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Botnets 
• Collection of compromised machines (bots) under 

(unified) control of an attacker (botmaster) 
• Upon infection, new bot “phones home” to rendezvous 

w/ botnet command-and-control (C&C) 
• Botmaster uses C&C to push out commands and updates 
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Method of control 
• Lots of ways to architect C&C: 

– Star topology; hierarchical; peer-to-peer 
– Encrypted/stealthy communication 
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Method of compromise 
• Method of compromise decoupled from method of 

control 
– Launch a worm / virus / drive-by infection / etc. 
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Botnets vs. Worms 
• Constitute the Great Modern Threat of Internet security: 

Generic Platform For Badness 
• Why botnets rather than worms? 

– Greater control 
– Less emergent 
– Quieter 
– Optimal flexibility 

• Why the shift towards valuing these instead of seismic worm 
infection events? 
     $$ Profit $$ 

• How can attackers leverage scale to monetize botnets? 
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Monetizing Botnets 
• General malware monetization approaches 

– Keylogging: steal financial/email/social network accounts 
– Ransomware 
– Transaction generators 

• Malware watches user’s surfing … 
• … waits for them to log into banking site (say) … 
• … and then injects additional banking transactions like “send 

$50,000 to Nigeria” … 
• … and alters web server replies to mask the change in the user’s 

balance 
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Monetizing Botnets 
 

• Monetization that leverages scale 
– DDoS (extortion) 
– Spam  
– Click fraud 
– Scam infrastructure 

• Hosting web pages (e.g., phishing) 
• Redirection to evade blacklisting/takedown (DNS) 

 
• Which of these cause serious pain for infected user? 

– None.  Users have little incentive to prevent (⇒ externality) 
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Fighting Bots / Botnets 
• How can we defend against bots / botnets? 
• Approach #1: prevent the initial bot infection 

– Because the infection is decoupled from bot’s participation in 
the botnet, this is equivalent to preventing malware infections 
in general …. HARD 
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Fighting Bots / Botnets, con’t 
• Approach #2: seize the domain name used for C&C 

– This is what’s currently often used, often to good effect … 
• … Botmaster counter-measure? 

– Each day (say), bots generate a large list of possible domain names 
using a Domain Generation Algorithm 

• Large = 50K, in some cases 
– Bots then try a random subset looking for a C&C server 

• Server signs its replies, so bot can’t be duped 
• Attacker just needs to hang on to a small portion of names to retain control 

over botnet 
• Counter-counter measure? 

– Behavioral signature: look for hosts that make a lot of failed DNS 
lookups (research) 
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Addressing The Botnet Problem 
• Angle #1: detection/cleanup 

– Detecting infection of individual bots hard as it’s the defend-against-
general-malware problem 

– Detecting bot doing C&C likely a losing battle as attackers improve their 
sneakiness & crypto  

– Cleanup today lacks oomph: 
• Who’s responsible? … and do they care?  (externalities) 
• Landscape could greatly change with different model of liability 
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Addressing The Problem, con’t 
• Angle #2: go after the C&C systems / botmasters 

– Difficult due to ease of Internet anonymity & complexities of 
international law 

• But: a number of recent successes in this regard 
• Including some via peer pressure rather than law enforcement (McColo) 

– One promising angle: policing domain name registrations 
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Addressing The Problem, con’t 
• Angle #3: prevention 

– Secure code 
– structure OS/browser so code runs with Least Privilege 

• Does this solve the problem? 
• Depends on how granular the privileges are … and how the decision is made regarding 

just what privileges are “least” 
– E.g., iTunes App Store model (vetting), Android model (user confirmation) 
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 Web Security: Vulnerabilities & Attacks  

Computer Security Course.                                          Dawn Song 
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Introduction 
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Web & http 

SERVER CLIENT 

HTTP REQUEST: 
GET /account.html HTTP/1.1 
Host: www.safebank.com 

HTTP RESPONSE: 
HTTP/1.0 200 OK 
<HTML> . . . </HTML> 

(browser) 

login 
password 

banking content 
Accounts 
Bill Pay 
Mail 
Transfers 
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URLs 
• Global identifiers of network-retrievable documents  

• Example: 
 http://safebank.com:81/account?id=10#statement 
 
 
 
 
 

 
• Special characters are encoded as hex: 

– %0A = newline 
– %20 or + = space, %2B = +  (special exception) 

