
Dawn Song

 Web Security: Vulnerabilities & Attacks

Computer Security Course. Dawn Song

Dawn Song

– Buffer overflow
– Root exploit

– Cross-site scripting
– Cross-site request forgery
– Cache history attacks

– Processes
– System calls
– File system

– Frames
– Content (including JavaScript, …)
– Document object model,

cookies, localStorage

Users
– Discretionary access control

“Origins”
– Mandatory access control

Vulnerabilities:

Primitives:

Principals:

login
password

banking content
Accounts
Bill Pay
Mail
Transfers

Operating system Web Browser

Dawn Song

Browser security mechanism

• Each frame of a page has an
origin
– Origin = protocol://host:port

• Frame can access its own
origin
– Network access, Read/write

DOM, Storage (cookies)
• Frame cannot access data

associated with a different
origin

login
password

-play
-buy
-info

(Origin is “http://www.catville.com:80”)
--ad--

BUY ROOSTER
FLAKES CEREAL!

(Origin is “http://www.rooster-flakes.com:80”)

Dawn Song

Components of browser security policy
login

password

-play
-buy
-info

--ad--

BUY ROOSTER
FLAKES CEREAL!

Frame A
(from Site X)

Frame B
(from Site Y)

Frame-Frame relationships
– canScript(A,B)

• Can Frame A execute a script that manipulates
arbitrary/nontrivial DOM elements of Frame B?

– canNavigate(A,B)
• Can Frame A change the origin of content for Frame

B?

Frame-principal relationships
– readCookie(A,S), writeCookie(A,S)

• Can Frame A read/write cookies from Site Y?

Dawn Song

Origin of Browser Primitives
Cookies

Javascript

DOM

Imported in a page or frame: Has the same origin as that page or frame

Default origin is domain and path of setting URL

Each frame of a page:

Setting Cookies:

Origin is protocol://host:port

Embedded in a page or frame: Has the same origin as that page or frame

Dawn Song

Library import
<script
 src=https://seal.verisign.com/getseal?host_name=safebank.com>
</script>

• Script has privileges of imported page, NOT source server.
• Can script other pages in this origin, load more scripts
• Other forms of importing

VeriSign
login

password

banking content
Accounts
Bill Pay
Mail
Transfers

Dawn Song

Same-origin policy

There is no single same-origin policy

Same-origin policy for Javascript/DOM

Same protocol
Same domain

Same port

Two documents have the same
origin if:

(https, http, ftp, etc)
(safebank.com, etc)
(80, 23, 8080, etc)

Results of same-origin checks against
“http://cards.safebank.com/c1/info.html”

Same origin:
“http://cards.safebank.com/c2/edit.html”

Different origin:
“http://www.cards.safebank.com”
“http://catville.com”
“https://cards.safebank.com”
“http://cards.safebank:8080”

Results of same-origin checks against
“http://cards.safebank.com/c1/info.html”

Same origin:
“http://cards.safebank.com/c2/edit.html”

Different origin:
“http://www.cards.safebank.com” (another domain)
“http://catville.com” (another domain)
“https://cards.safebank.com” (another protocol)
“http://cards.safebank:8080” (another port)

There are some exceptions to this rule.
(for example, a document can change its
domain to be any suffix of its domain,
evil.catville.com -> catville.com)

Same-origin policy for Cookies

Same protocol
Same domain *
Same Path **

Two documents have the same
origin if:

(https, http, ftp, etc)
(safebank.com, etc)
(/, /c1/, etc)

(optional)

* any domain-suffix or URL-hostname,
except Top Level Domain

example: host=“cards.safebank.com”

allowed domains:
cards.safebank.com

.safebank.com

disallowed domains:
tos.safebank.com

catville.com
.com

** however, cookies can be accessed
across different paths via the DOM

Goal: To isolate content retrieved by different parties

Presenter
Presentation Notes
http://code.google.com/p/browsersec/wiki/Part2#Same-origin_policy

Dawn Song

Same-origin policy

There is no single same-origin policy

Same-origin policy for Javascript/DOM

Same protocol
Same domain

Same port

Two documents have the same
origin if:

(https, http, ftp, etc)
(safebank.com, etc)
(80, 23, 8080, etc)

Results of same-origin checks against
“http://cards.safebank.com/c1/info.html”

Same origin:
“http://cards.safebank.com/c2/edit.html”

Different origin:
“http://www.cards.safebank.com”
“http://catville.com”
“https://cards.safebank.com”
“http://cards.safebank:8080”

Same-origin policy for Cookies

Same protocol
Same domain *
Same Path **

Two documents have the same
origin if:

(https, http, ftp, etc)
(safebank.com, etc)
(/, /c1/, etc)

(optional)

host=“cards.safebank.com”
allowed domains:

cards.safebank.com
.safebank.com

disallowed domains:
tos.safebank.com

catville.com
.com

** however, cookies can be accessed across
different paths via the DOM

Goal: To isolate content retrieved by different parties

Presenter
Presentation Notes
http://code.google.com/p/browsersec/wiki/Part2#Same-origin_policy

Dawn Song

Security User Interface

Dawn Song

Safe to type your password?

