2011 2012

July:
Google
aquires

Android,
Inc.

Nov:
Initial SDK

release

Sept:
T-Mobile

announces
G1

Oct:

Source code
released

(some Google
Apps

omitted)

Apr:
Android 1.5
(Cupcake)

Sept:

Android 1.6
(Donut)

Oct:

Android 2.0
(Éclair)

Jan:
Android 2.1

May:

Android 2.2
(Froyo)

Dec:

Android 2.3
(Gingerbread)

Jan-Nov:
Android

2.2.1-2.2.3

Feb:
Android 3.0

(Honeycomb)

Oct:
Android 4.0.1

(Ice Cream
Sandwich)

July:
Android

4.1.1
(Jelly Bean)

Android Security

• Security goal:
– Protect user data
– Provide application

isolation
– Protect system

resources (including
the network)

System
Resources

Network

SD Card

. . .

System New Card (+)

Cards

Card ending in 4380

Card ending in 8346

Card ending in 9456

Card ending in 7322

(+)

Cat

Android Security Mechanism

• Robust security at the OS level through
the Linux kernel

• Mandatory application sandbox for all
applications

• Secure inter-process communication

• Application signing

• Application-defined and user-granted
permissions System: Linux kernel

Libraries

Application Framework

(application-sandboxes)

(+)

Cat

Syst
em

New Card (+)

Cards

Card ending in 4380

Card ending in 8346

Card ending in 9456

Card ending in 7322

Traditional Linux Security Model
• Multi-user model
• A user-based permissions model
• Process isolation
• Extensible mechanism for secure IPC

• Linux:

– Prevents user A from reading user B's files
– Ensures that user A does not exhaust user B's

memory
– Ensures that user A does not exhaust user B's CPU

resources
– Ensures that user A does not exhaust user B's devices

(e.g. telephony, GPS, bluetooth)

System: Linux kernel

UID: 3 UID: 4

Process 12

Process 14

Process 10

Process 13

Process 16

USER A USER B

Android Security Model

• Multi-app model

• Different app installed with
different UID

• Runs in a different process

• Application sandbox

System: Linux kernel

Libraries

Application Framework

UID: 3
Process 12

UID: 4
Process 23

(+)

Cat

Syst
em

New Card (+)

Cards

Card ending in 4380

Card ending in 8346

Card ending in 9456

Card ending in 7322

Application Sandbox

System: Linux kernel

Libraries

Application Framework

UID: 3
Process 12
GID: 1

UID: 4
Process 23
GID: 2

(+)

Cat

Syst
em

New Card (+)

Cards

Card ending in 4380

Card ending in 8346

Card ending in 9456

Card ending in 7322

• The kernel enforces security between applications and the
system at the process level through standard Linux facilities,
such as user and group IDs that are assigned to applications.

• By default, applications cannot interact with each other and
applications have limited access to the operating system.

App Signing
App Resources

Compiled
Resources

aapt R.java

App Source

Java Compiler

Java Interfaces aidi

.aidi Files

.class Files

.dex Files

Android Package

Signed .apk

Signed and Aligned .apk

apkbuilder

dex

Other
Resources

3rd Party Libs

Keystore Android
App
Signing

Android
App
Packaging

Jarsigner

zipalign

App Signing

Android Package

Signed .apk

Signed and Aligned .apk

Keystore

Jarsigner

zipalign

System: Linux kernel

Libraries

Application Framework

UID: 3
Process 12

UID: 4
Process 23

(+)

Cat

Syst
em

New Card (+)

Cards

Card ending in 4380

Card ending in 8346

Card ending in 9456

Card ending in 7322

(pay_quick.apk)

(public key A)

Download and Installation

 (catville.apk)

(public key B)

Apps Signed with different public keys
⇒ Apps have different UID

(public key A)

UID: 3
Process 23

If two apps have the same public key, the two apps could
have the same UID.

Memory-safely Enhancements
• ProPolice to prevent stack buffer overruns (-fstack-protector)
• safe_iop to reduce integer overflows
• Extensions to OpenBSD dlmalloc to prevent double free() vulnerabilities and to prevent chunk consolidation attacks. Chunk

consolidation attacks are a common way to exploit heap corruption.
• OpenBSD calloc to prevent integer overflows during memory allocation

• Format string vulnerability protections (-Wformat-security -Werror=format-security)
• Hardware-based No eXecute (NX) to prevent code execution on the stack and heap
• Linux mmap_min_addr to mitigate null pointer dereference privilege escalation (further enhanced in Android 4.1)

• PIE (Position Independent Executable) support
• Read-only relocations / immediate binding (-Wl,-z,relro -Wl,-z,now)
• dmesg_restrict enabled (avoid leaking kernel addresses)
• kptr_restrict enabled (avoid leaking kernel addresses)

Android 1.5+

Android 2.3+

Android 4.1+

• Address Space Layout Randomization (ASLR) to randomize key locations in memory

Android 4.0+

Permissions
• Different types of permissions:

– Camera functions
– Location data (GPS)
– Bluetooth functions
– Telephony functions
– SMS/MMS functions
– Network/data connections

• Different from file permissions
• User-defined permissions

Android Application Security

Each application is divided into components

Services

Content Providers Broadcast Receivers System New Card (+)

CardView
Activity

Charge
Activity

Camera
Activity

Native Libraries

Credit Card
Content
Provider

Web Service

OCR Service

Activities

System New Card (+)

Cards

Card ending in 4380

Card ending in 8346

Card ending in 9456

Card ending in 7322

Intents

CardView
Activity

Charge
Activity

Credit
Card

Content
Provider

Web Service

OCR Service

Explicit Intent for Charge Activity: viewMakeCharge with cardA

New Card (+)

Cards

Card ending in 4380

Card ending in 8346

Card ending in 9456

Card ending in 7322

Camera
Activity

Native Libraries

Charge Card

Card ending in 4380

Amount to Charge:

Item Charged for:

Intent Filter for
Charge Activity:
.
.
.
viewMakeCharge
.
.
.

