Computer Security Course. Dawn Song

Malware: Viruses, Worms, & Botnets

Computer Security Course. Dawn Song

Reflections on Trusting Trust

Security Can Be Really Tricky

* Check your assumptions
 Ken Thompson

— Turing award lecture

Reflections on Trusting Trust,
http://www.acm.org/classics/sep95/

What Code Can We Trust?

* Alice downloads Ubuntu binary from web
— |s Ubuntu binary trustworthy?
— Does "login” have a backdoor that allows attacker to log in?

What Code Can We Trust?

* Since we cannot trust that the downloaded binary does not contain a backdoor
that will allow the attacker to log-in, Alice proposed the following solution:

— Download & read through the source code really carefully to ensure that there's no
such backdoor and recompile the source code to get the binary.

* Will this solution solve the problem, i.e., ensure that the binary does not
contain the backdoor?

A. Yes. B. No.

Malicious Compiler

A malicious compiler can insert backdoor

Check whether source code looks like login program

If yes, insert login-backdoor which allows attacker to log in

int login(char* password,

}

char* user) {

return 0;

Login program

Malicious compiler

compile(S) {

}

if (match(S, "login-pattern™)) {
compile (login-backdoor);
return;

}

... /* compile as usual */

Compiler Backdoor

How to solve this? compile(S) {
— Alice: Inspect the compiler source if (match(S, "login-pattern”)) {
— Wil this work? compile (login-backdoor);
return;
C compiler is written in C & needs to be)

if (match(S, "compiler-pattern")) {
compile (compiler-backdoor);
return;

compiled

Malicious compiler adds backdoor when

compile clean compiler source S }
.... [* compile as usual */

Creating Malicious Compiler Avoiding Detection

* Compile malicious compiler source with clean compiler binary
* Delete backdoor tests from source

Compiler - -
—> | pinary C1 —s Compller t'nnary C2
(Clean) (malicious)

|

Remove backdoor code

|

Malicious Compiler Injecting Backdoor

Using C2 to compile S1: C3

Using C3 to compile login source: login binary w. backdoor

_|

Compiler
binary C2
(malicious)

_>I

Compiler binary C3
(malicious)

Login binary
with backdoor

Malicious Compiler Avoid Deletion

* Possible to make code for compiler backdoor output itself

— Can you write a program that prints itself? Recursion theorem

Compiler binary
(malicious)

?

Clean compiler
source

Compiler binary
(malicious)

_

_,I

Compiler binary
(malicious)

)

Lessons Learned

 Know what you are trusting

* Reduce trusted code base
— No need to trust compiler if analyze binary directly

The Morris Worm: Nov. 1988

The Morris Internet Worm
source code

Thas diak comraim the complete sowrce code of the Mormis Inter
. v i

ol
wontm progran. This thny,
e faernet s & sancdil ¢

The weata was the fient of naany Iminwsive

Tuternot 10 spread

(First large-scale worm)
Targeted VAX, Sun Unix systems
6-10% of all Internet hosts infected

Spread By:

- Scanning the local subnet

- Mining /etc/passwd, /etc/hosts.equiv/ .rhosts for targets
- Exploiting a fingerd buffer overflow

- Exploiting sendmail’ s DEBUG mode (not a bug!)

Included code to:

- Crack passwords

- Detect co-resident worm processes

- Die off if magic global is set

- Phone home to ernie.berkeley.edu (buggy)

Large-Scale Malware

 Worm = code that self-propagates/replicates across
systems by arranging to have itself immediately
executed
— Generally infects by altering code
— No user intervention required

e Botnet = set of compromised machines (“bots”) under
a common command-and-control (C&C)

— Attacker might use a worm to get the bots, or other
techniques; orthogonal to bot’ s use in botnet

Worms

* Propagation
— exponential growth, different propagation mode

e Observation

— backscatter

 Defense

— detection, filter, sig generation

Worm Propagation

* Worm-spread often well described as infectious epidemic
* Propagation is often faster than human response

e Persistence: worms stick around
— E.g. Nimda & Slammer still seen in 2011!

Example: Code Red

* Released July 13, 2001
e Exploits buffer overflow vulnerability inside IS

* More than 2000 new hosts were infected each minute at peak
propagation

Copyright UC Regents, Jeff Brown for CAIDA, UCSD.

WORMS: PROPOGATION DETECTION | DEFENSE

Modeling Worm Spread
Susceptible-Infectable model
Worm-spread often well described as Model dynamics:
infectious epidemic
— Classic Sl (Susceptible-Infectable) model: ﬂ = pHx Xﬁ
homogeneous random contacts dt N

d] S Model parameters:
= hx) x— N = S(t) + I(t)
dt N, 5(0) =S, 1(0) =1,

— N: size of vulnerable population
— S(t): susceptible hosts at time t.
— I(t): infected hosts at time t.

— [p: contact rate

* How many hosts each infected
host communicates with per
unit time

WORMS: PROPOGATION DETECTION | DEFENSE

Modeling Worm Spread
Susceptible-Infectable model
e Rewriting by using i(t) = I(t)/N,S=N-I: Model dynamics:
di , , dl S
— = bi(l- i) — = b x—
dt dt N
6' o _ Model parameters:
1(z) = = '
gi 2194 o2 N = S(t) + I(t)
L 9 S(0) = S, 1(0) =1,
ly =]—]\(} ' — N: size of vulnerable population
— S(t): susceptible hosts at time t.
Fraction — I(t): infected hosts at time t.
infected grows — p:contact rate
logisti * How many hosts each infected
as a logistic host communicates with per
. unit time

Fitting the Model to Code Red

Susceptible-Infectable model

250,000
Model dynamics:

5 200,000 [dl S
2 B=0.7 — = b x—
c » dt N
= 150,000
- Model parameters:
g N = S(t) + I(t)
; 100,000 5(0)=S,, 1(0) =1,
-E — N:size of vulnerable population
§ 50,000 — S(t): susceptible hosts at time t.

