
 Malware: Viruses, Worms, & Botnets

Computer Security Course. Dawn Song

 Reflections on Trusting Trust

Computer Security Course. Dawn Song

Security Can Be Really Tricky

• Check your assumptions

• Ken Thompson

– Turing award lecture

Reflections on Trusting Trust,

http://www.acm.org/classics/sep95/

What Code Can We Trust?

• Alice downloads Ubuntu binary from web

– Is Ubuntu binary trustworthy?

– Does "login” have a backdoor that allows attacker to log in?

What Code Can We Trust?
• Since we cannot trust that the downloaded binary does not contain a backdoor

that will allow the attacker to log-in, Alice proposed the following solution:

– Download & read through the source code really carefully to ensure that there's no

such backdoor and recompile the source code to get the binary.

• Will this solution solve the problem, i.e., ensure that the binary does not

contain the backdoor?

 A. Yes. B. No.

Malicious Compiler
A malicious compiler can insert backdoor

• Check whether source code looks like login program

• If yes, insert login-backdoor which allows attacker to log in

int login(char* password,

 char* user){

 ……

 authenticate(user, password);

 ……

 return 0;

} Login program Binary with backdoor

Malicious compiler

 compile(S) {
 if (match(S, "login-pattern")) {
 compile (login-backdoor);
 return;
 }
 /* compile as usual */
 }

Compiler Backdoor

• How to solve this?

– Alice: Inspect the compiler source

– Will this work?

• C compiler is written in C & needs to be
compiled

• Malicious compiler adds backdoor when
compile clean compiler source S

 compile(S) {
 if (match(S, "login-pattern")) {
 compile (login-backdoor);
 return;
 }
 if (match(S, "compiler-pattern")) {
 compile (compiler-backdoor);
 return;
 }
 /* compile as usual */
 }

Creating Malicious Compiler Avoiding Detection

• Compile malicious compiler source with clean compiler binary
• Delete backdoor tests from source

Malicious
compiler
source

Compiler binary C2
(malicious)

Compiler
binary C1

(Clean)

Clean
compiler
source S1

Remove backdoor code

Malicious Compiler Injecting Backdoor

• Using C2 to compile S1: C3

• Using C3 to compile login source: login binary w. backdoor

Clean
compiler
source S1

Compiler
binary C2

(malicious)

Compiler binary C3
(malicious)

Login binary
with backdoor

Login
source

Malicious Compiler Avoid Deletion
• Possible to make code for compiler backdoor output itself

– Can you write a program that prints itself? Recursion theorem

Clean compiler
source

Compiler binary
(malicious)

Compiler binary
(malicious)

… Compiler binary
(malicious)

Lessons Learned

• Know what you are trusting

• Reduce trusted code base

– No need to trust compiler if analyze binary directly

Worms

(First large-scale worm)

Targeted VAX, Sun Unix systems

6-10% of all Internet hosts infected

- Scanning the local subnet
- Mining /etc/passwd, /etc/hosts.equiv/ .rhosts for targets
- Exploiting a fingerd buffer overflow
- Exploiting sendmail’s DEBUG mode (not a bug!)

Spread By:

- Crack passwords
- Detect co-resident worm processes
- Die off if magic global is set
- Phone home to ernie.berkeley.edu (buggy)

Included code to:

The Morris Worm: Nov. 1988

Shannon Bullard

Large-Scale Malware
• Worm = code that self-propagates/replicates across

systems by arranging to have itself immediately
executed
– Generally infects by altering running code

– No user intervention required

• Botnet = set of compromised machines (“bots”) under
a common command-and-control (C&C)
– Attacker might use a worm to get the bots, or other

techniques; orthogonal to bot’s use in botnet

Worms

• Propagation

– exponential growth, different propagation mode

• Observation

– backscatter

• Defense

– detection, filter, sig generation

Worm Propagation

• Worm-spread often well described as infectious epidemic

• Propagation is often faster than human response

• Persistence: worms stick around

– E.g. Nimda & Slammer still seen in 2011!

WORMS: PROPOGATION DETECTION DEFENSE

Example: Code Red
• Released July 13, 2001

• Exploits buffer overflow vulnerability inside IIS

• More than 2000 new hosts were infected each minute at peak
propagation

Copyright UC Regents, Jeff Brown for CAIDA, UCSD.

WORMS: PROPOGATION DETECTION DEFENSE

Model parameters:

– N: size of vulnerable population
– S(t): susceptible hosts at time t.
– I(t): infected hosts at time t.
– : contact rate

• How many hosts each infected
host communicates with per
unit time

N = S(t) + I(t)
S(0) = S0, I(0) = I0

Model dynamics:

dI

dt
= b ×I ×

S

N

Modeling Worm Spread

Increase in
infectibles
per unit time

Total attempted
contacts per
unit time

Proportion of
contacts expected
to succeed

Susceptible-Infectable model
• Worm-spread often well described as

infectious epidemic
– Classic SI (Susceptible-Infectable) model:

homogeneous random contacts

dI

dt
= b ×I ×

S

N

WORMS: PROPOGATION DETECTION DEFENSE

• Rewriting by using i(t) = I(t)/N, S = N - I:

di

dt
= bi(1- i)



