
Dawn Song

 Web Security: Vulnerabilities & Attacks

Computer Security Course. Dawn Song

Dawn Song

Command Injection

Dawn Song

Background
Client Browser

Web Server

PHP -> WEB PAGE

foo.php

URI UID: www

Web Page

Presenter
Presentation Notes
Upon being received the PHP process parses/decodes the arguments passed in the URI with $_GET[‘file’] and uses this to construct a command to be run by the system which is “cat $_GET[‘file’]”.

Dawn Song

Quick Background on PHP

<? php-code ?> executes php-code at this point in the document

echo expr: evaluates expr and embeds in doc

system(call, args) performs a system call in the working directory

“ ….. ”, ‘ ….. ’ String literal. Double-quotes has more possible escaped characters.

. (dot). Concatenates strings.

_GET[‘key’] returns value corresponding to the key/value pair sent as extra data in the
HTTP GET request

IN THIS EXAMPLE

preg_match(Regex, Stiring) Performs a regular expression match.
proc_open Executes a command and opens file pointers for input/output.
escapeshellarg() Adds single quotes around a sring and quotes/escapes any existing

single quotes.
file_get_contents(file) Retrieves the contents of file.

LATER IN THIS LECTURE

display.php: <? echo system("cat ".$_GET['file']); ?>

Dawn Song

Background
Client Browser

Web Server

Shell Command
cat notes.txt

display.php
system("cat ".
$_GET['file'])

display.php?file=notes.txt

URI

display.php: <? echo system("cat ".$_GET['file']); ?>

UID: www

Web Page

Presenter
Presentation Notes
Upon being received the PHP process parses/decodes the arguments passed in the URI with $_GET[‘file’] and uses this to construct a command to be run by the system which is “cat $_GET[‘file’]”.

Dawn Song

Background
Client Browser

display.php: <? echo system("cat ".$_GET['file']); ?>

Web Server

Shell Command
cat notes.txt

display.php
system("cat ".
$_GET['file'])

UID: www

Today we are learning about
Web Security.

Content of notes.txt

display.php?file=notes.txt

URI

Presenter
Presentation Notes
The cat system call will return the contents of the file passed in the URI. This information will then be sent to the browser to be displayed using PHP’s echo function.

Dawn Song

Command Injection

Q: Assuming the script we’ve been dealing with (reproduced above) for

http://www.example.net/display.php. Which one of the following
URIs is an attack URI?
Hint: Search for a URI Decoder to figure out values seen by the PHP code.

a. http://www.example.net/display.php?get=rm

b. http://www.example.net/display.php?file=rm%20-rf%20%2F%3B

c. http://www.example.net/display.php?file=notes.txt%3B%20rm%20-
rf%20%2F%3B%0A%0A

d. http://www.example.net/display.php?file=%20%20%20%20%20

display.php: <? echo system("cat ".$_GET['file']); ?>

Dawn Song

Command Injection

Q: Assuming the script we’ve been dealing with (reproduced above) for

http://www.example.net/display.php. Which one of the following
URIs is an attack URI?
Hint: Search for a URI Decoder to figure out values seen by the PHP code.

a. http://www.example.net/display.php?get=rm

b. http://www.example.net/display.php?file=rm -rf /;

c. http://www.example.net/display.php?file=notes.txt; rm -rf /;

d. http://www.example.net/display.php?file=

display.php: <? echo system("cat ".$_GET['file']); ?>

(URIs decoded)

Presenter
Presentation Notes
The semi colon is needed to end the cat command and execute a new command with the system call.

Dawn Song

Command Injection

Q: Assuming the script we’ve been dealing with (reproduced above) for

http://www.example.net/display.php. Which one of the following
URIs is an attack URI?
Hint: Search for a URI Decoder to figure out values seen by the PHP code.

a. <? echo system("cat rm"); ?>
b. <? echo system("cat rm -rf /;"); ?>
c. <? echo system("cat notes.txt; rm -rf /;"); ?>
d. <? echo system("cat "); ?>

display.php: <? echo system("cat ".$_GET['file']); ?>

(Resulting php)

Presenter
Presentation Notes
The semi colon is needed to end the cat command and execute a new command with the system call.

Dawn Song

Injection
• Injection is a general problem:

– Typically, caused when data and code share the
same channel.

– For example, the code is “cat” and the filename
the data.

• But ‘;’ allows attacker to start a new command.

