Name:

Question 1 - Listen to what the flower people say (20 points; 30 min.)
You come up with an idea for a cool fractal flower. The idea is to start with a stem (as in Figure 1) which is a line from the bottom center of the window to the middle. Then make a left and right turn and recurse. Figure 3 shows what happens when you do this a couple of times. We've provided draw-half-line:

```
;; Draw a line from (x1,y1) halfway to (x2,y2) as in Figure 4
(define (draw-half-line x1 y1 x2 y2)
    (position-pen x1 yl)
    (draw-line-to (/ (+ x1 x2) 2) (/ (+ y1 y2) 2)))
```


Figure 1
Figure 2
Figure 3
a) Fill in the blanks to complete the flower procedure below. Use Figure 4 to help you understand the temporary variables $\mathrm{xm}, \mathrm{ym}, \mathrm{xL}, \mathrm{yL}, \mathrm{xR}$ and yR. (15 points)

```
(define (flower x1 y1 x2 y2 n)
    (if (= n 0)
        (draw-half-line x1 y1 x2 y2)
        (let ((xm (/ (+ x1 x2) 2))
        (ym (/ (+ y1 y2) 2))
        (xL (/ (- (+ x2 x1 y1) y2) 2)) ;; Do NOT worry about how we
        (yL (/ (- (+ x2 y1 y2) x1) 2)) ;; calculated xL,yL,xR or yR
        (xR (/ (- (+ x2 x1 y2) y1) 2)) ;;
        (yR (/ (- (+ x1 y1 y2) x2) 2))) ;; Simply look at Figure 4
```

\qquad
\qquad
\qquad
b) What was the value of n that generated Figure 3? (3 points) \qquad
C) Modify Figure 3 to show the result of the next generation of f flower (i.e., with n one larger than the correct answer to part (b) above). (2 points)

