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Basic idea: Isolation

A Seaman's Pocket-Book, 1943        (public domain)
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Principles of Secure Design

● Compartmentalization
● Isolation
● Principle of least privilege

● Defense in depth
● Use more than one security mechanism
● Secure the weakest link
● Fail securely

● Keep it simple
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Principle of Least Privilege

● Privilege
● Ability to access or modify a resource

● Principle of Least Privilege
● A system module should only have the minimal 

privileges needed for intended purposes

● Requires compartmentalization and isolation
● Separate the system into independent modules 
● Limit interaction between modules
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Monolithic design
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Which of these are privileges that allow one 
component to affect another component or system?

Send a message on the network

Add two numbers stored in two local variables

Call a function defined in the same component

Call a function defined in a different component
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Example: Mail Agents

● Requirements
● Receive and send email over external network
● Place incoming email into local user inbox files

● Sendmail
● Traditional Unix 
● Monolithic design
● Historical source of many vulnerabilities

● Qmail
● Component design
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Qmail design

● Isolation
● Separate modules run as separate “users”
● Each user only has access to specific resources

● Least privilege
● Each module has least privileges necessary
● Only one “setuid” program

● setuid allows a program to run as different users
● Only one “root” program

● root program has all privileges
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Structure of qmail
qmail-
smtpd

qmail-
local

qmail-
remote

qmail-
lspawn

qmail-
rspawn

qmail-
send

qmail-
inject

qmail-
queue

Incoming external mail Incoming internal mail
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Structure of qmail
qmail-
smtpd

qmail-
local

qmail-
remote

qmail-
lspawn

qmail-
rspawn

qmail-
send

qmail-
inject

qmail-
queueSplits mail msg into 3 files

● Message contents
● 2 copies of header, etc.

Signals qmail-send
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Structure of qmail
qmail-
smtpd

qmail-
local

qmail-
remote

qmail-
lspawn

qmail-
rspawn

qmail-
send

qmail-
inject

qmail-
queue  qmail-send signals

● qmail-lspawn if local
● qmail-remote if remote
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Structure of qmail
qmail-
smtpd

qmail-
local

qmail-
lspawn

qmail-
send

qmail-
inject

qmail-
queue

qmail-lspawn
● Spawns qmail-local 
● qmail-local runs with ID of user 

receiving local mail
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Structure of qmail
qmail-
smtpd

qmail-
local

qmail-
lspawn

qmail-
send

qmail-
inject

qmail-
queue

qmail-local
● Handles alias expansion
● Delivers local mail
● Calls qmail-queue if needed
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Structure of qmail
qmail-
smtpd

qmail-
remote

qmail-
rspawn

qmail-
send

qmail-
inject

qmail-
queue

qmail-remote
● Delivers message to remote MTA
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Isolation by Unix UIDs

qmail-
smtpd

qmail-
local

qmail-
remote

qmail-
lspawn

qmail-
rspawn

qmail-
send

qmail-
inject

qmail-
queue

qmaild
user

qmailq

qmailsqmailr

qmailr

root

user
setuid user

qmailq – user who is allowed to read/write mail queue
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Least privilege
qmail-
smtpd

qmail-
local

qmail-
remote

qmail-
lspawn

qmail-
rspawn

qmail-
send

qmail-
inject

qmail-
queue

root

setuid
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Access Control & Capabilities
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Access control 
● Assumptions

● System knows who the user is
● Authentication via name and password, other credential 

● Access requests pass through gatekeeper (reference monitor)
● System must not allow monitor to be bypassed

Resource
User 

process

Reference
monitor

access request

policy

?
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Access control matrix    [Lampson]

File 1 File 2 File 3 … File n

User 1 read write - - read

User 2 write write write - -

User 3 - - - read read

…

User m read write read write read

Subject
s

Object
s



Dawn Song

Two implementation concepts

● Access control list (ACL)
● Store column of matrix 

   with the resource

● Capability
● User holds a “ticket” for 

   each resource

● Two variations
● store row of matrix with user, under OS control
● unforgeable ticket in user space

File 1 File 2 …

User 1 read write -

User 2 write write -

User 3 - - read

…

User m Read write write

Access control lists are widely used, often with groups

Some aspects of capability concept are used in many systems
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ACL vs Capabilities

● Access control list
● Associate list with each object
● Check user/group against list
● Relies on authentication: need to know user

● Capabilities
● Capability is unforgeable ticket

● Random bit sequence, or managed by OS
● Can be passed from one process to another

● Reference monitor checks ticket
● Does not need to know identify of user/process
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ACL vs Capabilities

Process P
User U

Process Q

User U

Process R

User U

Process P

Capabilty c,d,e

Process Q

Process R

Capabilty c

Capabilty c,e
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ACL vs Capabilities

● Delegation
● Cap: Process can pass capability at run time
● ACL: Try to get owner to add permission to list?