— I(t): infected hosts at time t.

0 — [contact rate
-y

0o 2 4 6 & 10 12 14 16 18 20 Solution:
Hour of the day b 7
i(f) = eo' A :WO
8.*' 1++€bt
—4—3 of scans ——Predicted # of scans Iy 1%}

WORMS: PROPOGATION DETECTION | DEFENSE

Propagation Methods

Susceptible-Infectable model

Scanning Worm Model dynamics:
- Randorr;lzy and blindly choose a host to target ﬂ = b xi
- B=N/2 dt N
Model parameters:
N = S(t) + I(t)

Q Q O susceptible hosts 5(0) = S, 10) =1,
O ible h — N:size of vulnerable population
O non-susceptible hosts — S(t): susceptible hosts at time t.

Q @ infected hosts — I(t): infected hosts at time t.

— [contact rate

O
OQ Solution:
i) = — €
a_ _ 19+ ebl

&

WORMS: PROPOGATION

Propagation Methods

DETECTION

| DEFENSE

Susceptible-Infectable model

Model dynamics:

Scanning Worm Q) O O 0
- Randomly and blindly choose a host to target O
- = N/27 e
Q
Hitlist Worm Hitlist:
- 1, is large ofefefofs
‘ QOQQQ
QQQQQ
QOOQQ

dl S
= pHh x—
dt N
Model parameters:
N = S(t) + I(t)

S(0) =S,, 1(0) =1,
— N:size of vulnerable population
— S(t): susceptible hosts at time t.
— I(t): infected hosts at time t.
— [contact rate

Solution:
. bt
i(r) = et’)
a_ _ 1_+ ebl

&

WORMS: PROPOGATION

Propagation Methods

DETECTION

| DEFENSE

Susceptible-Infectable model

Model dynamics:

Scanning Worm < O O
- Randomly and blindly choose a host to target ~
- ﬂz N/Z-:’,2 O »
Q
Hitlist Worm Hitlist:
- 1, is large

Topological Worm

- Uses info on the infected host to find the
next target

dl S
= pHh x—
dt N
Model parameters:
N = S(t) + I(t)

S(0) = So, 1(0) = 1
— N:size of vulnerable population
— S(t): susceptible hosts at time t.
— I(t): infected hosts at time t.
— [contact rate

Solution:
. bt
i(r) = et’)
a_ _ 1_+ ebl

&

Propagation Methods

Code Red 359,000 2001
Nimba 450,000 2001
Witty 12,000 2004

Sapphire/Slammer 75,000 2003

Stuxnet

Discovered July 2010. (Released: Mar 20107?)

Multi-mode spreading:
— Initially spreads via USB (virus-like)

— Once inside a network, quickly spreads internally using
Windows RPC

Kill switch: programmed to die June 24, 2012
Targeted SCADA systems

— Used for industrial control systems, like manufacturing, power
plants

Symantec: infections
— Iran: 59%; Indonesia: 18%; India: 8%

Stuxnet, con’ t

Used four Zero Days
— Unprecedented expense on the part of the author
“Rootkit” for hiding infection based on installing
Windows drivers with

— Attacker stole private keys for certificates from two companies
in Taiwan

Payload' do nothing ...

attached to partlcular models of frequency converter
drives operating at 807-1210Hz

.. like those made in Iran (and Finland) ...

— ... and used to operate centrifuges for producing enriched
Uranium for nuclear weapons

Stuxnet, con’ t

* Payload: do nothing ...

— ... unless attached to particular models of frequency converter
drives operating at 807-1210Hz

— ... like those made in Iran (and Finland) ...

— ... and used to operate centrifuges for producing enriched
Uranium for nuclear weapons

* For these, worm would slowly increase drive frequency
to 1410Hz ...

— ... enough to cause centrifuge to fly apart ...

— ... while sending out fake readings from control system
indicating everything was okay ...

e ...andthen

Israel Tests on Worm Called Crucial in Iran Nuclear

Delay

By WILLIAM J. BROAD, JOHN MARKOFF and DAVID E. SANGER

Published: January 15, 2011

This article is by William J. Broad, John Markoff and David E.

Sanger.

Enlarge This Image The Dimona complex in the Negev

hicholas Roberts for The Mew York Times

Ralph Langner, an independent
computer security expert, sohed
Stuceret.

Multimedia

TABSET ORGAREaTon Aarrreis St [

Limived lnpernet scoess. ¥ s oof STuest
S¥irerasd
T

515“’.#

-! il .I'__.| .l__.l‘ =11
lul Graphic

How Stuxnet Spreads

desert is famous as the heavily
guarded heart of Israel’s never-

acknowledged nuclear arms program,

where neat rows of factories make
atomic fuel for the arsenal.

Ower the past two years, according to

intelligence and military experts

familiar with its operations, Dimona

o
P~
Lo

‘Q\

/

vy

|

5

{

i

has taken on a new, equally secret role — as a critical
testing ground in a joint American and Israeli effort to
undermine Iran’s efforts to make a bomb of its own.

Behind Dimona’s barbed wire, the experts say, Israel has
spun nuclear centrifuges virtually identical to Iran’s at
Natanz, where Iranian scientists are struggling to enrich
uranium. They say Dimona tested the effectiveness of the
Stuxnet computer worm, a destructive program that
appears to have wiped out roughly a fifth of Iran’s nuclear

Detection & Defense

Hardening programs
Detecting scanning

Rate limiting
Signature-based detection

— Exploit-based signatures
— Vulnerability-based signatures