Presenter
Presentation Notes
Needs work! (Dev)

Dawn Song

Input Validation
• Two forms:

– Blacklisting: Block known attack values
– Whitelisting: Only allow known-good values

• Blacklists are easily bypassed
– Set of ‘attack’ inputs is potentially infinite
– The set can change after you deploy your code
– Only rely on blacklists as a part of a defense in

depth strategy

Dawn Song

Blacklist Bypass
Use a pipe

Disallow pipes and semi colons Use the backtick operator to call commands in
the arguments

Disallow rm Use unlink
Disallow rm , unlink Use cat to overwrite existing files

Disallow pipes, semi colons, and backticks - Use the $ operator which works similar
backtick

to

semi colons Disallow -

Blacklist Bypass

• Ad infinitum
• Tomorrow, newer tricks might be discovered

Dawn Song

No security notes.txt

No notes.txt; rm – rf /;

Yes notes.txt

Input Validation: Whitelisting
display.php:
<?
if(!preg_match("/^[a-z0-9A-Z.]*$/", $_GET['file'])) {
 echo “The file should be alphanumeric.";
 return;
}
echo system("cat ".$_GET['file']);
?>

GET INPUT PASSES?

Presenter
Presentation Notes
The regular expression ensures the filename is in a strict whitelist.
Note that, if your filename does contain a space, then this regex won’t work. If you fix that, what about a file with a ‘;’ ?

Dawn Song

Input Escaping
display.php:
<?
#http://www.php.net/manual/en/function.escapeshellarg.php
echo system("cat ".escapeshellarg($_GET['file']));
?>

GET INPUT Command Executed
notes.txt cat 'notes.txt'

notes.txt; rm –rf /; cat 'notes.txt rm –rf /;'

mary o'donnel cat 'mary o'\''donnel'

escapeshellarg() adds single quotes around a string and quotes/escapes any existing
single quotes allowing you to pass a string directly to a shell function and having it be treated
as a single safe argument
-- http://www.php.net/manual/en/function.escapeshellarg.php

Dawn Song

Use less powerful API
• The system command is too powerful

– Executes the string argument in a new shell
– If only need to read a file and output it, use simpler API

• Similarly, the proc_open (executes commands and opens files for I/O)

API
– Can only execute one command at a time.

display.php: <? echo file_get_contents($_GET['file']); ?>

Dawn Song

Recap
• Command Injection: a case of injection, a general

vulnerability
• Defenses against injection include input

validation, input escaping and use of a less
powerful API

• Next, we will discuss other examples of injection
and apply similar defenses

Dawn Song

SQL Injection

Dawn Song

Background
• SQL: A query language for database

– E.g., SELECT statement, WHERE clauses

• More info
– E.g., http://en.wikipedia.org/wiki/SQL

Dawn Song

Running Example
Consider a web page that logs in a user by seeing if a user exists
with the given username and password.

It sees if results exist and if so logs the user in and redirects them
to their user control panel.

login.php:
$result = pg_query("SELECT * from users WHERE
 uid = '".$_GET['user']."' AND
 pwd = '".$_GET['pwd']."';");
if (pg_query_num($result) > 0) {
 echo "Success";
 user_control_panel_redirect();

Dawn Song

Web Server

Background
Client Browser

login.php
connect to database
using dbuser login.
Execute query with

$_GET['user']
$_GET['pwd']

login.php?user=pikachu&pwd=password123

URI

Presenter
Presentation Notes
Client browser sends a URI to the web server. In this case the login.php page is being accessed with the argument user = pikachu and pwd = password123 encoded in the URI. (This can also be looked at as a POST request as well which is normally through a form and sent to the server with similar encoding.) The password field most likely will be a hash of a salted form of the password rather than the plain text password although vulnerable servers may even display weak encryption.

Dawn Song

Web Server

Background
Client Browser

login.php
connect to database
using dbuser login.
Execute query with

$_GET['user']
$_GET['pwd']

login.php?user=pikachu&pwd=password123

URI

DB
Server

SELECT * from users WHERE
uid='pikachu' AND pwd = 'password123';

Query

dbuser

Presenter
Presentation Notes
The PHP program decodes the URI and constructs queries based on the input and sends them to the database server to be executed.
The database doesn’t have a separate user for each possible user/password combination. The db server only has 1 user that the php code logs in as.

