
Dawn Song

Botnets

Dawn Song

Botnets
• Collection of compromised machines (bots) under

(unified) control of an attacker (botmaster)
• Upon infection, new bot “phones home” to rendezvous

w/ botnet command-and-control (C&C)
• Botmaster uses C&C to push out commands and updates

Dawn Song

Method of control
• Lots of ways to architect C&C:

– Star topology; hierarchical; peer-to-peer
– Encrypted/stealthy communication

Dawn Song

Method of compromise
• Method of compromise decoupled from method of

control
– Launch a worm / virus / drive-by infection / etc.

Dawn Song

Botnets vs. Worms
• Constitute the Great Modern Threat of Internet security:

Generic Platform For Badness
• Why botnets rather than worms?

– Greater control
– Less emergent
– Quieter
– Optimal flexibility

• Why the shift towards valuing these instead of seismic worm
infection events?
 $$ Profit $$

• How can attackers leverage scale to monetize botnets?

Dawn Song

Monetizing Botnets
• General malware monetization approaches

– Keylogging: steal financial/email/social network accounts
– Ransomware
– Transaction generators

• Malware watches user’s surfing …
• … waits for them to log into banking site (say) …
• … and then injects additional banking transactions like “send

$50,000 to Nigeria” …
• … and alters web server replies to mask the change in the user’s

balance

Dawn Song

Monetizing Botnets

• Monetization that leverages scale
– DDoS (extortion)
– Spam
– Click fraud
– Scam infrastructure

• Hosting web pages (e.g., phishing)
• Redirection to evade blacklisting/takedown (DNS)

• Which of these cause serious pain for infected user?

– None. Users have little incentive to prevent (⇒ externality)

Dawn Song

Fighting Bots / Botnets
• How can we defend against bots / botnets?
• Approach #1: prevent the initial bot infection

– Because the infection is decoupled from bot’s participation in
the botnet, this is equivalent to preventing malware infections
in general …. HARD

Dawn Song

Fighting Bots / Botnets, con’t
• Approach #2: seize the domain name used for C&C

– This is what’s currently often used, often to good effect …
• … Botmaster counter-measure?

– Each day (say), bots generate a large list of possible domain names
using a Domain Generation Algorithm

• Large = 50K, in some cases
– Bots then try a random subset looking for a C&C server

• Server signs its replies, so bot can’t be duped
• Attacker just needs to hang on to a small portion of names to retain control

over botnet
• Counter-counter measure?

– Behavioral signature: look for hosts that make a lot of failed DNS
lookups (research)

Dawn Song

Addressing The Botnet Problem
• Angle #1: detection/cleanup

– Detecting infection of individual bots hard as it’s the defend-against-
general-malware problem

– Detecting bot doing C&C likely a losing battle as attackers improve their
sneakiness & crypto

– Cleanup today lacks oomph:
• Who’s responsible? … and do they care? (externalities)
• Landscape could greatly change with different model of liability

Dawn Song

Addressing The Problem, con’t
• Angle #2: go after the C&C systems / botmasters

– Difficult due to ease of Internet anonymity & complexities of
international law

• But: a number of recent successes in this regard
• Including some via peer pressure rather than law enforcement (McColo)

– One promising angle: policing domain name registrations

Dawn Song

Addressing The Problem, con’t
• Angle #3: prevention

– Secure code
– structure OS/browser so code runs with Least Privilege

• Does this solve the problem?
• Depends on how granular the privileges are … and how the decision is made regarding

just what privileges are “least”
– E.g., iTunes App Store model (vetting), Android model (user confirmation)

Dawn Song

 Web Security: Vulnerabilities & Attacks

Computer Security Course. Dawn Song

Dawn Song

Introduction

Dawn Song

Web & http

SERVER CLIENT

HTTP REQUEST:
GET /account.html HTTP/1.1
Host: www.safebank.com

HTTP RESPONSE:
HTTP/1.0 200 OK
<HTML> . . . </HTML>

(browser)

login
password

banking content
Accounts
Bill Pay
Mail
Transfers

Dawn Song

URLs
• Global identifiers of network-retrievable documents

• Example:
 http://safebank.com:81/account?id=10#statement

• Special characters are encoded as hex:

– %0A = newline
– %20 or + = space, %2B = + (special exception)