Fraction
infected grows
as a logistic

i(t) =
ebt

1+ ebt

WORMS: PROPOGATION DETECTION DEFENSE

Modeling Worm Spread

i

1

t

Model parameters:

– N: size of vulnerable population
– S(t): susceptible hosts at time t.
– I(t): infected hosts at time t.
– : contact rate

• How many hosts each infected
host communicates with per
unit time

N = S(t) + I(t)
S(0) = S0, I(0) = I0

Model dynamics:

dI

dt
= b ×I ×

S

N

Susceptible-Infectable model

i(t) = ebt

1
i0

- 1
æ

è
ç

ö

ø
÷ + ebt

i(t) = ebt

1
i0

- 1
æ

è
ç

ö

ø
÷ + ebt

i0 =
I0

N

Fitting the Model to Code Red

Exponential
initial growth

Growth slows as
it becomes harder
to find new victims!

WORMS: PROPOGATION DETECTION DEFENSE

Model parameters:

– N: size of vulnerable population
– S(t): susceptible hosts at time t.
– I(t): infected hosts at time t.
– : contact rate

N = S(t) + I(t)
S(0) = S0, I(0) = I0

Model dynamics:

dI

dt
= b ×I ×

S

N

Susceptible-Infectable model

Solution:

i(t) = ebt

1
i0

- 1
æ

è
ç

ö

ø
÷ + ebt

 ≈ 0.7

i(t) = ebt

1
i0

- 1
æ

è
ç

ö

ø
÷ + ebt

, i0 =
I0

N

Propagation Methods

WORMS: PROPOGATION DETECTION DEFENSE

Model parameters:

– N: size of vulnerable population
– S(t): susceptible hosts at time t.
– I(t): infected hosts at time t.
– : contact rate

N = S(t) + I(t)
S(0) = S0, I(0) = I0

Model dynamics:

dI

dt
= b ×I ×

S

N

Susceptible-Infectable model

Solution:

i(t) = ebt

1
i0

- 1
æ

è
ç

ö

ø
÷ + ebt

Scanning Worm

- Randomly and blindly choose a host to target
-  ≈ N/232

susceptible hosts

non-susceptible hosts

infected hosts

Propagation Methods

WORMS: PROPOGATION DETECTION DEFENSE

Model parameters:

– N: size of vulnerable population
– S(t): susceptible hosts at time t.
– I(t): infected hosts at time t.
– : contact rate

N = S(t) + I(t)
S(0) = S0, I(0) = I0

Model dynamics:

dI

dt
= b ×I ×

S

N

Susceptible-Infectable model

Solution:

i(t) = ebt

1
i0

- 1
æ

è
ç

ö

ø
÷ + ebt

Scanning Worm

- Randomly and blindly choose a host to target
-  ≈ N/232

Hitlist Worm

- I0 is large

Hitlist:

Propagation Methods

WORMS: PROPOGATION DETECTION DEFENSE

Model parameters:

– N: size of vulnerable population
– S(t): susceptible hosts at time t.
– I(t): infected hosts at time t.
– : contact rate

N = S(t) + I(t)
S(0) = S0, I(0) = I0

Model dynamics:

dI

dt
= b ×I ×

S

N

Susceptible-Infectable model

Solution:

i(t) = ebt

1
i0

- 1
æ

è
ç

ö

ø
÷ + ebt

Scanning Worm

- Randomly and blindly choose a host to target
-  ≈ N/232

Hitlist Worm

- I0 is large

Topological Worm

- Uses info on the infected host to find the
next target

Hitlist:

Propagation Methods

WORMS: PROPOGATION DETECTION DEFENSE

Infected Hosts Start Date

Code Red 359,000 2001

Nimba 450,000 2001

Witty 12,000 2004

Sapphire/Slammer 75,000 2003

Stuxnet

• Discovered July 2010. (Released: Mar 2010?)
• Multi-mode spreading:

– Initially spreads via USB (virus-like)
– Once inside a network, quickly spreads internally using

Windows RPC

• Kill switch: programmed to die June 24, 2012
• Targeted SCADA systems

– Used for industrial control systems, like manufacturing, power
plants

• Symantec: infections geographically clustered
– Iran: 59%; Indonesia: 18%; India: 8%

Stuxnet, con’t

• Used four Zero Days
– Unprecedented expense on the part of the author

• “Rootkit” for hiding infection based on installing
Windows drivers with valid digital signatures
– Attacker stole private keys for certificates from two companies

in Taiwan
• Payload: do nothing …

– … unless attached to particular models of frequency converter
drives operating at 807-1210Hz

– … like those made in Iran (and Finland) …
– … and used to operate centrifuges for producing enriched

Uranium for nuclear weapons

Stuxnet, con’t

• Payload: do nothing …
– … unless attached to particular models of frequency converter

drives operating at 807-1210Hz
– … like those made in Iran (and Finland) …
– … and used to operate centrifuges for producing enriched

Uranium for nuclear weapons
• For these, worm would slowly increase drive frequency

to 1410Hz …
– … enough to cause centrifuge to fly apart …
– … while sending out fake readings from control system

indicating everything was okay …
• … and then drop it back to normal range

Detection & Defense

• Hardening programs

• Detecting scanning

• Rate limiting

• Signature-based detection

– Exploit-based signatures

– Vulnerability-based signatures