Dawn Song

Background
Client Browser

Web Server

DB
Server

Results:
25 | pikachu | password123 | electric

Results

dbuser

login.php
connect to database
using dbuser login.
Execute query with

$_GET['user']
$_GET['pwd']

SELECT * from users WHERE
uid='pikachu' AND pwd = 'password123';

Query

login.php?user=pikachu&pwd=password123

URI

Dawn Song

Web Server

login.php
connect to database
using dbuser login.
Execute query with

$_GET['user']
$_GET['pwd']

Background
Client Browser

login.php?user=pikachu&pwd=password123

URI

DB
Server

Results:
25 | pikachu | password123 | electric

Results

Success and redirect to user control panel.

dbuser

SELECT * from users WHERE
uid='pikachu' AND pwd = 'password123';

Query

Presenter
Presentation Notes
Once validated the PHP program will then log the user in and redirect the user’s browser to the control panel.

Dawn Song

SQL Injection

Q: Which one of the following queries will log you in as admin?
Hints: The SQL language supports comments via '--' characters.

a. http://www.example.net/login.php?user=admin&pwd='

b. http://www.example.net/login.php?user=admin--&pwd=foo

c. http://www.example.net/login.php?user=admin'--&pwd=f

login.php:
$result = pg_query("SELECT * from users WHERE
 uid = '".$_GET['user']."' AND
 pwd = '".$_GET['pwd']."';");
if (pg_query_num($result) > 0) {
 echo "Success";
 user_control_panel_redirect();
}

Presenter
Presentation Notes
Hint: Look at what is the actual query that will be executed

Dawn Song

SQL Injection

Q: Which one of the following queries will log you in as admin?
Hints: The SQL language supports comments via '--' characters.

a. http://www.example.net/login.php?user=admin&pwd='

b. http://www.example.net/login.php?user=admin--&pwd=foo

c. http://www.example.net/login.php?user=admin'--&pwd=f

login.php:
$result = pg_query("SELECT * from users WHERE
 uid = '".$_GET['user']."' AND
 pwd = '".$_GET['pwd']."';");
if (pg_query_num($result) > 0) {
 echo "Success";
 user_control_panel_redirect();
}

Presenter
Presentation Notes
Hint: Look at what is the actual query that will be executed

Dawn Song

SQL Injection

URI: http://www.example.net/login.php?user=admin'--&pwd=f

pg_query("SELECT * from users WHERE
 uid = 'admin'--' AND pwd = 'f';");

login.php:
$result = pg_query("SELECT * from users WHERE
 uid = '".$_GET['user']."' AND
 pwd = '".$_GET['pwd']."';");
if (pg_query_num($result) > 0) {
 echo "Success";
 user_control_panel_redirect();

pg_query("SELECT * from users WHERE
 uid = 'admin';");

Presenter
Presentation Notes
With the URI we thus make the password check a comment in SQL and therefore the resulting SQL only SELECTS the row using uid as admin.

Dawn Song

SQL Injection
Q: Under the same premise as before, which URI can

delete the users table in the database?
 a. www.example.net/login.php?user=;DROP TABLE users;--

b. www.example.net/login.php?user=admin%27%3B%20DROP%20TABLE%20users--%3B&pwd=f

c. www.example.net/login.php?user=admin;%20DROP%20TABLE%20users;%20--&pwd=f

d. It is not possible. (None of the above)

Dawn Song

SQL Injection
Q: Under the same premise as before, which URI can

delete the users table in the database?
 a. www.example.net/login.php?user=;DROP TABLE users;--

b. www.example.net/login.php?user=admin’; DROP TABLE users;--&pwd=f

c. www.example.net/login.php?user=admin; DROP TABLE users; --&pwd=f

d. It is not possible. (None of the above)

 pg_query("SELECT * from users WHERE
 uid = 'admin'; DROP TABLE users;--' AND
 pwd = 'f';");

pg_query("SELECT * from users WHERE uid = 'admin';
 DROP TABLE users;");

(Decoded)

Presenter
Presentation Notes
Notice how there are now two queries?

Dawn Song

SQL Injection
• One of the most exploited vulnerabilities on the web
• Cause of massive data theft

– 24% of all data stolen in 2010
– 89% of all data stolen in 2009

• Like command injection, caused when attacker
controlled data interpreted as a (SQL) command.

 Data Source: Verizon DBIR 2011

Dawn Song

Injection Defenses
• Defenses:

– Input validation
• Whitelists untrusted inputs to a safe list.

– Input escaping
• Escape untrusted input so it will not be treated as a

command.
– Use less powerful API

• Use an API that only does what you want
• Prefer this over all other options.

Presenter
Presentation Notes
Only use the first two solutions if this is infeasible.

