
Dawn Song

Secure Architecture Principles

Computer Security Course. Dawn Song

Slides credit: John Mitchell

Dawn Song

Basic idea: Isolation

A Seaman's Pocket-Book, 1943 (public domain)

Dawn Songhttp://staff.imsa.edu/~esmith/treasurefleet/treasurefleet/watertight_compartments.htm

http://staff.imsa.edu/~esmith/treasurefleet/treasurefleet/watertight_compartments.htm
http://staff.imsa.edu/~esmith/treasurefleet/treasurefleet/watertight_compartments.htm

Dawn Song

Principles of Secure Design

● Compartmentalization
● Isolation
● Principle of least privilege

● Defense in depth
● Use more than one security mechanism
● Secure the weakest link
● Fail securely

● Keep it simple

Dawn Song

Principle of Least Privilege

● Privilege
● Ability to access or modify a resource

● Principle of Least Privilege
● A system module should only have the minimal

privileges needed for intended purposes

● Requires compartmentalization and isolation
● Separate the system into independent modules
● Limit interaction between modules

Dawn Song

Monolithic design

System

Network

User input

File system

Network

User device

File system

Dawn Song

Monolithic design

System

Network

User input

File system

Network

User device

File system

Dawn Song

Monolithic design

System

Network

User input

File system

Network

User device

File system

Dawn Song

Component design

Network

User input

File system

Network

User device

File system

Dawn Song

Component design

Network

User input

File system

Network

User device

File system

Dawn Song

Component design

Network

User input

File system

Network

User device

File system

Dawn Song

Which of these are privileges that allow one
component to affect another component or system?

Send a message on the network

Add two numbers stored in two local variables

Call a function defined in the same component

Call a function defined in a different component

Dawn Song

Example: Mail Agents

● Requirements
● Receive and send email over external network
● Place incoming email into local user inbox files

● Sendmail
● Traditional Unix
● Monolithic design
● Historical source of many vulnerabilities

● Qmail
● Component design

Dawn Song

Qmail design

● Isolation
● Separate modules run as separate “users”
● Each user only has access to specific resources

● Least privilege
● Each module has least privileges necessary
● Only one “setuid” program

● setuid allows a program to run as different users
● Only one “root” program

● root program has all privileges

Dawn Song

Structure of qmail
qmail-
smtpd

qmail-
local

qmail-
remote

qmail-
lspawn

qmail-
rspawn

qmail-
send

qmail-
inject

qmail-
queue

Incoming external mail Incoming internal mail

Dawn Song

Structure of qmail
qmail-
smtpd

qmail-
local

qmail-
remote

qmail-
lspawn

qmail-
rspawn

qmail-
send

qmail-
inject

qmail-
queueSplits mail msg into 3 files

● Message contents
● 2 copies of header, etc.

Signals qmail-send

Dawn Song

Structure of qmail
qmail-
smtpd

qmail-
local

qmail-
remote

qmail-
lspawn

qmail-
rspawn

qmail-
send

qmail-
inject

qmail-
queue qmail-send signals

● qmail-lspawn if local
● qmail-remote if remote

Dawn Song

Structure of qmail
qmail-
smtpd

qmail-
local

qmail-
lspawn

qmail-
send

qmail-
inject

qmail-
queue

qmail-lspawn
● Spawns qmail-local
● qmail-local runs with ID of user

receiving local mail

Dawn Song

Structure of qmail
qmail-
smtpd

qmail-
local

qmail-
lspawn

qmail-
send

qmail-
inject

qmail-
queue

qmail-local
● Handles alias expansion
● Delivers local mail
● Calls qmail-queue if needed

Dawn Song

Structure of qmail
qmail-
smtpd

qmail-
remote

qmail-
rspawn

qmail-
send

qmail-
inject

qmail-
queue

qmail-remote
● Delivers message to remote MTA

Dawn Song

Isolation by Unix UIDs

qmail-
smtpd

qmail-
local

qmail-
remote

qmail-
lspawn

qmail-
rspawn

qmail-
send

qmail-
inject

qmail-
queue

qmaild
user

qmailq

qmailsqmailr

qmailr

root

user
setuid user

qmailq – user who is allowed to read/write mail queue

Dawn Song

Least privilege
qmail-
smtpd

qmail-
local

qmail-
remote

qmail-
lspawn

qmail-
rspawn

qmail-
send

qmail-
inject

qmail-
queue

root

setuid

Dawn Song

Access Control & Capabilities

Dawn Song

Access control
● Assumptions

● System knows who the user is
● Authentication via name and password, other credential

● Access requests pass through gatekeeper (reference monitor)
● System must not allow monitor to be bypassed

Resource
User

process

Reference
monitor

access request

policy

?

