Dawn Song

Midterm Review

Logistics

• In class:

– On time: 4:10-5:30pm Wed

- 1 8x11 page cheat sheet allowed
- Special requirements: see TA

Scope

- Part I, II, III
 - Software Security
 - Secure Architecture Principles
 - Cryptography
- Material covered in lectures & labs
- Exam will cover breadth

Part I Software Security (I)

- Buffer overflow vulnerability and attack
 - what is a buffer overflow vulnerability?
 - what types of programming errors and issues in programming language design that cause buffer overflow vulnerabilities?
 - how is a buffer overflow vulnerability exploited?
 - what is a control hijacking attack?
 - what are the important steps for a control hijacking attack?
 - what are the different types of control hijacking attacks?
 - what is a NOP slide?
 - what is the difference btw code injection and arc injection?
 - what is data hijacking?

Part I Software Security (II)

- Memory corruption defenses
 - what is a NX-bit?
 - what is a stack canary?
 - what is ASLR?
 - what are the pros and cons of each defense mechanism? Know which defenses are applicable to code injection / arc injection, stack / heap / exception handlers
- Know about the following vulnerabilities:
 - Format string vulnerabilities
 - User after free
 - Double free
 - Integer overflow
 - Implicit cast

Part I Software Security (III)

- Vulnerability / Memory Safety Analysis Techniques
 - Overview
 - How do the different techniques differ in terms of soundness and completeness? Why?
 - How do you ensure memory safety by inserting assertions in code?
 - Blackbox Fuzzing
 - what is the purpose of fuzzing?
 - how do blackbox fuzzers work?
 - Code coverage metrics: line / branch / path coverage
 - Dynamic Symbolic Execution (DSE)
 - how does DSE systematically explore paths in a program?
 - Given an explored path, what is its path constraint formula in Static-Single Assignment (SSA) form?
 - how does a whitebox fuzzer (based on DSE) detect a vulnerability?
 - what are the common corner cases where bugs arise (e.g., arithmetic overflow, most negative integer, etc).

Part I Software Security (IV)

- Static Analysis Abstract Interpretation
 - How do you use the interval domain to analyze a program?
 - How and when does it introduce false positives?
- Manual program verification / manual code reasoning
 - Given a program or a statement, what is its precondition and postcondition?
 - Given a loop, what is its loop invariant?
 - How do you use preconditions/postconditions/loop invariants to prove an assertion is correct (or not)?

Part II: Secure Architecture Principles (I)

- What is the principle of least privilege? why is it an important security design principle?
- Access Control and Capabilities
 - What is an access control list (ACL)?
 - What is a capabilitiy?
 - When is access control based on ACL vs capability?
 - How does the Unix access control (file permissions) work?
- How does setuid work? how is it used to allow a program to drop privilege?
- Privilege separation:
 - What is privilege separation? what are the components in privilege separation?
- What is TOCTOU vulnerability?

Part II: Secure Architecture Principles (II)

- Isolation
 - what is a reference monitor?
 - Isolation through Jail
 - What is the purpose of chroot and jail?
 - What do they guarantee and not guarantee?
 - How jailbreak can happen
 - Isolation through system call interposition
 - What is the purpose of system call interposition?
 - How is system call interposition implemented?
 - What are the potential implementation pitfalls?
 - Software based fault Isolation
 - What is software based fault isolation?
 - When do you need SFI?
 - how do you implement SFI for RISC architecture?
 - how do you verify a piece of code is correctly compiled with SFI?

Part III Cryptography (I)

- Symmetric Key Cryptography
 - What is encryption?
 - What is authentication?
 - one-time pad re-use
 - What is an initialization vector?
 - CTR mode
 - What happens when IV repeats?
 - CBC mode
 - What happens when IV repeats?
 - ECB mode
 - MAC, HMAC (at a high level, not construction)

Part III Cryptography (II)

- Secure Communication
 - Know how to construct a secure channel (e.g. encryption + auth + nonce)
 - What is a nonce?
 - What are the capabilities of a passive attacker?
 - What crypto functions are necessary to secure against a passive attacker?
 - What are the capabilities of an active attacker?
 - What crypto functions are necessary to secure against an active attacker?

Part III Cryptography (III)

- Public Key Cryptography
 - RSA construction
 - Key distribution problem
 - Digital signatures, certificates, certificate revocation

Feedback Survey

• Give us feedback

Improve the class together