Dawn Song

Input Validation for SQL
login.php:
<?
if(!preg_match("/^[a-z0-9A-Z.]*$/", $_GET[‘user'])) {
 echo "Username should be alphanumeric.";
 return;
}
// Continue to do login query
?>

 GET INPUT PASSES?
Pikachu Yes
Pikachu’; DROP TABLE users-- No
O’Donnel No

Presenter
Presentation Notes
The regular expression ensures the username is in a strict whitelist.
Note that, this is often not practical. Names such as O’Donnel or T’Pau.

Dawn Song

Input Validation for SQL
Given that our web application employs the input validation mechanism for
usernames, which of the following URIs would still allow you to login as
admin?
 pg_query("SELECT * from users WHERE

 uid = '".$_GET['user']."' AND
 pwd = '".$_GET['pwd']."';");

a. http://www.example.net/login.php?user=admin&pwd=admin

b. http://www.example.net/login.php?user=admin&pwd='%20OR%201%3D1;--

c. http://www.example.net/login.php?user=admin'--&pwd=f

d. http://www.example.net/login.php?user=admin&pwd='--

Dawn Song

Input Validation for SQL
Given that our web application employs the input validation mechanism for
usernames, which of the following URIs would still allow you to login as
admin?
 pg_query("SELECT * from users WHERE

 uid = '".$_GET['user']."' AND
 pwd = '".$_GET['pwd']."';");

a. http://www.example.net/login.php?user=admin&pwd=admin

b. http://www.example.net/login.php?user=admin&pwd='%20OR%201%3D1;--

c. http://www.example.net/login.php?user=admin'--&pwd=f

d. http://www.example.net/login.php?user=admin&pwd='--

Dawn Song

Input Validation for SQL
Given that our web application employs the input validation mechanism for
usernames, which of the following URIs would still allow you to login as
admin?
 pg_query("SELECT * from users WHERE

 uid = '".$_GET['user']."' AND
 pwd = '".$_GET['pwd']."';");

b. http://www.example.net/login.php?user=admin&pwd=' OR 1=1;--

pg_query("SELECT * from users WHERE
 uid = 'admin' AND
 pwd = '' OR 1 = 1;--';");

Presenter
Presentation Notes
A. DECODED
B. ACTUAL QUERY

Dawn Song

Input Validation for SQL
Given that our web application employs the input validation mechanism for
usernames, which of the following URIs would still allow you to login as
admin?
 pg_query("SELECT * from users WHERE

 uid = '".$_GET['user']."' AND
 pwd = '".$_GET['pwd']."';");

pg_query("SELECT * from users WHERE
 (uid = 'admin' AND pwd = '') OR
 1 = 1;--';");

1=1 is true everywhere. This returns all the rows in the
table, and thus number of results is greater than zero.

Presenter
Presentation Notes
PRECEDENCE OF AND OVER OR

Dawn Song

Input Escaping
$_GET['user'] = pg_escape_string($_GET['user']);
$_GET['pwd'] = pg_escape_string($_GET['pwd']);

pg_escape_string() escapes a string for querying the
PostgreSQL database. It returns an escaped literal in the
PostgreSQL format.

GET INPUT Escaped Output
Bob Bob

Bob'; DROP TABLE users; -- Bob''; DROP TABLE users; --

Bob' OR '1'='1 Bob'' OR ''1''=''1

Presenter
Presentation Notes
Escaping is easy to get wrong. Other functions, e.g., addslashes are very similar, but not sufficient. Similarly, in case of mysql DB APIs, the mysql_escape_string function was initially recommended, but was found to have bugs. So currently, mysql_real_escape_string function is recommended.��As we discuss next, this is an unnecessary race. Always prefer to use parameterized queries which give you much stronger guarantees.

Dawn Song

Use less powerful API :
Prepared Statements

• Create a template for SQL Query, in which data
values are substituted.

• The database ensures untrusted value isn’t
interpreted as command.

• Always prefer over all other techniques.
• Less powerful:

– Only allows queries set in templates.

Dawn Song

Use less powerful API :
Prepared Statements

<?
The $1 and $2 are a ‘hole’ or place holder for what will be filled by the data
$result = pg_query_params('SELECT * FROM users WHERE
 uid = $1 AND
 pwd = $2', array($_GET['user'], $_GET[‘pwd']));

Compare to
$result = pg_query("SELECT * FROM users WHERE
 uid ='".$_GET['user']."' AND
 pwd ='".$_GET[‘pwd']."‘;");
?>

Presenter
Presentation Notes
Regular database query using pg_query is not guaranteed to be one single query and may actually end up being multiple queries.

