Computer Security Course. Dawn Song

Secure Architecture Principles

Slides credit: John Mitchell

Basic idea: Isolation

THWARTSHIP
: BULKHE ADS
\.{H
~ _
L
L \-.
FORE AND AFT
BULKHEADS.,

A Seaman's Pocket-Book, 1943 (public domain)

Dawn Song

el THAE MR A Al
SE0000 0 Donpooopoopoegnooa 00000 T

Sanass LS B -

______________ " . o i
:::_.;. ln--ll“;‘ll-r-t-ﬂl-n-_-i-_l-rl_7=: a5 &% - ® B8 : TR :‘:-'-" ‘l:_._.'- g _h_..‘__&_. £ 2
BT T e e TR T RS T e Ve -I_'TTTT-“:I‘;=.';I-!I-_.-]_I! oI-lllﬂE' aenjs & E S - -
LI . s e e L i E R R L]kl
''''' | - ——— o -l—'—'""‘_-l"‘-\'_l. ; !) L1 a =

T - [l AR | o mm =

- \' '; : { I J, | e Lo-feccmm = g [B
i 1 I R : 1 T : I =77 gL I T A

o L W - | L'_‘__.: ‘L.- FIREMANS | PASSAGE JI'
AT P rr T yerrr e e AT T AR TARTA R O Tera M nn e

AT o T oD GOt S B OO A 4 e & G rereeaitd:

G F £ D c B A

BOILER BM. fi4 BOILER BM. #5 BOILER BM. #ié HOLD #= HOLD # HOLD #1 Pk Tk bl

Bulkheads § Compartments in the Bow Section

http://staff.imsa.edu/~esmith/treasurefleet/treasurefleet/watertight compartments.htm

Dawn Song

http://staff.imsa.edu/~esmith/treasurefleet/treasurefleet/watertight_compartments.htm
http://staff.imsa.edu/~esmith/treasurefleet/treasurefleet/watertight_compartments.htm

Principles of Secure Design

o« Compartmentalization
e Isolation
e Principle of least privilege

o Defense in depth
e Use more than one security mechanism
o Secure the weakest link
o Fail securely

o Keep it simple

Principle of Least Privilege

e Privilege
o Ability to access or modify a resource
e Principle of Least Privilege
e A system module should only have the minimal
privileges needed for intended purposes
o Requires compartmentalization and isolation

o Separate the system into independent modules
e Limitinteraction between modules

Monolithic design

Network Network

User input System User device

File system File system

Monolithic design

M/ 4
_ b -

- > <
-

~ “Network
User input

File system

System

Network
User device

File system

Monolithic design

Network Network
§ W
User input »- | . User device
) .y
File system - File system

Dawn Song

Component design

Network < Network
User input < User device
File system File system

Dawn Song

/'3 -
<

“ . < Network

User input

File system

Component design

<
<

Network

User device

File system

Dawn Song

Component design

Network =8 < Network
User input < User device
File system File system

Dawn Song

Which of these are privileges that allow one
component to affect another component or system?

Send a message on the network
Add two numbers stored in two local variables
Call a function defined in the same component

Call a function defined in a different component

Dawn Song

Example: Mail Agents

e Requirements
e Receive and send email over external network
e Place incoming email into local user inbox files
e Sendmail

e Traditional Unix
e Monolithic design
e Historical source of many vulnerabilities

° Qmall
e Component design

Dawn Song

Qmail design

o Isolation

o Separate modules run as separate “users”

o Each user only has access to specific resources
o Least privilege

o Each module has least privileges necessary

e Only one “setuid” program
o setuid allows a program to run as different users

e Only one “root” program
e root program has all privileges

Dawn Song

Structure of gmail

< Incoming external mail Incoming internal m?

gmail-
rspawn

gmail- gmail-
remote local

Dawn Song

Structure of gmail

Splits mail msg into 3 files
« Message contents
« 2 copies of header, etc.
Signals gmail-send

gmail-
rspawn

gmail- gmail-
remote local

Dawn Song

Structure of gmail

gmail-send signals
o gmail-Ispawn if local
o gmail-remote if remote

gmail-
rspawn

gmail- gmail-
remote local

Dawn Song

Structure of gmail

gmail-Ispawn
o Spawns gmail-local

o gmail-local runs with ID of user
receiving local mail

gmail-
local

Dawn Song

Structure of gmail

gmail-local
o Handles alias expansion
o Delivers local mail

« Calls gmail-queue if needed gmail-
—) local

Dawn Song

Structure of gmail

gmail-
rspawn

gmail-
remote =

gmail-remote
o Delivers message to remote MTA

Dawn Song

Isolation by Unix UIDs

gmaild gmailg — user who is allowed to read/write mail queue

gmail- _ gmail- user
gmail-

root

rspawn

setuid user

amailr—gmail- gmail- user
remote local

Dawn Song

Least privilege

rspawn

gmail- gmail-
remote local

Dawn Song

Access Control & Capabilities

nnnnnnnn

e Assumptions

o System knows who the user is
e Authentication via name and password, other credential

Access control

o Access requests pass through gatekeeper (reference monitor)

e System must not allow monitor to be bypassed

User
process

Reference

monitor

access request

>

policy

N
N

Resource

~_

Dawn Song

Subject
S

Access control matrix [Lampson]
Object
— —5— I

File 1 File 2 File 3 File n

User 1 read write - - read

User 2 write write write - -

User 3 - - - read read

User m read write read write read

Dawn Song

Two implementation concepts

File 1 File 2
e Access control list (ACL) User 1 | read write]
e Store column of matrix :)
] User 2 write write -
with the resource
. User 3 - - read
e Capability
e User holds a “ticket” for
each resource User m Read write write

e Two variations
e store row of matrix with user, under OS control
e unforgeable ticket in user space

