
 Malware: Viruses, Worms, & Botnets

Computer Security Course. Dawn Song

Slide credit: Vern Paxson

Malware That Propagates

• Virus = code that propagates (replicates) across
systems with user intervention

• Worm = code that self-propagates/replicates
across systems without requiring user intervention

The Problem of Viruses
• Virus = code that replicates

– Instances opportunistically create new addl. instances
– Goal of replication: install code on additional systems

• Opportunistic = code will eventually execute
– Generally due to user action

• Running an app, booting their system, opening an attachment

• Separate notions for a virus: how it propagates vs. what else
it does when executed (payload)

• General infection strategy: find some code
lying around, alter it to include the virus

• Have been around for decades …
– … resulting arms race has heavily

influenced evolution of modern malware

Propagation
• When virus runs, it looks for an opportunity to infect

additional systems
• One approach: look for USB-attached thumb drive, alter any

executables it holds to include the virus
– Strategy: if drive later attached to another system & altered

executable runs, it locates and infects executables on new system’s
hard drive

• Or: when user sends email w/ attachment, virus alters
attachment to add a copy of itself
– Works for attachment types that include programmability
– E.g., Word documents (macros), PDFs (Javascript)
– Virus can also send out such email proactively, using user’s address

book + enticing subject (“I Love You”)

autorun is
handy here!

Original Program Instructions
Entry point

V
iru

s

Original Program Instructions
Entry point

1. Entry point

Original Program Instructions

V
iru

s

2. JMP

3. JMP

Original program

instructions can be:

• Application the

user runs

• Run-time library /

routines resident

in memory

• Disk blocks used

to boot OS

• Autorun file on

USB device

• …

Many variants are
possible, and of course
can combine techniques

Payload
• Besides propagating, what else can the virus do when executing?

– Pretty much anything
• Payload is decoupled from propagation
• Only subject to permissions under which it runs

• Examples:
– Brag or exhort (pop up a message)
– Trash files (just to be nasty)
– Damage hardware (!)
– Keylogging
– Encrypt files

• “Ransomware”

• Possibly delayed until condition occurs
– “time bomb” / “logic bomb”

Detecting Viruses
• Signature-based detection

– Look for bytes corresponding to injected virus code
– High utility due to replicating nature

• If you capture a virus V on one system, by its nature the virus will be trying to
infect many other systems

• Can protect those other systems by installing recognizer for V

• Drove development of multi-billion $$ AV industry
(AV = “antivirus”)
– So many endemic viruses that detecting well-known ones becomes a
“checklist item” for security audits

• Using signature-based detection also has de facto utility for
marketing
– Companies compete on number of signatures …

• … rather than their quality (harder for customer to assess)

Virus Writer / AV Arms Race
• If you are a virus writer and your beautiful new creations

don’t get very far because each time you write one, the AV
companies quickly push out a signature for it ….
– …. What are you going to do?

• Need to keep changing your viruses …
– … or at least changing their appearance!

• Writing new viruses by hand takes a lot of effort
• How can you mechanize the creation of new instances of

your viruses …
– … such that whenever your virus propagates, what it injects as a

copy of itself looks different?

Polymorphic Code
• We’ve already seen technology for creating a

representation of some data that appears completely
unrelated to the original data: encryption!

• Idea: every time your virus propagates, it inserts a newly
encrypted copy of itself
– Clearly, encryption needs to vary

• Either by using a different key each time
• Or by including some random initial padding (like an IV)

– Note: weak (but simple/fast) crypto algorithm works fine
• No need for truly strong encryption, just obfuscation

• When injected code runs, it decrypts itself to obtain the
original functionality

V
iru

s

Original Program Instructions

D
ecryp

to
r

Main Virus Code

K
ey

D
ecryp

to
r

Encrypted Glob of Bits

K
ey

Original Program Instructions

}

Jmp

Instead of this …

Virus has this
initial structure

When executed,
decryptor applies key
to decrypt the glob …

… and jumps to the
decrypted code once
stored in memory

D
ecryp

to
r

Main Virus Code

K
ey

D
ecryp

to
r

Encrypted Glob of Bits

K
ey

Jmp

Once running, virus uses
an encryptor with a new
key to propagate

En
cryp

to
r

}

D
ecryp

to
r

Different Encrypted Glob of Bits

K
ey2

Polymorphic Propagation

New virus instance bears
little resemblance to
original

Arms Race: Polymorphic Code
• Given polymorphism, how might we then detect viruses?
• Idea #1: use narrow sig. that targets decryptor

– Issues?
• Less code to match against more false positives
• Virus writer spreads decryptor across existing code

• Idea #2: execute (or statically analyze) suspect code to see if
it decrypts!
– Issues?

• Legitimate “packers” perform similar operations (decompression)
• How long do you let the new code execute?

– If decryptor only acts after lengthy legit execution, difficult to spot

• Virus-writer countermeasures?

Metamorphic Code
• Idea: every time the virus propagates, generate semantically

different version of it!
– Different semantics only at immediate level of execution; higher-

level semantics remain same
• How could you do this?
• Include with the virus a code rewriter:

– Inspects its own code, generates random variant, e.g.:
• Renumber registers
• Change order of conditional code
• Reorder operations not dependent on one another
• Replace one low-level algorithm with another
• Remove some do-nothing padding and replace with different do-nothing

padding
– Can be very complex, legit code … if it’s never called!

Detecting Metamorphic Viruses?
• Need to analyze execution behavior

– Shift from syntax (appearance of instructions) to
semantics (effect of instructions)

• Two stages: (1) AV company analyzes new virus to find behaviorial
signature, (2) AV software on end system analyzes suspect code to test
for match to signature

• What countermeasures will the virus writer take?
– Delay analysis by taking a long time to manifest behavior

• Long time = await particular condition, or even simply clock time
– Detect that execution occurs in an analyzed environment and if so behave

differently
• E.g., test whether running inside a debugger, or in a Virtual Machine

• Counter-countermeasure?
– AV analysis looks for these tactics and skips over them

• Note: attacker has edge as AV products supply an oracle

How Much Malware Is Out There?
• A final consideration re polymorphism and

metamorphism: presence can lead to mis-counting a
single virus outbreak as instead reflecting 1000s of
seemingly different viruses

– Thus take care in interpreting vendor statistics on malcode
varieties

– (Also note: public perception that many varieties exist is in the
vendors’ own interest)

Infection Cleanup
• Once malware detected on a system, how do we get rid of it?
• May require restoring/repairing many files

– This is part of what AV companies sell: per-specimen disinfection
procedures

• What about if malware executed with adminstrator privileges?
– “nuke the entire site from orbit. It's the only way to be sure”

– i.e., rebuild system from original media + data backups

• If we have complete source code for system, we could rebuild
from that instead, right?

- Aliens