Input in prepared statement is always interpreted as a data value. The database will NOT make any deviations from the prepared query such as evaluate other queries, conditionals, or expressions.

Dawn Song

Recap
• SQL Injection: a case of injection, in database queries.
• Extremely common, and pervasively exploited.
• Use prepared statements to prevent SQL injection

– DO NOT use escaping, despite what xkcd says.

• Next, injection in the browser.

Dawn Song

Cross-site Scripting

Dawn Song

What is Cross-site Scripting (XSS)?
• Vulnerability in web application that enables

attackers to inject client-side scripts into web
pages viewed by other users.

Dawn Song

Three Types of XSS
• Type 2: Persistent or Stored

– The attack vector is stored at the server

• Type 1: Reflected
– The attack value is ‘reflected’ back by the server

• Type 0: DOM Based
– The vulnerability is in the client side code

Type 2 Type 1 Type 0

Dawn Song

Server

1. User asks a
question via HTTP
POST

(message: “How do I get a loan?”)

Type 2 Type 1 Type 0

Consider a form on safebank.com that allows a user to
chat with a customer service associate.

User

login

password

banking content

Accounts
Bill Pay
Mail
Transfers

Presenter
Presentation Notes
The example we just saw is an example of what is called a Stored XSS. This is so called because the attack vector is stored on the server.

Dawn Song

Server

2. Server stores
question in database.

Type 2 Type 1 Type 0

login

password

banking content

Accounts
Bill Pay
Mail
Transfers

Consider a form on safebank.com that allows a user to
chat with a customer service associate.

1. User asks a
question via HTTP
POST

(message: “How do I get a loan?”)

User

Presenter
Presentation Notes
The example we just saw is an example of what is called a Stored XSS. This is so called because the attack vector is stored on the server.

Dawn Song

Server

3. Associate
requests the
questions
page

Type 2 Type 1 Type 0

login

password

banking content

Accounts
Bill Pay
Mail
Transfers

login

password

banking content

Accounts
Bill Pay
Mail
Transfers

Consider a form on safebank.com that allows a user to
chat with a customer service associate.

1. User asks a
question via HTTP
POST

(message: “How do I get a loan?”)

2. Server stores
question in database.

User

Associate

Presenter
Presentation Notes
The example we just saw is an example of what is called a Stored XSS. This is so called because the attack vector is stored on the server.

Dawn Song

Server

4. Server
retrieves all
questions
from the DB

Type 2 Type 1 Type 0

login

password

banking content

Accounts
Bill Pay
Mail
Transfers

login

password

banking content

Accounts
Bill Pay
Mail
Transfers

Consider a form on safebank.com that allows a user to
chat with a customer service associate.

1. User asks a
question via HTTP
POST

(message: “How do I get a loan?”)

2. Server stores
question in database.

User

Associate

3. Associate
requests the
questions
page

Presenter
Presentation Notes
The example we just saw is an example of what is called a Stored XSS. This is so called because the attack vector is stored on the server.

Dawn Song

Server

5. Server returns
HTML embedded
with the question

Type 2 Type 1 Type 0

login

password

banking content

Accounts
Bill Pay
Mail
Transfers

login

password

banking content

Accounts
Bill Pay
Mail
Transfers

1. User asks a
question via HTTP
POST

(message: “How do I get a loan?”)

2. Server stores
question in database.

User

Associate

3. Associate
requests the
questions
page

4. Server
retrieves all
questions
from the DB

PHP CODE: <? echo "<div class=’question'>$question</div>";?>

HTML Code: <div class=’question'>”How do I get a
loan?”</div>

Presenter
Presentation Notes
The example we just saw is an example of what is called a Stored XSS. This is so called because the attack vector is stored on the server.

Dawn Song

Server

PHP CODE: <? echo "<div class=’question'>$question</div>";?>

HTML Code: <div class=’question'>”How do I get a
loan?”</div>

Type 2 Type 1 Type 0

login

password

banking content

Accounts
Bill Pay
Mail
Transfers

login

password

banking content

Accounts
Bill Pay
Mail
Transfers

1. User asks a
question via HTTP
POST

(message: “How do I get a loan?”)

2. Server stores
question in database.

User

Associate

3. Associate
requests the
questions
page

4. Server
retrieves all
questions
from the DB

5. Server returns
HTML embedded
with the question “How do I get a loan?”

Customer 5:

Presenter
Presentation Notes
The example we just saw is an example of what is called a Stored XSS. This is so called because the attack vector is stored on the server.