Access control lists are widely used, often with groups
Some aspects of capability concept are used in many systems

Dawn Song

ACL vs Capabilities

e Access control list

e Associate list with each object

e Check user/group against list

e Relies on authentication: need to know user
o Capabilities

e Capability is unforgeable ticket

e Random bit sequence, or managed by OS
e Can be passed from one process to another

e Reference monitor checks ticket
e Does not need to know identify of user/process

Dawn Song

ACL vs Capabilities

User U

Process P

-

Capabilty c,d,e

User U

Proces

sQ

User U

Process R

Process P)

Capabilty c,e

Process Q

Capabilty c

Process R

Dawn Song

ACL vs Capabilities

o Delegation
o Cap: Process can pass capability at run time
o ACL: Try to get owner to add permission to list?
e More common: let other process act under current user
e Revocation
e ACL: Remove user or group from list

e Cap: Try to get capability back from process?
e Possible in some systems if appropriate bookkeeping
e OS knows which data is capability
o If capability is used for multiple resources, have to revoke all or none ...
e Indirection: capability points to pointer to resource
e IfC— P — R, then revoke capability C by setting P=0

Dawn Song

Roles (also called Groups)

e Role = set of users

e Administrator, PowerUser, User, Guest

e Assign permissions to roles; each user gets permission

e Role hierarchy

e Partial order of roles
e Each role gets

permissions of roles below
e List only new permissions
given to each role

Administrator

PowerUser

User

Guest

Dawn Song

Role-Based Access Control

Individuals Roles Resources
- ==
'“I / engineering > — Server 1
Inl o marketing / 7 Server 2
_§ Server 3

|n| » human res —

Advantage: user’s change more frequently than roles

Dawn Song

Information flow

High security

>
inputs

_— e ———
Low security

>

inputs

Process

High security
>

outputs

W

Low security
>

outputs

Dawn Song

Security Architecture Examples

nnnnnnnn

Unix access control

File has access control list (ACL)
e Grants permission to user ids
e Owner, group, other

Process has user id
e Inherit from creating process

e Process can change id
e Restricted set of options
e Special “root” id
® Bypass access control restrictions

File 1 File 2
User 1 read write -
User 2 write write -
User 3 - - read
User m Read write write

Dawn Song

Unix file access control list

Each file has owner and group

Permissions set by owner Sel“d
e Read, write, execute - WX, T'WX, rwx,
e Owner, group, other ownr ngp othr

o Represented by vector of
four octal values
Only owner, root can change permissions

e This privilege cannot be delegated or shared
Setid bits — Discuss in a few slides

Question

Owner can have fewer privileges than other

e What happens?

e Owner gets access?
e Owner does not?

Prioritized resolution of differences

if user = owner then owner permission
else if user in group then group permission
else other permission

Dawn Song

Privileged Programs

e Privilege management is coarse-grained in today’s OS
e Root can do anything
e Many programs run as root

e Even though they only need to perform a small number of
priviledged operations

e What's the problem?
e Privileged programs are juicy targets for attackers
e By finding a bug in parts of the program that do not need
privilege, attacker can gain root

What Can We Do?

Drop privilege as soon as possible
Ex: a network daemon only needs privilege to bind to low
port # (<1024) at the beginning

e Solution?
e Drop privilege right after binding the port

What benefit do we gain?

o Even if attacker finds a bug in later part of the code, can’t gain
privilege any more

How to drop privilege?

o Setuid programming in UNIX

Unix file permission

Each file has owner and group
Permissions set by owner

e Read, write, execute seltid
o Owner, group, other - WX TWX) FWX
o Represented by vector of ownr gr th

four octal values

Only owner, root can change permissions
e This privilege cannot be delegated or shared

Setid bits

Effective user id (EUID) in UNIX

e Each process has three Ids

e RealuserID (RUID)
e same as the user ID of parent (unless changed)
e used to determine which user started the process
e Effective user ID (EuiD)
e from set user ID bit on the file being executed, or sys call

e determines the permissions for process
e file access and port binding

e SaveduserID (suip)
e So previous EUID can be restored

e Real group ID, effective group ID, used similarly

Dawn Song

Operations on UIDs

Root

e |D=0 for superuser root; can access any file

Fork and Exec

e Inherit three IDs, except exec of file with setuid bit
Setuid system calls

e seteuid(newid) can set EUID to

o Real ID or saved ID, regardless of current EUID
e Any ID, if EUID=0

Details are actually more complicated
e Several different calls: setuid, seteuid, setreuid

Dawn Song

Setid bits on executable Unix file

o Three setid bits
o Setuid —set EUID of process to ID of file owner
o Setgid —set EGID of process to GID of file
o Sticky
o Off: if user has write permission on directory, can rename or remove files,
even if not owner

e On: only file owner, directory owner, and root can rename or remove file in
the directory

seltid

T DAX DX X

ownr grp othr

Dawn Song

Drop P

rivilege

program

i=getruid()

setuid(i);

read/write 5
< o

ey

RUID 25
} EUID 18

RUID 25
v EUID 25

Dawn Song