Protocol 

Hostname Port Path Query 

Fragment 
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GET /index.html HTTP/1.1 
Accept: image/gif, image/x-bitmap, 
 image/jpeg, */* 
Accept-Language: en 
Connection: Keep-Alive 
User-Agent: Chrome/21.0.1180.75 (Macintosh; Intel Mac 
OS X 10_7_4) 
Host: www.safebank.com 
Referer: http://www.google.com?q=dingbats 

 

HTTP Request 
Method File HTTP version Headers 

Data – none for GET 
Blank line 

GET :   no side effect           
POST :   possible side effect 

HTTP/1.0 200 OK 
Date: Sun, 12 Aug 2012 02:20:42 GMT 
Server: Microsoft-Internet-Information-Server/5.0  
Connection: keep-alive 
Content-Type: text/html 
Last-Modified: Thu, 9 Aug 2012 17:39:05 GMT 
Set-Cookie: … 
Content-Length: 2543 
  
<HTML> This is web content formatted using html 
</HTML> 

HTTP Response 
HTTP version Status code Reason phrase 

Headers 

Cookies 

Data 
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Renderer UI 

Suppose you are visiting http://safebank.com in a modern web browser. 

ChromeBar UI Browser  
Engine 

Network 
Stack 

Renderer  
Engine 

display(URI) 
isCached(URI) = false 
retrieveData(URI) 

pageData  /*HTML, CSS, etc*/ 

renderBitmap(pageData) 

(Renderer Process) 

How browser renders a page 

enters 
http://safebank.c
om and presses 
go. 

(Browser Process) 

http://safebank.com
http://safebank.com
http://safebank.com
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Rendering and events 
• Basic execution model 

– Each browser window or frame 
• Loads content 
• Renders 

– Processes HTML and scripts to display page 
– May involve images, subframes, etc.  

• Responds to events 
• Events can be 

– User actions: OnClick, OnMouseover 
– Rendering:  OnLoad, OnBeforeUnload  
– Timing:  setTimeout(),  clearTimeout()  
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Document Object Model (DOM) 
• Object-oriented interface used to read and 

write rendered pages 
– web page in HTML is structured data 
– DOM provides representation of this 

hierarchy 
 

• Examples 
– Properties: document.alinkColor, 

document.URL, document.forms[ ], 
document.links[ ], document.anchors[ ] 

– Methods:  
document.write(document.referrer) 

• Also: Browser Object Model (BOM) 
– window, document, frames[], history, location, navigator (type and version of browser) 

|-> Document 
   |-> Element (<html>) 
     |-> Element (<body>) 
       |-> Element (<div>) 
         |-> text node 
         |-> Anchor 
           |-> text node 
       |-> Form 
            |-> Text-box 
            |-> Radio Button 
            |-> Check Box 
            |-> Button 

 DOM Tree HTML 
<html> 
    <body> 
        <div> 
            foo 
            <a>foo2</a> 
        </div> 
        <form> 
            <input type="text” /> 
            <input type=”radio” /> 
            <input type=”checkbox” /> 
        </form> 
    </body> 
</html> 
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pageData  /*HTML*/ 

RENDERING ENGINE 

How browser renders a page 
pageData  /*CSS*/ 

CSS Parser 

Style Rules 

HTML Parser 

DOM Tree Builder 
Render Tree 

Painter 

pageBitmap 

<HTML> 
… 
<HTML> 

element.style  { 
  height: 303px; 
  … 
}  
 

0x 
42 4d 45 00 00 00 00 
36 00 00 00 28 00 00 
4f 45 d0 00 00 00 92 
36 00 60 0b 28 4f 45 
d0 00 d0 00 00 00 92 
4f 4d 45 00 00 00 00 
4f 45 d0 00 00 00 92 
. . .  

HtmlElement 

BodyElement 

Text 

DivElement 

ImageElement 

ParagraphElement 

* 

JavaScript Engine 

pageData  /*JavaScript*/ 

function onload(){ 
… 
} 

Original DOM 
DOM 

Modifications 
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Suppose you are visiting http://safebank.com in a modern web browser. 

ChromeBar UI Browser  
Engine 

Network 
Stack 

Renderer  
Engine 

display(URI) 
isCached(URI) = false 
retrieveData(URI) 

pageData  /*HTML, CSS, etc*/ 

renderBitmap(pageData) 

(Renderer Process) 

How browser renders a page 

enters 
http://safebank.c
om and presses 
go. 