Dawn Song

Type 2 XSS Injection
Look at the following code fragments. Which one of these could
possibly be a comment that could be used to perform a XSS
injection?
 a. '; system('rm –rf /');

b. rm –rf /

c. DROP TABLE QUESTIONS;

d. <script>doEvil()</script>

Type 2 Type 1 Type 0

Dawn Song

Script Injection

a. '; system('rm –rf /');

b. rm –rf /

c. DROP TABLE QUESTIONS;

d. <script>doEvil()</script>

<html><body>
 ...
 <div class=‘question’>
 <script>doEvil()</script>
 </div>
 ...
</body></html>

Which one of these could possibly be a comment that could be
used to perform a XSS injection?

Type 2 Type 1 Type 0

Presenter
Presentation Notes
The comment is injected as HTML and the browser assumes the script tag is trusted and executes it as part of the page like any normal script tag�
The doEvil function is just a placeholder for arbitrary attacker controlled code.

Dawn Song

Server

Stored XSS
Type 2 Type 1 Type 0

1. Attacker asks malicious
question via HTTP POST

(message: “<script>doEvil()</script>”)

Presenter
Presentation Notes
The example we just saw is an example of what is called a Stored XSS. This is so called because the attack vector is stored on the server.

Dawn Song

Server

Stored XSS

2. Server stores
question in
database.

Type 2 Type 1 Type 0

1. Attacker asks malicious
question via HTTP POST

(message: “<script>doEvil()</script>”)

Presenter
Presentation Notes
The example we just saw is an example of what is called a Stored XSS. This is so called because the attack vector is stored on the server.

Dawn Song

Server

Stored XSS

3. Victim
requests the
questions
page

Type 2 Type 1 Type 0

1. Attacker asks malicious
question via HTTP POST

(message: “<script>doEvil()</script>”)

2. Server stores
question in
database.

login

password

banking content

Accounts
Bill Pay
Mail
Transfers

Associate

Presenter
Presentation Notes
The example we just saw is an example of what is called a Stored XSS. This is so called because the attack vector is stored on the server.

Dawn Song

Server

Stored XSS

4. Server retrieves
malicious question
from the DB

Type 2 Type 1 Type 0

1. Attacker asks malicious
question via HTTP POST

(message: “<script>doEvil()</script>”)

2. Server stores
question in
database.

3. Victim
requests the
questions
page

login

password

banking content

Accounts
Bill Pay
Mail
Transfers

Associate

Presenter
Presentation Notes
The example we just saw is an example of what is called a Stored XSS. This is so called because the attack vector is stored on the server.

Dawn Song

Server

Stored XSS

5. Server returns
HTML embedded with
malicious question

Type 2 Type 1 Type 0

1. Attacker asks malicious
question via HTTP POST

(message: “<script>doEvil()</script>”)

2. Server stores
question in
database.

3. Victim
requests the
questions
page

4. Server retrieves
malicious question
from the DB

login

password

banking content

Accounts
Bill Pay
Mail
Transfers

Associate

PHP CODE: <? echo "<div class=’question'>$question</div>";?>

HTML Code: <div class=’question'><script>doEvil()</script></div>

Presenter
Presentation Notes
The example we just saw is an example of what is called a Stored XSS. This is so called because the attack vector is stored on the server.

Dawn Song

Server

Type 2 Type 1 Type 0

1. Attacker asks malicious
question via HTTP POST

(message: “<script>doEvil()</script>”)

2. Server stores
question in
database.

3. Victim
requests the
questions
page

4. Server retrieves
malicious question
from the DB

login

password

banking content

Accounts
Bill Pay
Mail
Transfers

Associate

5. Server returns
HTML embedded with
malicious question

PHP CODE: <? echo "<div class=’question'>$question</div>";?>

HTML Code: <div class=’question'><script>doEvil()</script></div>

Stored XSS

Customer 5:

Presenter
Presentation Notes
The example we just saw is an example of what is called a Stored XSS. This is so called because the attack vector is stored on the server.

Dawn Song

Three Types of XSS
• Type 2: Persistent or Stored

– The attack vector is stored at the server

• Type 1: Reflected
– The attack value is ‘reflected’ back by the server

• Type 0: DOM Based
– The vulnerability is in the client side code

Type 2 Type 1 Type 0

Dawn Song

Example Continued: Blog

• safebank.com also has a transaction search
interface at search.php

• search.php accepts a query and shows the
results, with a helpful message at the top.

