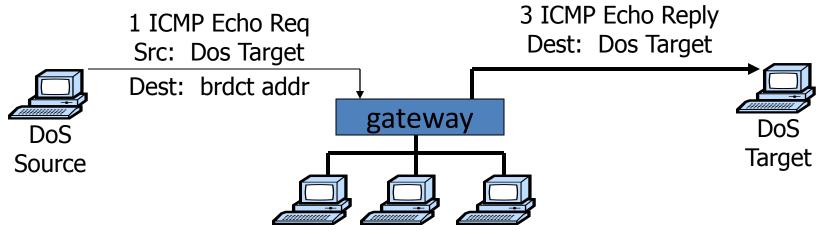
Dan Boneh, John Mitchell, Dawn Song

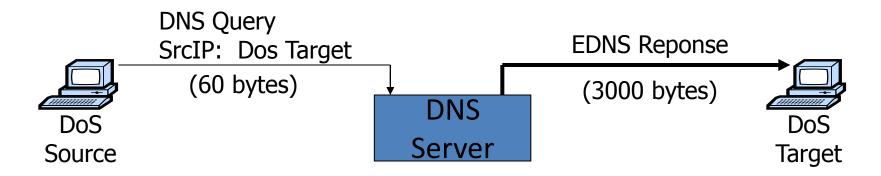
Denial of Service


What is network DoS?

- Goal: take out a large site with little computing work
- How: Amplification
 - Small number of packets \Rightarrow big effect
- Two types of amplification attacks:
 - DoS bug:
 - Design flaw allowing one machine to disrupt a service
 - DoS flood:
 - Command bot-net to generate flood of requests

DoS can happen at any layer

- This lecture:
 - Sample Dos at different layers (by order):
 - Link
 - TCP/UDP
 - Application
 - Payment
 - Generic DoS solutions
 - Network DoS solutions
- Sad truth:
 - Current Internet not designed to handle DDoS attacks

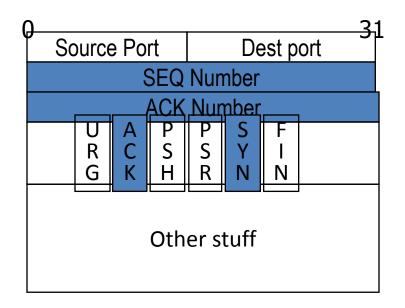

Smurf amplification DoS attack

- Send ping request to broadcast addr (ICMP Echo Req)
- Lots of responses:
 - Every host on target network generates a ping reply (ICMP Echo Reply) to victim
- 4 Prevention: reject external packets to broadcast address

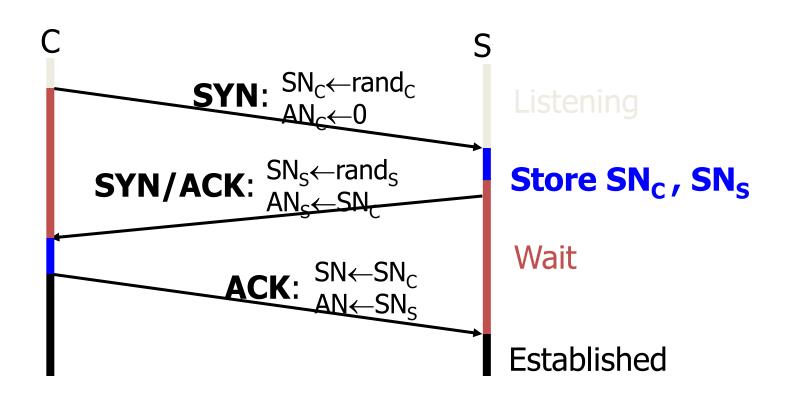
Modern day example (May '06)

DNS Amplification attack: (×50 amplification)

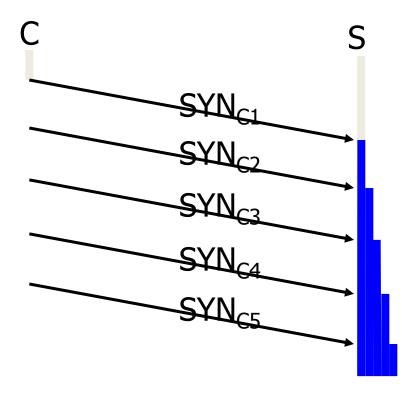
580,000 open resolvers on Internet (Kaminsky-Shiffman' 06)


Review: IP Header format

- Connectionless
 - Unreliable
 - Best effort


0	31	
Version	Header Length	
Type of Service		
Total Length		
	Identification	
Flags	Fragment Offset	
	Time to Live	
Protocol		
Header Checksum		
Source Address of Originating Host		
Destination Address of Target Host		
Options		
Padding		
IP Data		

Review: TCP Header format


- TCP:
 - Session based
 - Congestion control
 - In order delivery

Review: TCP Handshake

TCP SYN Flood I: low rate (DoS bug)

Single machine:

- SYN Packets with random source IP addresses
- Fills up backlog queue on server
- No further connections possible

SYN Floods (phrack 48, no 13, 1996)

OS	Backlog queue size	
Linux 1.2.x	10	
FreeBSD 2.1.5	128	
WinNT 4.0	6	

Backlog timeout: 3 minutes

- \Rightarrow Attacker need only send 128 SYN packets every 3 minutes.
- \Rightarrow Low rate SYN flood