● More common: let other process act under current user

● Revocation
● ACL: Remove user or group from list
● Cap: Try to get capability back from process?

● Possible in some systems if appropriate bookkeeping
● OS knows which data is capability
● If capability is used for multiple resources, have to revoke all or none …

● Indirection: capability points to pointer to resource
● If C → P → R, then revoke capability C by setting P=0
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Roles  (also called Groups)

● Role = set of users
● Administrator, PowerUser, User, Guest
● Assign permissions to roles; each user gets permission

● Role hierarchy
● Partial order of roles
● Each role gets

permissions of roles below

● List only new permissions

   given to each role

Administrator

Guest

PowerUser

User
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Role-Based Access Control

Individuals Roles Resources

engineering

marketing

human res

Server 1

Server 3

Server 2

Advantage: user’s change more frequently than roles
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Information flow

High security

Low security

High security

Low security

inputs

inputs

outputs

outputs

Process
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Security Architecture Examples



Dawn Song

Unix access control

● File has access control list (ACL)
● Grants permission to user ids
● Owner, group, other

● Process has user id
● Inherit from creating process
● Process can change id

● Restricted set of options

● Special “root” id 
● Bypass access control restrictions

File 1 File 2 …

User 1 read write -

User 2 write write -

User 3 - - read

…

User m Read write write
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Unix file access control list

● Each file has owner and group
● Permissions set by owner

● Read, write, execute
● Owner, group, other
● Represented by vector of

   four octal values

● Only owner, root can change permissions
● This privilege cannot be delegated or shared

● Setid bits – Discuss in a few slides

rwx rwxrwx-
ownr grp othr

setid
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Question

● Owner can have fewer privileges than other
● What happens?

● Owner gets access?
● Owner does not?

Prioritized resolution of differences
    if user = owner then owner  permission
           else if user in group then group  permission
                  else other  permission
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Privileged Programs
● Privilege management is coarse-grained in today’s OS

● Root can do anything

● Many programs run as root
● Even though they only need to perform a small number of 

priviledged operations

● What’s the problem?
● Privileged programs are juicy targets for attackers
● By finding a bug in parts of the program that do not need 

privilege, attacker can gain root
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What Can We Do?
● Drop privilege as soon as possible
● Ex: a network daemon only needs privilege to bind to low 

port # (<1024) at the beginning
● Solution?
● Drop privilege right after binding the port

● What benefit do we gain?
● Even if attacker finds a bug in later part of the code, can’t gain 

privilege any more

● How to drop privilege?
● Setuid programming in UNIX 
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Unix file permission
● Each file has owner and group
● Permissions set by owner

● Read, write, execute
● Owner, group, other
● Represented by vector of

   four octal values

● Only owner, root can change permissions
● This privilege cannot be delegated or shared

● Setid bits

rwx rwxrwx-
ownr grp othr

setid
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Effective user id (EUID) in UNIX

● Each process has three Ids  
● Real user ID       (RUID)

● same as the user ID of parent (unless changed)
● used to determine which user started the process 

● Effective user ID  (EUID)

● from set user ID bit on the file being executed, or sys call
● determines the permissions for process

● file access and port binding

● Saved user ID     (SUID)

● So previous EUID can be restored

● Real group ID, effective group ID, used similarly 
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Operations on UIDs
● Root

● ID=0 for superuser root; can access any file

● Fork and Exec
● Inherit three IDs, except exec of file with setuid bit

● Setuid system calls  
● seteuid(newid) can set EUID to

● Real ID or saved ID, regardless of current EUID
● Any ID, if EUID=0

● Details are actually more complicated
● Several different calls: setuid, seteuid, setreuid
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Setid bits on executable Unix file
● Three setid bits

● Setuid – set EUID of process to ID of file owner
● Setgid – set EGID of process to GID of file
● Sticky

● Off: if user has write permission on directory, can rename or remove files, 
even if not owner

● On: only file owner, directory owner, and root can rename or remove file in 
the directory

rwx rwxrwx-
ownr grp othr

setid
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Drop Privilege

…;
…;
exec(  );

RUID 25 SetUID

program

…;
…;
i=getruid()
setuid(i);
…;
…;

RUID 25
EUID 18

RUID 25
EUID 25

-rw-r--r--
file

-rw-r--r--
file

Owner 18

Owner 25

read/write

read/write

Owner 18