10

login
password

banking content
Accounts
Bill Pay
Mail
Transfers

https://safebank.com Bank of the Safe (US) https://www.safebank.com

https://www.safebank.com

Dawn Song

Safe to type your password?

11

Dawn Song

Safe to type your password?

12

Dawn Song

Safe to type your password?

13

???

???

Dawn Song 14

login
password

banking content
Accounts
Bill Pay
Mail
Transfers

https://safebank.com Bank of the Safe (US) https://www.safebank.com

https://www.safebank.com

Safe to type your password?

Dawn Song

Mixed Content: HTTP and HTTPS
• Problem

– Page loads over HTTPS, but has HTTP content
– Network attacker can control page

• IE: displays mixed-content dialog to user
– Flash files over HTTP loaded with no warning (!)
– Note: Flash can script the embedding page

• Firefox: red slash over lock icon (no dialog)
– Flash files over HTTP do not trigger the slash

• Safari: does not detect mixed content

Dawn Song

Mixed Content: HTTP and HTTPS

Dawn Song

Mixed content and network attacks

• banks: after login all content over HTTPS
– Developer error: Somewhere on bank site write

 <script src=http://www.site.com/script.js> </script>

– Active network attacker can now hijack any session

• Better way to include content:
 <script src=//www.site.com/script.js> </script>

– served over the same protocol as embedding page

Dawn Song

Lock Icon 2.0

• Extended validation (EV) certs

• Prominent security indicator for EV certificates
• note: EV site loading content from non-EV site does
 not trigger mixed content warning

Dawn Song

Finally: the status Bar

• Trivially spoofable

<a href=“http://www.paypal.com/”
 onclick=“this.href = ‘http://www.evil.com/’;”>
 PayPal

Dawn Song

Cookies

Slides credit: John Mitchell

Dawn Song

Cookies
• Used to store state on user’s machine

POST …

POST …
Cookie: NAME = VALUE

If expires=NULL:
this session only

Server

login
password

banking content
Accounts
Bill Pay
Mail
Transfers

Browser

login
password

banking content
Accounts
Bill Pay
Mail
Transfers

Browser Server

Important Point: HTTP is a stateless protocol; cookies add state

HTTP Header:
Set-cookie: NAME=VALUE ;
 domain = (who can read) ;
 expires = (when expires) ;
 secure = (only over SSL)

Dawn Song

Cookie authentication
Browser Web Server Auth server

POST login.cgi
Username & pwd Validate user

auth=val Store val
Set-cookie: auth=val

GET restricted.html
Cookie: auth=val restricted.html

auth=val

YES/NO If YES,
 restricted.html

Check val

Dawn Song

Cookie Security Policy
• Uses:

– User authentication
– Personalization
– User tracking: e.g. Doubleclick (3rd party cookies)

• Browser will store:

– At most 20 cookies/site, 3 KB / cookie

• Origin is the tuple <domain, path>
– Can set cookies valid across a domain suffix

Presenter
Presentation Notes
Personalization: NY Times says “Hi Fred”

Dawn Song

Secure Cookies

• Provides confidentiality against network attacker
- Browser will only send cookie back over HTTPS

• … but no integrity
- Can rewrite secure cookies over HTTP

⇒ network attacker can rewrite secure cookies
⇒ can log user into attacker’s account

GET …

HTTP Header:
Set-cookie: NAME=VALUE ;
 Secure=true

Server

login
password

banking content
Accounts
Bill Pay
Mail
Transfers

Browser

Presenter
Presentation Notes
HttpOnly in IE can be written to by script, but cannot be read

Dawn Song

Command Injection

Dawn Song

Background
Client Browser

Web Server

PHP -> WEB PAGE

foo.php

URI UID: www

Web Page

Presenter
Presentation Notes
Upon being received the PHP process parses/decodes the arguments passed in the URI with $_GET[‘file’] and uses this to construct a command to be run by the system which is “cat $_GET[‘file’]”.