Protocol

Hostname Port Path Query

Fragment

Dawn Song

GET /index.html HTTP/1.1
Accept: image/gif, image/x-bitmap,
 image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive
User-Agent: Chrome/21.0.1180.75 (Macintosh; Intel Mac
OS X 10_7_4)
Host: www.safebank.com
Referer: http://www.google.com?q=dingbats

HTTP Request
Method File HTTP version Headers

Data – none for GET
Blank line

GET : no side effect
POST : possible side effect

HTTP/1.0 200 OK
Date: Sun, 12 Aug 2012 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive
Content-Type: text/html
Last-Modified: Thu, 9 Aug 2012 17:39:05 GMT
Set-Cookie: …
Content-Length: 2543

<HTML> This is web content formatted using html
</HTML>

HTTP Response
HTTP version Status code Reason phrase

Headers

Cookies

Data

Dawn Song

Renderer UI

Suppose you are visiting http://safebank.com in a modern web browser.

ChromeBar UI Browser
Engine

Network
Stack

Renderer
Engine

display(URI)
isCached(URI) = false
retrieveData(URI)

pageData /*HTML, CSS, etc*/

renderBitmap(pageData)

(Renderer Process)

How browser renders a page

enters
http://safebank.c
om and presses
go.

(Browser Process)

http://safebank.com
http://safebank.com
http://safebank.com

Dawn Song

Rendering and events
• Basic execution model

– Each browser window or frame
• Loads content
• Renders

– Processes HTML and scripts to display page
– May involve images, subframes, etc.

• Responds to events
• Events can be

– User actions: OnClick, OnMouseover
– Rendering: OnLoad, OnBeforeUnload
– Timing: setTimeout(), clearTimeout()

Dawn Song

Document Object Model (DOM)
• Object-oriented interface used to read and

write rendered pages
– web page in HTML is structured data
– DOM provides representation of this

hierarchy

• Examples
– Properties: document.alinkColor,

document.URL, document.forms[],
document.links[], document.anchors[]

– Methods:
document.write(document.referrer)

• Also: Browser Object Model (BOM)
– window, document, frames[], history, location, navigator (type and version of browser)

|-> Document
 |-> Element (<html>)
 |-> Element (<body>)
 |-> Element (<div>)
 |-> text node
 |-> Anchor
 |-> text node
 |-> Form
 |-> Text-box
 |-> Radio Button
 |-> Check Box
 |-> Button

 DOM Tree HTML
<html>
 <body>
 <div>
 foo
 <a>foo2
 </div>
 <form>
 <input type="text” />
 <input type=”radio” />
 <input type=”checkbox” />
 </form>
 </body>
</html>

Dawn Song

pageData /*HTML*/

RENDERING ENGINE

How browser renders a page
pageData /*CSS*/

CSS Parser

Style Rules

HTML Parser

DOM Tree Builder
Render Tree

Painter

pageBitmap

<HTML>
…
<HTML>

element.style {
 height: 303px;
 …
}

0x
42 4d 45 00 00 00 00
36 00 00 00 28 00 00
4f 45 d0 00 00 00 92
36 00 60 0b 28 4f 45
d0 00 d0 00 00 00 92
4f 4d 45 00 00 00 00
4f 45 d0 00 00 00 92
. . .

HtmlElement

BodyElement

Text

DivElement

ImageElement

ParagraphElement

*

JavaScript Engine

pageData /*JavaScript*/

function onload(){
…
}

Original DOM
DOM

Modifications

Dawn Song

Suppose you are visiting http://safebank.com in a modern web browser.

ChromeBar UI Browser
Engine

Network
Stack

Renderer
Engine

display(URI)
isCached(URI) = false
retrieveData(URI)

pageData /*HTML, CSS, etc*/

renderBitmap(pageData)

(Renderer Process)

How browser renders a page

enters
http://safebank.c
om and presses
go.

