
The Complexity of Accurate Floating Point Computation

or

Can we do Numerical Linear Algebra In Polynomial Time?

James Demmel

Mathematics and Computer Science

UC Berkeley

Joint work with

Plamen Koev, Yozo Hida, Ben Diament

W. Kahan, Ming Gu, Stan Eisenstat, Ivan Slapničar,

Krešimir Veselić, Zlatko Drmač

Supported by NSF and DOE

Goals

• Def: Accurate floating point (FP) computation means
with guaranteed relative error < 1

– 10−2 ≡ 2 digits, 10−16 ≡ 16 digits, ...

– zero must be exact

• Def: Efficient computation of an expression means in time
poly(size of the expression, size of the input)

• Def: CAE means “compute accurately and efficiently”
• Goal: Understand cost of accurate FP computation
– What FP expressions can we CAE?

– Are there FP expressions that we cannot CAE?

– For what structured matrices

(i.e. with FP expressions as entries)

are there matrix computations that we can CAE?

∗ LU, QR, Inv, Pinv, SVD, Eig, ...

Structure of Results (1)

• Classes of FP expressions/matrices that we can CAE depends strongly on
Model of FP Arithmetic

1. Traditional (“1 + δ”) Model (TM for short):

fl(a ⊗ b) = (a ⊗ b)(1 + δ), |δ| ≤ ε � 1

no over/underflow

2. Bit model: inputs are f · 2e, with “large exponents” (LEM for short):

“natural” model for algorithms, analysis

3. Bit model: inputs are f · 2e, with “small exponents” (SEM for short):

integers in disguise, well understood

4. Others have been proposed (not today)

(a) Blum/Shub/Smale

(b) Cucker/Smale

(c) Pour-El/Richards

Structure of Results (2)

• Classes of expressions (matrices) that we can CAE are described by
factorizability properties of expressions (minors of matrices)

TM
⊂
�= LEM

⊂
�=? SEM

• New algorithms can be exponentially faster than conventional algorithms that
just use high enough precision

• Cost(CAE in LEM) ≥ Cost(“symbolic computing“)

• Many recent results (see Koev’s talk too)

Example: 100 by 100 Hilbert Matrix H(i, j) = 1/(i+ j − 1)

• Eigenvalues range from 1 down to 10−150

• Old algorithm, New Algorithm, both in 16 digits

0 10 20 30 40 50 60 70 80 90 100

10
−140

10
−120

10
−100

10
−80

10
−60

10
−40

10
−20

10
0

Singular values of Hilb(100), blue = accurate, red = usual

• D = log(λ1/λn) = log cond(A) (here D = 150 digits)

• Cost of Old algorithm in high enough precision = O(n3D2)

• Cost of New algorithm = O(n3) - independent of cond(A)

Central Role of Minors

• Being able to CAE det(A) is necessary for CAE
– A = LU with pivoting

– A = QR

– Eigenvalues λi of A

– Related factorizations ...

∗ Proof: det(A) = ± ∏
i Uii = ± ∏

i Rii =
∏

i λi = · · ·
• Being able to CAE all minors of A is sufficient for CAE

– A−1

∗ Proof: Cramer’s rule
∗ Only need n2 + 1 minors

– A = LU or A = LDU with pivoting

∗ Proof: Each entry of L, D, U a quotient of minors

∗ Only need O(n2) or O(n3) minors

– Singular values

∗ Proof: Rank-revealing A = LDU , then SVD of LDU

• Similar result for QR, pseudoinverse via

I A

AT 0

, etc.

• Examine which expressions (minors) we can CAE

Accurate SVD of any rank-revealing A = XDY T

• SVD is A = UΣV T

• Many accurate algorithms, here is simplest:
1. Compute SVD of DY T = U1Σ1V

T
1

using one-sided Jacobi

2. Multiply W = XU1

3. Compute SVD of WΣ1 = UΣV T
2

using one-sided Jacobi

4. Multiply V = V1V2

• To guarantee efficiency, find eigenvalues of

0 A

AT 0

 =

1

21/2
·

L L

UT −UT

 ·

D 0

0 −D

 ·

LT U

LT −U

 · 1

21/2

≡ Z · D̂ · ZT

by performing bisection on λD̂ − Z−1Z−T

• Relative error = O(κ(X) · κ(Y))

Why roundoff is harmless

• We want A = UΣV T where Σ = diag(σ1, ..., σn)

• But we compute Ā = ŪΣ̄V̄ T where Σ̄ = diag(σ̄1, ..., σ̄n)

Absolute (additive) Perturbations vs. Relative (multiplicative) Perturbations

Ā = A+ σmax · E Ā = (I + E)A

‖E‖ � 1

|σi − σ̄i| ≤ ‖E‖ · σmax |σi − σ̄i| ≤ ‖E‖ · σi

How do we CAE A = L · D · U
for a Hilbert (or Cauchy) Matrix?