Intents

CardView
Activity Charge

Activity

Credit
Card

Content
Provider

Web Service

OCR Service

Implicit Intent: IMAGE_CAPTURE

New Card (+)

Cards

Card ending in 4380

Card ending in 8346

Card ending in 9456

Card ending in 7322

Camera
Activity

Native Libraries

4242 4242 4242 4242

credit
card

("android.media.action.IMAGE_CAPTURE”)

Android App Vulnerability

• Intent

• Capability leaks

• Permission misusage

• Insecure use of system resources

Unauthorized Intent Receipt
• After processing the card image, OCR fires an

implicit intent to the Web service to charge the
card via an online payment gateway

• The attacker creates a intent filter for that same
action and receives the intent along with the
bundle that contains the credit card information

IMPLICIT INTENT

Web Service

Credit Card
Logging
Service

System New Card (+)

CardView
Activity

Charge
Activity

Camera
Activity

Native Libraries

Credit Card
Content
Provider

Web Service

OCR Service

Intent: chargeCard

Intent Filter for Web Service:
chargeCard

Intent Filter for Some Service:
chargeCard

Charge
Activity

Intent Spoofing
• PayQuick’s OCR service can send a diagnostic

message for the web service to send back to the
server for display via implicit intent.

• An attacker can craft a malicious intent that will
flood the server with spam.

Web Service

OCR Service

Spam Service

IMPLICIT INTENT

Intent: diagnosticSend
DataBundle: “SPAM SPAM SPAM”

Intent: diagnosticSend
DataBundle: “Error in method X…”

Intent Filter for Web Service:

diagnosticSend

Insecure Storage
• PayQuick stores a backup of all credit card on SD card

• All of this data is readable by any application
– Catville can access the SD card, and the data is not encrypted.

Accesses SD Card and grabs
Sensitive data from backup

System
Resources

Network

SD Card

. . .

OCR Service
Credit Card

Logging
Service

Insecure Network Communication
• PayQuick uses HTTP instead of

HTTPS to make online charges.

• A network attacker with a sniffer

such as WireShark can view all
private data transferred across the
network.

System
Resources

Network

SD Card

. . .

Web Service

Network

(server)

Overprivileged Application
• The PayQuick App is grossly over-privileged.

(+)

Cat

Privileges:
Location data (GPS)
Camera Functions
Bluetooth functions
Telephony functions
SMS/MMS functions
Network/data connections

• This violates the principle of least privilege, and should the attacker infect PayQuick, this gives
the attacker more privileges.

Extra Privileges

New Card (+)

Cards

Card ending in 4380

Card ending in 8346

Card ending in 9456

Card ending in 7322

Android Malware

100%

3,320%

0%

1000%

2000%

3000%

4000%

Jun-11 Jul-11 Aug-11 Sep-11 Oct-11 Nov-11 Dec-11

Cumulative Android Malware Increase

Malware Characterization

23

• Installation methods

• Activation mechanisms

• Malicious payloads

Malware Installation

• Users tend not to install malware intentionally

• Attackers trick users into installing malware

– Repackaging

– Update attack

– Drive-by download

Cool App!

Activation Mechanisms

1050

398
288

112
187

17

725 782

56
0

200

400

600

800

1000

1200

BOOT SMS NET CALL USB PKG BAT SYS MAIN

Distribution of Malware Activation Events
Th

e

o
f

m
al

w
ar

e
sa

m
p

le
s

• By listening to various system events
• By hijacking the main activity

Malicious Payloads

26

• Privilege escalation
• Remote control
• Financial charges
• Information collection
• Example malicious behaviors

– Exploit vulnerabilities in Android kernel & platform
– Exploit vulnerabilities in other apps
– Steal users’ data
– Send paid SMS
– Botnets: download malicious payload & launch other malicious activities

What You Have Learned in CS161

• Software security/Secure coding

• Secure architecture principles/OS security

• Applied crypto basics

• Network security & malicious code

• Web security

• Mobile security

Principles

• Secure design & architecture

• Secure code

• Defending against attacks

• General practice

Secure Design & Architecture Principles

• Isolation
• Least authority/privilege

– Capabilities
– Privilege separation

• Policy & enforcement
– Reference monitor

• Reduce attack surface & TCB
• Auto-update

Secure Code

• Simplicity & modularity

• Auditability

– Secure code should make it easier to audit

• E.g., components are side-effect free

• Do not mix code and data

– Minimize attacker’s control

Input validation
• Make implicit assumptions explicit & enforce it with checks
• Examples

– Buffer overflow
– XSS, SQL
– Server-side validation checks in web apps

• Other issues:
– Sufficient checks
– TOCTTOU
– Authorization checks

Defense
• Defense in depth
• Prevention, detection, remediation, recovery
• Defense should be resilient against evasion

– Anti-virus
– If it’s easy to evade, attackers will
– Use white list instead of black list
– A proper cost-benefit analysis

• Accountability
– Audit
– Provenance

Do not re-invent secure procedures

• Do not invent your own ciphers

• Do not invent your own white list

• Do not invent your own secure communication
protocols

Holistic View

• Usability

• Economics