(Browser Process) (displays pageBitmap)

Renderer UI

pageBitmap login
password

banking content
Accounts
Bill Pay
Mail
Transfers

(cookies for www.safebank.com)
(javascript for www.safebank.com)
(other resources for www.safebank.com)

http://safebank.com
http://safebank.com
http://safebank.com

Dawn Song

Web Security Goals & Threat Model

Dawn Song

Web Browser Security Goals
login

password

banking content
Accounts
Bill Pay
Mail
Transfers

(cookies for www.safebank.com)
(javascript for www.safebank.com)
(other resources for www.safebank.com)

tab1 tab2
login

password

-play
-buy
-info

(cookies for www.catville.com)
(javascript for www.catville.com)
(other resources for www.catville.com)

• tab2 cannot steal
information from tab1
(without user permission)

• tab 2 cannot compromise
the user’s computer or data

• tab 2 cannot compromise
the session in tab 1

Security Goals

http://www.ra

Dawn Song

OS/Malware Attacker

May control malicious
files and applications on
host

User

Operating system security

System

THREAT MODELS: OPERATING SYSTEM SECURITY NETWORK SECURITY WEB SECURITY

Dawn Song

Network Attacker

Intercepts and
controls network
communication

login
password

banking content
Accounts
Bill Pay
Mail
Transfers

THREAT MODELS: OPERATING SYSTEM SECURITY NETWORK SECURITY WEB SECURITY

User

(Network)

Dawn Song

Web Attacker

Sets up malicious site
visited by victim; no
control of network

login
password

-play
-buy
-info

THREAT MODELS: OPERATING SYSTEM SECURITY NETWORK SECURITY WEB SECURITY

User
(Network)

Dawn Song

Web Threat Models
Web attacker
• Control malicious site, which we may call “attacker.com”
• Can obtain SSL/TLS certificate for attacker.com
• User visits attacker.com
 Or: runs attacker’s Facebook app, site with attack ad, …

login
password

-play
-buy
-info

Network attacker
• Passive: Wireless eavesdropper
• Active: Evil router, DNS poisoning

OS/Malware attacker
• Attackers may compromise host and install malware on host

(Network)

Dawn Song

Isolation

Dawn Song

Suppose you are visiting http://safebank.com in a modern web browser.

ChromeBar UI Browser
Engine

Network
Stack

Renderer
Engine

display(URI)
isCached(URI) = false
retrieveData(URI)

pageData /*HTML, CSS, Javascript, etc*/
renderBitmap(pageData)

(Renderer Process)

How browser renders a page

enters
http://safebank.c
om and presses
go.

(Browser Process) (displays pageBitmap)

Renderer UI

pageBitmap login
password

banking content
Accounts
Bill Pay
Mail
Transfers

(cookies for www.safebank.com)
(javascript for www.safebank.com)
(other resources for www.safebank.com)

http://safebank.com
http://safebank.com
http://safebank.com

Dawn Song

Chrome Security Architecture
Browser Process GPU Singleton

Plugin Processes

(Flash) (Java) (Acrobat)
(IPC Channel)

Isolation: Separate web applications from each other, and separate browser components from each other

Principal of Least Privilege: Give components only the permissions they need to operate

Renderer Sandbox

login
password

-play
-buy
-info

login
password

banking content
Accounts
Bill Pay
Mail
Transfers

Renderer Sandbox

Dawn Song 33

Render Sandbox
• Goal

– Run remote web applications safely
– Limited access to OS, network, and browser data

• Approach

– Isolate sites in different security contexts
– Browser manages resources, like an OS, so that each

renderer has limited privilege

Dawn Song

Frame and iFrame
• Window may contain frames from

different sources
– Frame: rigid division as part of frameset
– iFrame: floating inline frame

• iFrame example

• Why use frames?
– Delegate screen area to content from

another source
– Browser provides isolation based on

frames
– Parent may work even if frame is

broken

<iframe src="hello.html" width=450 height=100>
If you can see this, your browser doesn't understand IFRAME.
</iframe>

login
password

-play
-buy
-info

(frame for “www.catville.com”)
--ad--

BUY ROOSTER
FLAKES CEREAL!

(frame for “www.rooster-flakes.com/ads/1”)

	Botnets
	Botnets
	Method of control
	Method of compromise
	Botnets vs. Worms
	Monetizing Botnets
	Monetizing Botnets
	Fighting Bots / Botnets
	Fighting Bots / Botnets, con’t
	Addressing The Botnet Problem
	Addressing The Problem, con’t
	Addressing The Problem, con’t
	Slide Number 13
	Introduction
	Web & http
	URLs
	HTTP Request
	How browser renders a page
	Rendering and events
	Document Object Model (DOM)
	How browser renders a page
	How browser renders a page
	Web Security Goals & Threat Model
	Web Browser Security Goals
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Web Threat Models
	Isolation
	How browser renders a page
	Chrome Security Architecture
	Render Sandbox
	Frame and iFrame

