
System Call Interposition

Computer Security Course. Dawn Song

Slides credit: Dan Boneh

Administrative Issues

• Optional reading

• Practice questions for midterm

• Study guide for midterm

• Class survey

Alternate design: systrace [P’02]

• systrace only forwards monitored sys-calls to monitor (efficiency)

• systrace resolves sym-links and replaces sys-call
path arguments by full path to target

• When app calls execve, monitor loads new policy file

user space

open(“etc/passwd”, “r”)

monitor

permit/deny

policy file
for app

monitored
application
(browser)

sys-call
gateway

systrace

Filtering Architecture
Application

process

System Call Entry

re
su

lt

O
p
e
n
(
“
f
o
o
”
)

re
su

lt

Kernel Proper

tracing interface
Open(“foo”)

result

Deny

Monitor

A
llo

w
/D

eny

O
p
e
n
(
“
f
o
o
”
)

User space

Kernel space

process

process

Issues with Filtering Architecture

• Filter examines sys-calls and decides whether to block

• Difficulty with syncing state between app and monitor (CWD, UID, ..)

– Incorrect syncing results in security vulnerabilities (e.g. disallowed file opened)

Ostia: a Delegation Architecture [GBR04]

Process
Emulation library

Process
Emulation library

agent

agent

result

result

request

request

Restricted interface

User space

Kernel space

Application

Ostia: a delegation architecture [GPR’04]

• Monitored app disallowed from making monitored sys calls
– Minimal kernel change (… but app can call close() itself)

• Sys-call delegated to an agent that decides if call is allowed

– Can be done without changing app

 (requires an emulation layer in monitored process)

• Incorrect state syncing will not result in policy violation

• What should agent do when app calls execve?

– Process can make the call directly. Agent loads new policy file.

Policy
Sample policy file:

 path allow /tmp/*
 path deny /etc/passwd
 network deny all

Manually specifying policy for an app can be difficult:

– Systrace can auto-generate policy by learning how app
behaves on “good” inputs

– If policy does not cover a specific sys-call, ask user

… but user has no way to decide

Difficulty with choosing policy for specific apps (e.g. browser) is
the main reason this approach is not widely used

Virtual Machine Monitor

Computer Security Course. Dawn Song

Slides credit: Dan Boneh

Virtualization

Hypervisor

VMM VMM VMM

Base Functionality (eg. Scheduling)

Enhanced
Functionality

Application

Operating
System

Application

Operating
System

Application

Operating
System

Intrusion Detection / Anti-virus
Runs as part of OS kernel and user space process

– Kernel root kit can shutdown protection system

– Common practice for modern malware

Standard solution: run IDS system in the network

– Problem: insufficient visibility into user’s machine

Better: run IDS as part of VMM (protected from malware)

– VMM can monitor virtual hardware for anomalies

– VMI: Virtual Machine Introspection

• Allows VMM to check Guest OS internals

Infected VM m
alw

are

VMM

Guest OS

Hardware

IDS

VMM-based IDS

Sample checks
Stealth root-kit malware:

– Creates processes that are invisible to “ps”

– Opens sockets that are invisible to “netstat”

1. Lie detector check

– Goal: detect stealth malware that hides processes
and network activity

– Method:

• VMM lists processes running in GuestOS

• VMM requests GuestOS to list processes (e.g. ps)

• If mismatch: kill VM

Sample checks
2. Application code integrity detector

– VMM computes hash of user app code running in VM

– Compare to whitelist of hashes

• Kills VM if unknown program appears

3. Ensure GuestOS kernel integrity

– example: detect changes to sys_call_table

4. Virus signature detector

– Run virus signature detector on GuestOS memory

VM-based Malware: Subvirt [King et al. 2006]

Virus idea:

– Once on victim machine, install a malicious VMM

– Virus hides in VMM

– Invisible to virus detector running inside VM

HW
OS



HW

OS
VMM and virus

an
ti-v

iru
s

an
ti-v

iru
s

Software Fault Isolation

Computer Security Course. Dawn Song

Slides credit: Dan Boneh, Stephen McCamant

• Protect app from untrusted code it has to interact with

– E.g., 3rd party libraries, modules, extensions, device drivers

App

Untrusted
code

(lib/extensio
ns)

Goal

Solution I: Process Isolation
• Running in different processes

• Communicate with inter-process communication

App Untrusted
code

Operating system

process process

machine

Issues with Process Isolation

• Inefficient for frequent IPC

App Untrusted
code

Operating system

process process

machine

• App & untrusted code runs in
same process

• Security enforcement:
untrusted code can only read
and write untrusted data
segment

• [Wahbe et al. SOSP’93]

Solution II: Software Fault Isolation

App code
segment

Untrusted code
segment

process

Untrusted data
segment

App data
segment

Untrusted code
can read/write
untrusted data

0x1a000000

0x1affffff

0x1effffff

0xda000000

0xdaffffff

0x1e000000

0x1cffffff

0x1c000000

SFI: basic idea
f00: nop

f04: nop

f08: nop

f0c: nop

f10: nop

f14: sw $t3, 0($t4)

f18: nop

SFI: basic idea
f00: nop

f04: nop

f08: nop

f0c: nop

f10: sandbox $t4

f14: sw $t3, 0($t4)

f18: nop

SFI: basic idea
f00: nop

f04: nop

f08: nop

f0c: and $t4, $t4, 0x00ffffff

f10: or $t4, $t4, 0xda000000

f14: sw $t3, 0($t4)

f18: nop

SFI: basic idea
f00: nop

f04: jr $t5

f08: nop

f0c: and $t4, $t4, 0x00ffffff

f10: or $t4, $t4, 0xda000000

f14: sw $t3, 0($t4)

f18: nop

SFI: basic idea
f00: nop

f04: jr $t5

f08: nop

f0c: and $s4, $t4, $s1

f10: or $s4, $s4, $s2

f14: sw $t3, 0($s4)

f18: nop

Invariants:
$s1 = 0x00ffffff

$s2 = 0xda000000

$s4 = 0xda******

Cross domain calls
caller

domain
callee

domain

call draw draw:

return

call stub

br addr
br addr
br addr

ret stub

• Only stubs allowed to make cross-domain jumps

• Jump table contains allowed exit points

– Addresses are hard coded, read-only segment

br addr
br addr
br addr

SFI and CISC

• The classic SFI approach only works for RISC-
style aligned instructions

• Inapplicable to important CISC architectures
like x86(-64)

CISC challenge: overlapping instructions

• Processor can jump to any byte

CISC challenge: overlapping instructions

CISC challenge: overlapping instructions

More recently: Google Native Client

• Goal: make a web browser plugins as safe as
JavaScript

– But with the speed of machine code

• Uses SFI alignment approach

– With variations for x86, ARM, x86-64

• Shipped in Google Chrome browser

NaCl: a modern day example

• game: untrusted x86 code

• Two sandboxes:

– outer sandbox: restricts capabilities using system call interposition

– Inner sandbox: uses x86 memory segmentation to isolate
 application memory among apps

Browser

HTML
JavaScript

NPAPI

NaCl runtime

game

Isolation: summary
• Many sandboxing techniques:

 Physical air gap, Virtual air gap (VMMs),

 System call interposition, Software Fault isolation

 Application specific (e.g. Javascript in browser)

• Often complete isolation is inappropriate

– Apps need to communicate through regulated interfaces

• Hardest aspects of sandboxing:

– Specifying policy: what can apps do and not do

– Preventing covert channels