Dawn Song

Access control matrix [Lampson]

File 1 File 2 File 3 … File n

User 1 read write - - read

User 2 write write write - -

User 3 - - - read read

…

User m read write read write read

Subject
s

Object
s

Dawn Song

Two implementation concepts

● Access control list (ACL)
● Store column of matrix

 with the resource

● Capability
● User holds a “ticket” for

 each resource

● Two variations
● store row of matrix with user, under OS control
● unforgeable ticket in user space

File 1 File 2 …

User 1 read write -

User 2 write write -

User 3 - - read

…

User m Read write write

Access control lists are widely used, often with groups

Some aspects of capability concept are used in many systems

Dawn Song

ACL vs Capabilities

● Access control list
● Associate list with each object
● Check user/group against list
● Relies on authentication: need to know user

● Capabilities
● Capability is unforgeable ticket

● Random bit sequence, or managed by OS
● Can be passed from one process to another

● Reference monitor checks ticket
● Does not need to know identify of user/process

Dawn Song

ACL vs Capabilities

Process P
User U

Process Q

User U

Process R

User U

Process P

Capabilty c,d,e

Process Q

Process R

Capabilty c

Capabilty c,e

Dawn Song

ACL vs Capabilities

● Delegation
● Cap: Process can pass capability at run time
● ACL: Try to get owner to add permission to list?

● More common: let other process act under current user

● Revocation
● ACL: Remove user or group from list
● Cap: Try to get capability back from process?

● Possible in some systems if appropriate bookkeeping
● OS knows which data is capability
● If capability is used for multiple resources, have to revoke all or none …

● Indirection: capability points to pointer to resource
● If C → P → R, then revoke capability C by setting P=0

Dawn Song

Roles (also called Groups)

● Role = set of users
● Administrator, PowerUser, User, Guest
● Assign permissions to roles; each user gets permission

● Role hierarchy
● Partial order of roles
● Each role gets

permissions of roles below

● List only new permissions

 given to each role

Administrator

Guest

PowerUser

User

Dawn Song

Role-Based Access Control

Individuals Roles Resources

engineering

marketing

human res

Server 1

Server 3

Server 2

Advantage: user’s change more frequently than roles

Dawn Song

Information flow

High security

Low security

High security

Low security

inputs

inputs

outputs

outputs

Process

Dawn Song

Security Architecture Examples

Dawn Song

Unix access control

● File has access control list (ACL)
● Grants permission to user ids
● Owner, group, other

● Process has user id
● Inherit from creating process
● Process can change id

● Restricted set of options

● Special “root” id
● Bypass access control restrictions

File 1 File 2 …

User 1 read write -

User 2 write write -

User 3 - - read

…

User m Read write write

Dawn Song

Unix file access control list

● Each file has owner and group
● Permissions set by owner

● Read, write, execute
● Owner, group, other
● Represented by vector of

 four octal values

● Only owner, root can change permissions
● This privilege cannot be delegated or shared

● Setid bits – Discuss in a few slides

rwx rwxrwx-
ownr grp othr

setid

Dawn Song

Question

● Owner can have fewer privileges than other
● What happens?

● Owner gets access?
● Owner does not?

Prioritized resolution of differences
 if user = owner then owner permission
 else if user in group then group permission
 else other permission

Dawn Song

Privileged Programs
● Privilege management is coarse-grained in today’s OS

● Root can do anything

● Many programs run as root
● Even though they only need to perform a small number of

priviledged operations

● What’s the problem?
● Privileged programs are juicy targets for attackers
● By finding a bug in parts of the program that do not need

privilege, attacker can gain root

Dawn Song

What Can We Do?
● Drop privilege as soon as possible
● Ex: a network daemon only needs privilege to bind to low

port # (<1024) at the beginning
● Solution?
● Drop privilege right after binding the port

● What benefit do we gain?
● Even if attacker finds a bug in later part of the code, can’t gain

privilege any more

● How to drop privilege?
● Setuid programming in UNIX

Dawn Song

Unix file permission
● Each file has owner and group
● Permissions set by owner

● Read, write, execute
● Owner, group, other
● Represented by vector of

 four octal values

● Only owner, root can change permissions
● This privilege cannot be delegated or shared

● Setid bits

rwx rwxrwx-
ownr grp othr

setid

Dawn Song

Effective user id (EUID) in UNIX

● Each process has three Ids
● Real user ID (RUID)

● same as the user ID of parent (unless changed)
● used to determine which user started the process

● Effective user ID (EUID)

● from set user ID bit on the file being executed, or sys call
● determines the permissions for process

● file access and port binding

● Saved user ID (SUID)

● So previous EUID can be restored

● Real group ID, effective group ID, used similarly

Dawn Song

Operations on UIDs
● Root

● ID=0 for superuser root; can access any file

● Fork and Exec
● Inherit three IDs, except exec of file with setuid bit

● Setuid system calls
● seteuid(newid) can set EUID to

● Real ID or saved ID, regardless of current EUID
● Any ID, if EUID=0

● Details are actually more complicated
● Several different calls: setuid, seteuid, setreuid

Dawn Song

Setid bits on executable Unix file
● Three setid bits

● Setuid – set EUID of process to ID of file owner
● Setgid – set EGID of process to GID of file
● Sticky

● Off: if user has write permission on directory, can rename or remove files,
even if not owner

● On: only file owner, directory owner, and root can rename or remove file in
the directory

rwx rwxrwx-
ownr grp othr

setid

Dawn Song

Drop Privilege

…;
…;
exec();

RUID 25 SetUID

program

…;
…;
i=getruid()
setuid(i);
…;
…;

RUID 25
EUID 18

RUID 25
EUID 25

-rw-r--r--
file

-rw-r--r--
file

Owner 18

Owner 25

read/write

read/write

Owner 18