• What is a possible malicious URI an attacker
could use to exploit this?

<? echo “Your query $_GET['query'] returned
$num results.";?>

Example: Your query chocolate returned 81
results.

Type 2 Type 1 Type 0

Your query chocolate
returned 81 results.

(results)

safebank.com/search.php?query=chocolate

Dawn Song

Type 1: Reflected XSS

PHP Code: <? echo “Your query $_GET['query'] returned $num results.";?>

A request to “search.php?query=<script>doEvil()</script>”

causes script injection. Note that the query is never stored on
the server, hence the term 'reflected'

HTML Code: Your query <script>doEvil()</script> returned 0 results

But this only injects code in the attacker’s page. The attacker needs
to make the user click on this link, for the attack to be effective.

Type 2 Type 1 Type 0

Dawn Song

Reflected XSS

Vulnerable Server

Type 2 Type 1 Type 0

1. Send Email
with malicious link

safebank.com/search.php?query=<script>doEvil()</script>

User

Presenter
Presentation Notes
Can also send IM, show up as a comment on Facebook/blogs etc. Shared on reddit/facebook. A successful exploit on Facebook for example might repost the malicious link so that all the followers also see the link.

Dawn Song

Reflected XSS

Vulnerable Server

2. Click on Link with malicious params

Type 2 Type 1 Type 0

1. Send Email
with malicious link

User

safebank.com/search.php?query=<script>doEvil()</script>

Dawn Song

Reflected XSS

Vulnerable Server

3. Server inserts malicious
params into HTML

Type 2 Type 1 Type 0

1. Send Email
with malicious link

safebank.com/search.php?query=<script>doEvil()</script>

2. Click on Link with malicious params

User

Your query
<script>doEvil()</script>
returned 0 results

Dawn Song

Reflected XSS

Vulnerable Server

3. Server inserts malicious
params into HTML

4. HTML with injected attack code

Type 2 Type 1 Type 0

1. Send Email
with malicious link

User

login

password

banking content

Accounts
Bill Pay
Mail
Transfers

safebank.com/search.php?query=<script>doEvil()</script>

2. Click on Link with malicious params

Your query
<script>doEvil()</script>
returned 0 results

Dawn Song

Reflected XSS

Vulnerable Server

3. Server inserts malicious
params into HTML

5. Execute embedded
malicious script.

Type 2 Type 1 Type 0

1. Send Email
with malicious link

User

login

password

banking content

Accounts
Bill Pay
Mail
Transfers

safebank.com/search.php?query=<script>doEvil()</script>

2. Click on Link with malicious params

Your query
<script>doEvil()</script>
returned 0 results

4. HTML with injected attack code

Dawn Song

Three Types of XSS
• Type 2: Persistent or Stored

– The attack vector is stored at the server

• Type 1: Reflected
– The attack value is ‘reflected’ back by the server

• Type 0: DOM Based
– The vulnerability is in the client side code

Type 2 Type 1 Type 0

Dawn Song

Type 0: Dom Based XSS
• Traditional XSS vulnerabilities occur in the server side

code, and the fix involves improving sanitization at the
server side.

• Web 2.0 applications include significant processing logic,
at the client side, written in JavaScript.

• Similar to the server, this code can also be vulnerable.
• When the XSS vulnerability occurs in the client side code,

it is termed as a DOM Based XSS vulnerability

Type 2 Type 1 Type 0

Dawn Song

Suppose safebank.com uses client side code to display a friendly
welcome to the user. For example, the following code shows
“Hello Joe” if the URL is
http://safebank.com/welcome.php?name=Joe

Type 0: Dom Based XSS

Hello
<script>
var pos=document.URL.indexOf("name=")+5;
document.write(document.URL.substring(pos,document.URL.length));
</script>

Type 2 Type 1 Type 0

Dawn Song

For the same example, which one of the following URIs will
cause untrusted script execution?

Type 0: Dom Based XSS

Hello
<script>
var pos=document.URL.indexOf("name=")+5;
document.write(document.URL.substring(pos,document.URL.length));
</script>

a. http://attacker.com

b. http://safebank.com/welcome.php?name=doEvil()

c. http://safebank.com/welcome.php?name=<script>doEvil()</script>

Type 2 Type 1 Type 0

Dawn Song

Type 2 Type 1 Type 0

For the same example, which one of the following URIs will
cause untrusted script execution?