Dawn Song

Quick Background on PHP

<? php-code ?> executes php-code at this point in the document

echo expr: evaluates expr and embeds in doc

system(call, args) performs a system call in the working directory

“ ….. ”, ‘ ….. ’ String literal. Double-quotes has more possible escaped characters.

. (dot). Concatenates strings.

_GET[‘key’] returns value corresponding to the key/value pair sent as extra data in the
HTTP GET request

IN THIS EXAMPLE

preg_match(Regex, Stiring) Performs a regular expression match.
proc_open Executes a command and opens file pointers for input/output.
escapeshellarg() Adds single quotes around a sring and quotes/escapes any existing

single quotes.
file_get_contents(file) Retrieves the contents of file.

LATER IN THIS LECTURE

display.php: <? echo system("cat ".$_GET['file']); ?>

Dawn Song

Background
Client Browser

Web Server

Shell Command
cat notes.txt

display.php
system("cat ".
$_GET['file'])

display.php?file=notes.txt

URI

display.php: <? echo system("cat ".$_GET['file']); ?>

UID: www

Web Page

Presenter
Presentation Notes
Upon being received the PHP process parses/decodes the arguments passed in the URI with $_GET[‘file’] and uses this to construct a command to be run by the system which is “cat $_GET[‘file’]”.

Dawn Song

Background
Client Browser

display.php: <? echo system("cat ".$_GET['file']); ?>

Web Server

Shell Command
cat notes.txt

display.php
system("cat ".
$_GET['file'])

UID: www

Today we are learning about
Web Security.

Content of notes.txt

display.php?file=notes.txt

URI

Presenter
Presentation Notes
The cat system call will return the contents of the file passed in the URI. This information will then be sent to the browser to be displayed using PHP’s echo function.

Dawn Song

Command Injection

Q: Assuming the script we’ve been dealing with (reproduced above) for

http://www.example.net/display.php. Which one of the following
URIs is an attack URI?
Hint: Search for a URI Decoder to figure out values seen by the PHP code.

a. http://www.example.net/display.php?get=rm

b. http://www.example.net/display.php?file=rm%20-rf%20%2F%3B

c. http://www.example.net/display.php?file=notes.txt%3B%20rm%20-
rf%20%2F%3B%0A%0A

d. http://www.example.net/display.php?file=%20%20%20%20%20

display.php: <? echo system("cat ".$_GET['file']); ?>

Dawn Song

Command Injection

Q: Assuming the script we’ve been dealing with (reproduced above) for

http://www.example.net/display.php. Which one of the following
URIs is an attack URI?
Hint: Search for a URI Decoder to figure out values seen by the PHP code.

a. http://www.example.net/display.php?get=rm

b. http://www.example.net/display.php?file=rm -rf /;

c. http://www.example.net/display.php?file=notes.txt; rm -rf /;

d. http://www.example.net/display.php?file=

display.php: <? echo system("cat ".$_GET['file']); ?>

(URIs decoded)

Presenter
Presentation Notes
The semi colon is needed to end the cat command and execute a new command with the system call.

Dawn Song

Command Injection

Q: Assuming the script we’ve been dealing with (reproduced above) for

http://www.example.net/display.php. Which one of the following
URIs is an attack URI?
Hint: Search for a URI Decoder to figure out values seen by the PHP code.

a. <? echo system("cat rm"); ?>
b. <? echo system("cat rm -rf /;"); ?>
c. <? echo system("cat notes.txt; rm -rf /;"); ?>
d. <? echo system("cat "); ?>

display.php: <? echo system("cat ".$_GET['file']); ?>

(Resulting php)

Presenter
Presentation Notes
The semi colon is needed to end the cat command and execute a new command with the system call.

Dawn Song

Injection
• Injection is a general problem:

– Typically, caused when data and code share the
same channel.

– For example, the code is “cat” and the filename
the data.

• But ‘;’ allows attacker to start a new command.

Presenter
Presentation Notes
Needs work! (Dev)

	Slide Number 1
	Analogy
	Browser security mechanism
	Components of browser security policy
	Origin of Browser Primitives
	Library import
	Same-origin policy
	Same-origin policy
	Security User Interface
	Safe to type your password?
	Safe to type your password?
	Safe to type your password?
	Safe to type your password?
	Safe to type your password?
	Mixed Content: HTTP and HTTPS
	Mixed Content: HTTP and HTTPS
	Mixed content and network attacks
	Lock Icon 2.0
	Finally: the status Bar
	Cookies
	Cookies
	Cookie authentication
	Cookie Security Policy
	Secure Cookies
	Command Injection
	Background
	Quick Background on PHP
	Background
	Background
	Command Injection
	Command Injection
	Command Injection
	Injection