(Browser Process) (displays pageBitmap) 

Renderer UI 

pageBitmap login 
password 

banking content 
Accounts 
Bill Pay 
Mail 
Transfers 

(cookies for www.safebank.com) 
(javascript for www.safebank.com) 
(other resources for www.safebank.com) 

http://safebank.com
http://safebank.com
http://safebank.com
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Web Security Goals & Threat Model 
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Web Browser Security Goals 
login 

password 

banking content 
Accounts 
Bill Pay 
Mail 
Transfers 

(cookies for www.safebank.com) 
(javascript for www.safebank.com) 
(other resources for www.safebank.com) 

tab1 tab2 
login 

password 

-play 
-buy 
-info 
 

(cookies for www.catville.com) 
(javascript for www.catville.com) 
(other resources for www.catville.com) 

• tab2 cannot steal 
information from tab1 
(without user permission) 

• tab 2 cannot compromise 
the user’s computer or data 

• tab 2 cannot compromise 
the session in tab 1 

Security Goals 

    
  

       
      
  

http://www.ra
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OS/Malware  Attacker 
 

May control malicious 
files and applications on 
host 

User 

Operating system security 

System 

THREAT MODELS: OPERATING SYSTEM SECURITY NETWORK SECURITY WEB SECURITY 
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Network Attacker 
 
Intercepts and 
controls network 
communication 

login 
password 

banking content 
Accounts 
Bill Pay 
Mail 
Transfers 

THREAT MODELS: OPERATING SYSTEM SECURITY NETWORK SECURITY WEB SECURITY 

User 

(Network) 
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Web Attacker 
 

Sets up malicious site 
visited by victim; no 
control of network 

login 
password 

-play 
-buy 
-info 
 

THREAT MODELS: OPERATING SYSTEM SECURITY NETWORK SECURITY WEB SECURITY 

User 
(Network) 
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Web Threat Models 
Web attacker 
• Control malicious site, which we may call “attacker.com” 
• Can obtain SSL/TLS certificate for attacker.com 
• User visits attacker.com 
 Or: runs attacker’s Facebook app, site with attack ad, … 

login 
password 

-play 
-buy 
-info 
 

Network attacker 
• Passive: Wireless eavesdropper 
• Active: Evil router, DNS poisoning 

OS/Malware attacker 
• Attackers may compromise host and install malware on host 

(Network) 
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Isolation 
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Suppose you are visiting http://safebank.com in a modern web browser. 

ChromeBar UI Browser  
Engine 

Network 
Stack 

Renderer  
Engine 

display(URI) 
isCached(URI) = false 
retrieveData(URI) 

pageData  /*HTML, CSS, Javascript, etc*/ 
renderBitmap(pageData) 

(Renderer Process) 

How browser renders a page 

enters 
http://safebank.c
om and presses 
go. 

(Browser Process) (displays pageBitmap) 

Renderer UI 

pageBitmap login 
password 

banking content 
Accounts 
Bill Pay 
Mail 
Transfers 

(cookies for www.safebank.com) 
(javascript for www.safebank.com) 
(other resources for www.safebank.com) 

http://safebank.com
http://safebank.com
http://safebank.com
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Chrome Security Architecture 
Browser Process GPU Singleton 

Plugin Processes 

(Flash) (Java) (Acrobat) 
(IPC Channel) 

 
  
 

 
 

  
   

  
 

 
 

   
 

 
 
 
 

  
  

Isolation: Separate web applications from each other, and separate browser components from each other 

Principal of Least Privilege: Give components only the permissions they need to operate 

Renderer Sandbox 

login 
password 

-play 
-buy 
-info 
 

login 
password 

banking content 
Accounts 
Bill Pay 
Mail 
Transfers 

Renderer Sandbox 
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Render Sandbox 
• Goal 

– Run remote web applications safely 
– Limited access to OS, network, and browser data 

 
• Approach 

– Isolate sites in different security contexts 
– Browser manages resources, like an OS, so that each 

renderer has limited privilege 
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Frame and iFrame 
• Window may contain frames from 

different sources 
– Frame: rigid division as part of frameset 
– iFrame: floating inline frame 

• iFrame example 
 
 
 

• Why use frames? 
– Delegate screen area to content from 

another source 
– Browser provides isolation based on 

frames 
– Parent may work even if frame is 

broken 

<iframe src="hello.html" width=450 height=100>  
If you can see this, your browser doesn't understand IFRAME.  
</iframe> 

login 
password 

-play 
-buy 
-info 
 

(frame for “www.catville.com”) 
--ad-- 

BUY ROOSTER 
FLAKES CEREAL! 

(frame for “www.rooster-flakes.com/ads/1”) 
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