Type 0: Dom Based XSS

Hello
<script>
var pos=document.URL.indexOf("name=")+5;
document.write(document.URL.substring(pos,document.URL.length));
</script>

a. http://attacker.com

b. http://safebank.com/welcome.php?name=doEvil()

c. http://safebank.com/welcome.php?name=<script>doEvil()</script>

Dawn Song

Type 2 Type 1 Type 0

DOM-Based XSS

Vulnerable Server

1. Send Email
with malicious link

safebank.com/welcome.php?query=<script>doEvil()</script>

User

Presenter
Presentation Notes
Can also send IM, show up as a comment on Facebook/blogs etc. Shared on reddit/facebook. A successful exploit on Facebook for example might repost the malicious link so that all the followers also see the link.

Dawn Song

Type 2 Type 1 Type 0

Vulnerable Server

2. Click on Link with malicious params

DOM-Based XSS

1. Send Email
with malicious link

safebank.com/welcome.php?query=<script>doEvil()</script>

User

Dawn Song

Type 2 Type 1 Type 0

Vulnerable Server

3. Server uses the params in a
safe fashion, or ignores the

malicious param

DOM-Based XSS

1. Send Email
with malicious link

safebank.com/welcome.php?query=<script>doEvil()</script>

User

2. Click on Link with malicious params

Dawn Song

Type 2 Type 1 Type 0

Vulnerable Server 4. Safe HTML

3. Server uses the params in a
safe fashion, or ignores the

malicious param

DOM-Based XSS

1. Send Email
with malicious link

safebank.com/welcome.php?query=<script>doEvil()</script>

User

2. Click on Link with malicious params
login

password

banking content

Accounts
Bill Pay
Mail
Transfers

Dawn Song

Type 2 Type 1 Type 0

Vulnerable Server

3. Server uses the params in a
safe fashion, or ignores the

malicious param

DOM-Based XSS

1. Send Email
with malicious link

safebank.com/welcome.php?query=<script>doEvil()</script>

User

2. Click on Link with malicious params

5. JavaScript code ON THE CLIENT uses the malicious
params in an unsafe manner, causing code execution

4. Safe HTML

login

password

banking content

Accounts
Bill Pay
Mail
Transfers

Dawn Song

Exploiting a DOM Based XSS
• The attack payload (the URI) is still sent to the server,

where it might be logged.
• In some web applications, the URI fragment is used to pass

arguments
– E.g., Gmail, Twitter, Facebook,

• Consider a more Web 2.0 version of the previous example:
http://example.net/welcome.php#name=Joe

– The browser doesn’t send the fragment “#name=Joe” to the
server as part of the HTTP Request

– The same attack still exists

Type 2 Type 1 Type 0

Dawn Song

Three Types of XSS
• Type 2: Persistent or Stored

– The attack vector is stored at the server

• Type 1: Reflected
– The attack value is ‘reflected’ back by the server

• Type 0: DOM Based
– The vulnerability is in the client side code

Type 2 Type 1 Type 0

	Slide Number 1
	Command Injection
	Background
	Quick Background on PHP
	Background
	Background
	Command Injection
	Command Injection
	Command Injection
	Injection
	Input Validation
	Blacklist Bypass
	Input Validation: Whitelisting
	Input Escaping
	Use less powerful API
	Recap
	SQL Injection
	Background
	Running Example
	Background
	Background
	Background
	Background
	SQL Injection
	SQL Injection
	SQL Injection
	Slide Number 27
	Slide Number 28
	SQL Injection
	Injection Defenses
	Input Validation for SQL
	Input Validation for SQL
	Input Validation for SQL
	Input Validation for SQL
	Input Validation for SQL
	Input Escaping
	Use less powerful API : �Prepared Statements
	Use less powerful API : �Prepared Statements
	Recap
	Cross-site Scripting
	What is Cross-site Scripting (XSS)?
	Three Types of XSS
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Type 2 XSS Injection
	Script Injection
	Stored XSS
	Stored XSS
	Stored XSS
	Stored XSS
	Stored XSS
	Stored XSS
	Three Types of XSS
	Example Continued: Blog
	Type 1: Reflected XSS
	Reflected XSS
	Reflected XSS
	Reflected XSS
	Reflected XSS
	Reflected XSS
	Three Types of XSS
	Type 0: Dom Based XSS
	Type 0: Dom Based XSS
	Type 0: Dom Based XSS
	Type 0: Dom Based XSS
	DOM-Based XSS
	DOM-Based XSS
	DOM-Based XSS
	DOM-Based XSS
	DOM-Based XSS
	Exploiting a DOM Based XSS
	Three Types of XSS

