
Dawn Song

 Software Security: Vulnerability Analysis

Computer Security Course. Dawn Song

Dawn Song

Program Verification

Dawn Song

Program Verification

● How to prove a program free of buffer overflows?
● Precondition
● Postcondition
● Loop invariants

Dawn Song

Precondition
● Precondition for f() is an

assertion (a logical proposition)
that must hold at input to f()
● If any precondition is not met, f()

may not behave correctly
● Callee may freely assume

obligation has been met
● The concept similarly holds for

any statement or block of
statements

f(x)

Precondition:

φ(x)

Postcondition:

ψ

Dawn Song

Precondition Example

● Precondition:
● fp points to a valid location

in memory
● fp points to a file
● the file that fp points to

contains at least 4
characters

 1:int parse(FILE *fp) {
 2: char cmd[256], *url, buf[5];
 3: fread(cmd, 1, 256, fp);
 4: int i, header_ok = 0;
 5: if (cmd[0] == ‘G’)
 6: if (cmd[1] == ‘E’)
 7: if (cmd[2] == ‘T’)
 8: if (cmd[3] == ‘ ’)
 9: header_ok = 1;
10: if (!header_ok) return -1;
11: url = cmd + 4;
12: i=0;
13: while (i<5 && url[i]!=‘\0’ && url[i]!=‘\n’) {
14: buf[i] = tolower(url[i]);
15: i++;
16: }
17: buf[i] = ‘\0’;
18: printf(“Location is %s\n”, buf);
19: return 0; }

f(x)

φ(x)

ψ

Dawn Song

Postcondition

● Postcondition for f()
● An assertion that holds when f()

returns

● f() has obligation of ensuring
condition is true when it returns

● Caller may assume postcondition

has been established by f()

f(x)

Precondition:

φ(x)

Postcondition:

ψ

Dawn Song

Postcondition Example

 1:int parse(FILE *fp) {
 2: char cmd[256], *url, buf[5];
 3: fread(cmd, 1, 256, fp);
 4: int i, header_ok = 0;
 5: if (cmd[0] == ‘G’)
 6: if (cmd[1] == ‘E’)
 7: if (cmd[2] == ‘T’)
 8: if (cmd[3] == ‘ ’)
 9: header_ok = 1;
10: if (!header_ok) return -1;
11: url = cmd + 4;
12: i=0;
13: while (i<5 && url[i]!=‘\0’ && url[i]!=‘n’) {
14: buf[i] = tolower(url[i]);
15: i++;
16: }
17: buf[i] = ‘\0’;
18: printf(“Location is %s\n”, buf);
18: return 0; }

● Postcondition:
● buf contains no uppercase letters

● (return 0) ⇒(cmd[0..3] == “GET “)

f(x)

φ(x)

ψ

Dawn Song

Proving Precondition ⇒ Postcondition

● Given preconditions and
postconditions
● Specifying what obligations caller has

and what caller is entitled to rely upon

● Verify: No matter how function is
called,
● if precondition is met at function’s

entrance,
● then postcondition is guaranteed to

hold upon function’s return

f(x)

Precondition:

φ(x)

Postcondition:

ψ

⇒

Dawn Song

Proving Precondition ⇒ Postcondition

● Basic idea:
● Write down a precondition and postcondition for every line

of code
● Use logical reasoning

● Requirement:
● Each statement’s postcondition must match (imply)

precondition of any following statement
● At every point between two statements, write down

invariant that must be true at that point
● Invariant is postcondition for preceding statement, and

precondition for next one

f(x)

φ(x)

ψ
⇒

Dawn Song

We’ll take our running example, fix the bug, and show that we can
successfully prove that the bug no longer exists.

