
Name: ______________________________________

Page 1 of 4

Question 1 Ð Those clever graphic designers at Sybase¨, Inc. (20Êpts;Ê30Êmin.)
Those of you who have seen the Sybase¨ logo
(shown on the right) realize itÕs really a
fractal in disguise. Your goal is to draw it.
Fortunately, all of the hard math will be done
for us.

First of all, take a careful look at the fractal.
Note that the bold lines on the outside left, top
and right are only drawn once! LetÕs assume
theyÕre taken care of for us and we only have
to draw the inner lines and arcs.

The Sybase¨ Logo

Your friend provided a really nice graphic interface for you to use; instead of
using x and y coordinates, you just use points. The code, as youÕll see, becomes
much cleaner.
;; Look at the figure below for an example
(draw-lineP P1 P2) ;; Draws a line from point P1 to point P2
(draw-arcP P1 P2) ;; Draws a 90º arc from P1 to Pup centered around Pmid
(get-Pmid P1 P2) ;; Return Pmid, a little more than half-way from P1 to P2
(get-Pup P1 P2) ;; Return Pup, a point “above” the P1-P2 line
 ;; such that the triangle P1-Pmid-Pup is a right triangle.

The arc on the right was created with a call to
(draw-arcP P1 P2) . The arc angle is 90¼ and is
drawn from P1 to Pup as if one end of a compass
were at Pmid .

a) Fill in the blanks to complete the sybase
procedure. Use figure to the right to help you
understand the temporary variables Pmid and
Pup. (15 points)

(define (sybase P1 P2 n)
 (if (= n 0)
 (draw-lineP P1 P2)
 (let ((Pmid (get-Pmid P1 P2))
 (Pup (get-Pup P1 P2)))

 ___)))

Psw

Pnw Pne

Pse

Pmid P2

Pup

P1

b) Provide the call to sybase that generated the
fractal in the Sybase¨ logo at the top. Assume
the corner point labels in the diagram are
already defined for us to use. (5 points)

(sybase _____ _____ _____)

Question 5 Ð A ccumulate in treeÕs clothingÉ (20 points; 30 minutes)
A brilliant CS3 student realizes that the
way accumulate walks down a sentence
can be thought of as a tree, just upside-
down! For example, the following call:

(accumulate max ‘(2 3 1))

can be visually depicted as the upside-
down tree on the immediate right with
the bottom-most max as the root, 2 as its
first child, etcÉ When we flip it
rightside-up, we get the tree on the far
right. WeÕll call these specific trees
accumulate-trees, or a-trees for short.
Note that all a-tree inner nodes have
exactly two children.

LetÕs now build the a-tree in the far
upper-right using the tree interface:

(define *max-2-3-1-a-tree*
 (make-tree max
 (list (make-leaf 2)
 (make-tree max
 (make-leaves
 ‘(3 1))))))

max

13

2

max

How the
accumulate calls
to max on (2 3 1)

work.

max

13

2

max

Thinking of the
same accumulate

call as a tree.
Cool, huh?!

;; Recall the tree interface
(define (make-tree datum children)
 (cons datum children))
(define (make-leaf datum)
 (make-tree datum '()))
(define (make-leaves datum-list)
 (map make-leaf datum-list))
(define (datum tree)
 (car tree))
(define (children tree)
 (cdr tree))
(define (leaf? tree)
 (null? (children tree)))

a) If max (typed in by itself to scheme) evaluates to #[procedure max] , what does
scheme return if you just type in *max-2-3-1-a-tree* (as defined above)? (10 pts)

b) These a-trees are quite interesting intellectually, but useless if the desired
result is the value returned by the original accumulate . Your job is to fill in the
blanks (we started it for you) to write a-tree->val , a function that takes in an a-
tree and returns the value that would have been calculated by the original
accumulate . E.g., (a-tree->val *max-2-3-1-a-tree*) è 3. You may assume the
original sentence passed into accumulate had at least 2 words in it. You may
not use begin , eval or apply . We consider this a very hard problem, by far the
hardest on the exam. (10 pts)

(define (a-tree->val a-tree)

 (if (leaf? a-tree)

 (datum a-tree)

 ___))

Question 6 Ð Fractals on the brain (19 points; 30 min)
You loooooove fractals so much that you see them absolutely everywhere you goÉ
even in non-graphic functions like the following:

(define (fun n)
 (if (= n 0)
 '()
 (cons (fun (- n 1))
 (fun (- n 1)))))

a) Given fun as defined above, what does Scheme return if you type: (fun 1) ? (4
pts)

b) Draw the box-and-pointer diagram for (fun 2) . (5 points)

c) How many calls to cons will there be for (fun 5) ? (5 points)

d) In Question 4, you might have noticed you were using data structures
(namely, points) without even being told how they were implemented! In one
word, how were you able to do this? Hint Ð this is one BIG IDEA of the course.
(5 points)

YouÕre done! Have a great summer break!!