A classic SYN flood example

- <u>MS Blaster worm</u> (2003)
 - Infected machines at noon on Aug 16th:
 - SYN flood on port 80 to **windowsupdate.com**
 - 50 SYN packets every second.
 - each packet is 40 bytes.
 - Spoofed source IP: a.b.X.Y where X,Y random.
- <u>MS solution</u>:
 - new name: windowsupdate.microsoft.com
 - Win update file delivered by Akamai

Low rate SYN flood defenses

• Non-solution:

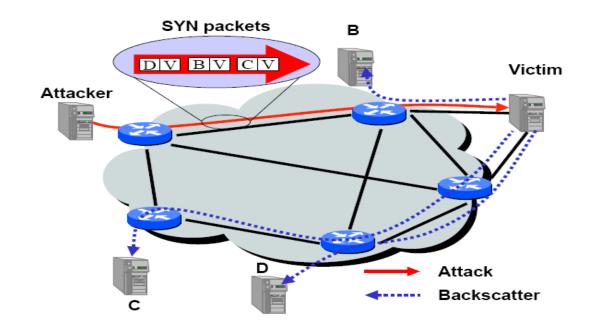
Increase backlog queue size or decrease timeout

- <u>Correct solution</u> (when under attack):
 <u>Syncookies</u>: remove state from server
 - Small performance overhead

Syncookies

[Bernstein, Schenk]

- Idea: use secret key and data in packet to gen. server SN
- Server responds to Client with SYN-ACK cookie:


- T = 5-bit counter incremented every 64 secs.

 $- L = MAC_{kev} (SAddr, SPort, DAddr, DPort, SN_{c}, T)$ [24 bits]

- key: picked at random during boot
- $-SN_{S} = (T.mss.L)$ (|L| = 24 bits)
- Server does not save state (other TCP options are lost)
- Honest client responds with ACK ($AN=SN_s$, $SN=SN_c+1$) - Server allocates space for socket only if valid SN_s .

SYN floods: backscatter [MVS'01]

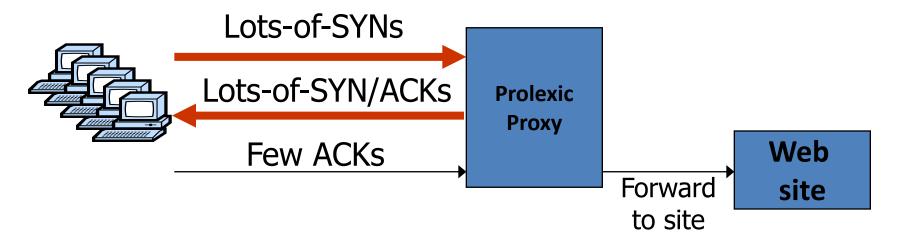
- SYN with forged source IP $\Rightarrow\,$ SYN/ACK to

Backscatter measurement [MVS'01]

• Listen to unused IP addresss space (darknet)

L	/8 network	
0	monitor	2 ³²

- Lonely SYN/ACK packet likely to be result of SYN attack
- 2001: **400** SYN attacks/week
- 2008: 4425 SYN attacks/24 hours (arbor networks ATLAS)
 - Larger experiments: (monitor many ISP darknets)
 - Arbor networks
 - Network telescope (UCSD)


SYN Floods II: Massive flood (e.g BetCris.com '03)

- Command bot army to flood specific target: (DDoS)
 - 20,000 bots can generate 2Gb/sec of SYNs (2003)
 - At web site:
 - Saturates network uplink or network router
 - Random source IP \Rightarrow

attack SYNs look the same as real SYNs

Prolexic

• Idea: only forward established TCP connections to site

• Prolexic capacity: 20Gb/sec link

can handle 40.10^6 SYN/sec

Stronger attacks: TCP connection flood

- Command bot army to:
 - Complete TCP connection to web site
 - Send short HTTP HEAD request
 - Repeat
- Will bypass SYN flood protection proxy
- ... but:
 - Attacker can no longer use random source IPs.
 - Reveals location of bot zombies
 - Proxy can now block or rate-limit bots.

DNS DoS Attacks (e.g. bluesecurity '06)

- DNS runs on UDP port 53

 DNS entry for victim.com hosted at victim_isp.com
- DDoS attack:
 - flood victim_isp.com with requests for victim.com
 - Random source IP address in UDP packets
- Takes out entire DNS server: (collateral damage)
 - bluesecurity DNS hosted at Tucows DNS server
 - DNS DDoS took out Tucows hosting many many sites

Root level DNS attacks

- <u>Feb. 6, 2007</u>:
 - Botnet attack on the 13 Internet DNS root servers
 - Lasted 2.5 hours
 - None crashed, but two performed badly:
 - g-root (DoD), I-root (ICANN)
 - Most other root servers use anycast

Attack in Oct. 2002 took out 9 of the 13 TLD servers

DoS via route hijacking

- YouTube is 208.65.152.0/22 (includes 2¹⁰ IP addr) youtube.com is 208.65.153.238, ...
- Feb. 2008:
 - Pakistan telecom advertised a BGP path for 208.65.153.0/24 (includes 2⁸ IP addr)
 - Routing decisions use most specific prefix
 - The entire Internet now thinks 208.65.153.238 is in Pakistan
- Outage resolved within two hours ... but demonstrates huge DoS vuln. with no solution!