 1:int parse(FILE *fp) {
 2: char cmd[256], *url, buf[5];
 3: fread(cmd, 1, 256, fp);
 4: int i, header_ok = 0;
 5: if (cmd[0] == ‘G’)
 6: if (cmd[1] == ‘E’)
 7: if (cmd[2] == ‘T’)
 8: if (cmd[3] == ‘ ’)
 9: header_ok = 1;
10: if (!header_ok) return -1;
11: url = cmd + 4;
12: i=0;
13: while (i<5 && url[i]!=‘\0’ && url[i]!=‘n’) {
14: buf[i] = tolower(url[i]);
15: i++;
16: }
17: assert(i>=0 && i <5);
18: buf[i] = ‘\0’;
19: printf(“Location is %s\n”, buf);
20: return 0; }

f(x)

φ(x)

ψ

 1:int parse(FILE *fp) {
 2: char cmd[256], *url, buf[5];
 3: fread(cmd, 1, 256, fp);
 4: int i, header_ok = 0;
 5: if (cmd[0] == ‘G’)
 6: if (cmd[1] == ‘E’)
 7: if (cmd[2] == ‘T’)
 8: if (cmd[3] == ‘ ’)
 9: header_ok = 1;
10: if (!header_ok) return -1;
11: url = cmd + 4;
12: i=0;
13: while (i<4 && url[i]!=‘\0’ && url[i]!=‘n’) {
14: buf[i] = tolower(url[i]);
15: i++;
16: }
17: assert(i>=0 && i <5);
18: buf[i] = ‘\0’;
19: printf(“Location is %s\n”, buf);
20: return 0; }

Bug Fixed!

F
T

TF

i = 0;

buf[i] = ‘\0’;CRASH!

assert(i>=0 && i<5);

i++;

is(i<5 && url[i]!=‘\0’ && url[i]!=‘\n’)?

F
T

TF

i = 0;

buf[i] = ‘\0’;CRASH!

assert(i>=0 && i<5);

i++;

is(i<4 && url[i]!=‘\0’ && url[i]!=‘\n’)?

Dawn Song

We’ll take our running example, fix the bug, and show that we can

successfully prove that the bug no longer exists… f(x)

φ(x)

ψ

 1:int parse(FILE *fp) {
 2: char cmd[256], *url, buf[5];
 3: fread(cmd, 1, 256, fp);
 4: int i, header_ok = 0;
 5: if (cmd[0] == ‘G’)
 6: if (cmd[1] == ‘E’)
 7: if (cmd[2] == ‘T’)
 8: if (cmd[3] == ‘ ’)
 9: header_ok = 1;
10: if (!header_ok) return -1;
11: url = cmd + 4;
12: i=0;
13: while (i<4 && url[i]!=‘\0’ && url[i]!=‘n’) {
14: buf[i] = tolower(url[i]);
15: i++;
16: }
17: buf[i] = ‘\0’;
18: printf(“Location is %s\n”, buf);
18: return 0; }

…So assuming fp points to a file that begins
with “GET “, we want to show that parse
never goes down the false assertion path.

…But first, we will need the concept of loop invariant.

F
T

TF

buf[i] = ‘\0’;CRASH!

assert(i>=0 && i<5);

i++;

is(i<4 && url[i]!=‘\0’ && url[i]!=‘\n’)?

i = 0;

Dawn Song

Loop Invariant and Induction
● An assertion that is true at entrance to the loop, on

any path through the code
● Must be true before every loop iteration

● Both a pre- and post-condition for the loop body

F

T

i = 0;

buf[i] = tolower(url[i]);

i++;

is(i<5 && url[i]!=‘\0’ && url[i]!=‘\n’)?

A

C

B
φ(i)

φ(i+1)

φ(i) φ(i+1)

Dawn Song

Loop Invariant and Induction

● To verify:
● Base Case: Prove true for first iteration: φ(0)
● Inductive step: Assume φ(i) at the beginning of the loop. Prove φ(i+1)

at the start of the next iteration.

φ(i) φ(i+1)

Dawn Song

Try with our familiar example, proving that (0≤i<5) after the loop terminates:

LOOP INVARIANT: /* φ(i) = (0≤i<5) */

φ(i) φ(i+1)

/* φ(0) = (0≤0<5) */
Base Case:

Inductive Step:

/* ⇒ (0≤i+1<5) at the end of the loop
*/

/* spp(0≤i<5) at the beginning of the loop
*/
/* for (0≤i<4), clearly (0≤i+1<5)
*/
/* (i=5) is not a possible case since
 that would fail the looping predicate
*/

F
T

TF

i = 0;

buf[i] = ‘\0’;CRASH!

assert(i>=0 && i<5);

i++;

is(i<4 && url[i]!=‘\0’ && url[i]!=‘\n’)?

/* ⇒ parse never fails the assertion
*/

Dawn Song

Function Post-/Pre-Conditions

● For every function call, we have to verify that its
precondition will be met
● Then we can conclude its postcondition holds and use this fact

in our reasoning

● Annotating every function with pre- and post-conditions
enables modular reasoning
● Can verify function f() by looking at only its code and the

annotations on every function f() calls
● Can ignore code of all other functions and functions called transitively

● Makes reasoning about f() an almost purely local activity

Dawn Song

Documentation
● Pre-/post-conditions serve as useful documentation

● To invoke Bob’s code, Alice only has to look at pre- and

post-conditions – she doesn’t need to look at or understand
his code

● Useful way to coordinate activity between multiple
programmers:
● Each module assigned to one programmer, and pre-/post-

conditions are a contract between caller and callee
● Alice and Bob can negotiate the interface (and

responsibilities) between their code at design time

Dawn Song

Avoiding Security Holes
● To avoid security holes (or program crashes)

● Some implicit requirements code must meet
● Must not divide by zero, make out-of-bounds memory

accesses, or deference null ptrs, …
● Prove that code meets these requirements using

same style of reasoning
● Ex: when a pointer is dereferenced, there is an implicit

precondition that pointer is non-null and in-bounds

Dawn Song

Avoiding Security Holes

● Proving absence of buffer overruns might be much more difficult
● Depends on how code is structured

● Instead of structuring your code so that it is hard to provide a
proof of no buffer overruns, restructure it to make absence of
buffer overruns more evident

● Lots of research into automated theorem provers to try to
mathematically prove validity of alleged pre-/post-conditions
● Or to help infer such invariants

Dawn Song

Report Type Line

1 stack oflow 324

2 buffer oflow 8,491

3 buffer oflow 23,212

4 mem leak 86,923

5 unsafe indexing
op

5,393,245

… … …

12,002 info leak 10,921

Program Analyzers

Code

Program
Analyzer

Spec

potentially
reports many
warnings

may emit
false alarms

analyze large
code bases

false alarm

false alarm

Dawn Song

Soundness, Completeness
Property Definition

Soundness If the program contains an error, the
analysis will report a warning.
“Sound for reporting correctness”

Completeness If the analysis reports an error, the
program will contain an error.
“Complete for reporting correctness”

Dawn Song

Complete Incomplete
So

u
n

d
U

n
so

u
n

d

Reports all errors
Reports no false alarms

Reports all errors
May report false alarms

Undecidable Decidable

Decidable

May not report all errors
May report false alarms

Decidable

May not report all errors
Reports no false alarms

(Ex: Symbolic Execution) (Ex: Syntactic Analysis)

(Ex: Abstract Interpretation)(Ex: Manual Program Verification)

Dawn Song

Isolation and Reference Monitor

Slide credit: Dan Boneh

Dawn Song

Running untrusted code
We often need to run buggy/untrusted code:

● programs from untrusted Internet sites:

● toolbars, viewers, codecs for media player
● old or insecure applications: ghostview, outlook

● legacy daemons: sendmail, bind

● Honeypots

● Goal: ensure misbehaving app cannot harm rest of system

● Approach: Confinement

● Can be implemented at many different levels

Dawn Song

Confinement (I): Hardware
● Hardware: run application on isolated hw (air gap)

air gap network 1Network 2

app 1 app 2

Dawn Song

Confinement (II): Firewall
● Firewall: isolate internal network from the Internet

Dawn Song

Confinement (III): VM
● Virtual machines: isolate OS’s on a single machine

Virtual Machine Monitor (VMM)

OS
1

OS
2

app1 app2

Dawn Song

Confinement (IV): Processes

● Processes:
● Isolate a process in a single operating system
● System Call Interposition

Operating System

process 2

process 1

Dawn Song

Confinement (V): SFI
● Threads: Software Fault Isolation (SFI)

● Isolating threads sharing same address space

Dawn Song

Implementing confinement: Reference Monitor

Key properties:

● Mediates requests from applications
● Implements protection policy
● Enforces isolation and confinement

● Must always be invoked (complete mediation)
● Every application request must be mediated

● Tamperproof/fail safe
● Reference monitor cannot be killed
● or if killed, then monitored process cannot accessing anything requiring

reference monitor’s approval
● Small enough to be analyzed and validated