• How can we lose accuracy in computing?
– TM: fl(a ⊗ b) = (a ⊗ b)(1 + δ), |δ| ≤ ε � 1

– OK to multiply, divide, add positive numbers

– OK to subtract exact numbers (initial data)

– Cancellation when subtracting approximate results dangerous:

.12345xxx

- .12345yyy

.00000zzz

• Cauchy: C(i, j) = 1/(xi + yj)

• Fact 1: det(C) = ∏
i<j(xj − xi)(yj − yi)/

∏
i,j(xi + yj) - No bad cancellation

• Fact 2 : Each minor of C also Cauchy

• Fact 3 : Each entry of L, D, U is a (quotient of) minors

• Change inner loop of Gaussian Elimination from
C(i, j) := C(i, j)− C(i, k) ∗ C(k, j)/C(k, k)

to

C(i, j) := C(i, j) ∗ (xi − xk) ∗ (yj − yk)/(xk + yj)/(xi + yk)

• Each entry of L, D, U accurate to most digits!

Cost of Accuracy (1)

Type of Any GE GE GE NE Ax = b Ax = b

Matrix det(A) A−1 minor NP PP CP SVD NP Forw. Backw.

Cauchy

TP Cauchy

Vandermonde

TP Vandermonde

Confluent

Vandermonde

TP Confluent

Vandermonde

Vandermonde

3 Term Orth. Poly.

Same

+ other cond.

Generalized

Vandermonde

TP Generalized

Vandermonde

NENP = Neville Elimination (bidiagonal factorization) with No Pivoting

Ax = b Forw. = solving with small forward error: |x − x̂| ≤ O(ε)|A−1| · |b|
Ax = b Backw. = solving with small backward error: maxi

|Ax̂−b|i
(|A||x̂|+|b|)i = O(ε)

Cost of Accuracy (2)

Type of Any GE GE GE NE Ax = b Ax = b

Matrix det(A) A−1 minor NP PP CP SVD NP Forw. Backw.

Cauchy Cij = 1/(xi + yj)

TP Cauchy xi ↗, yj ↗, x1 + y1 > 0

Vandermonde Vij = xj−1
i , xi distinct

TP Vandermonde 0 < xi ↗
Confluent

Vandermonde
if some xi coincide, differentiate rows of V

TP Confluent

Vandermonde
0 < xi ↗

Vandermonde

3 Term Orth. Poly.
Vij = Pj(xi), Pj a j-th orthogonal poly. in 3-term recurrence

Same

+ other cond.
0 < xi ↗, positivity conditions on 3-term recurrence

Generalized

Vandermonde
Gij = x

λj+j−1
i , λj nonnegative increasing integer sequence

TP Generalized

Vandermonde
0 < xi ↗

TP = Totally Positive (all minors nonnegative)

Cost of Accuracy (3)

Known results of others

Type of Any GE GE GE NE Ax = b Ax = b

Matrix det(A) A−1 minor NP PP CP SVD NP Forw. Backw.

Cauchy n2 n2 n2 n3 n3 n3 n2 n2

TP Cauchy n2 n2 n2 n3 n3 n3 n2 n2 n2

Vandermonde

TP Vandermonde

Confluent

Vandermonde

TP Confluent

Vandermonde

Vandermonde

3 Term Orth. Poly.

Same

+ other cond.

Generalized

Vandermonde

TP Generalized

Vandermonde

Proof: Exploit det(C) =
∏

i<j(xj − xi)(yj − yi)/
∏

ij(xi + yj)

Cost of Accuracy (4)

Known results of others + New Results

Type of Any GE GE GE NE Ax = b Ax = b

Matrix det(A) A−1 minor NP PP CP SVD NP Forw. Backw.

Cauchy n2 n2 n2 n3 n3 n3 n3 n2 n2

TP Cauchy n2 n2 n2 n3 n3 n3 n3 n2 n2 n2

Vandermonde

TP Vandermonde

Confluent

Vandermonde

TP Confluent

Vandermonde

Vandermonde

3 Term Orth. Poly.

Same

+ other cond.

Generalized

Vandermonde

TP Generalized

Vandermonde

Proof: Do GECP, apply new SVD algorithm

Cost of Accuracy (5)

Known results of others

Type of Any GE GE GE NE Ax = b Ax = b

Matrix det(A) A−1 minor NP PP CP SVD NP Forw. Backw.

Cauchy n2 n2 n2 n3 n3 n3 n3 n2 n2

TP Cauchy n2 n2 n2 n3 n3 n3 n3 n2 n2 n2

Vandermonde n2 n2

TP Vandermonde n2 n3 n2 n2 n2 n2 n2

Confluent

Vandermonde

TP Confluent

Vandermonde

Vandermonde

3 Term Orth. Poly.

Same

+ other cond.

Generalized

Vandermonde

TP Generalized

Vandermonde

Cost of Accuracy (6)

Known results of others + New Results

Type of Any GE GE GE NE Ax = b Ax = b

Matrix det(A) A−1 minor NP PP CP SVD NP Forw. Backw.

Cauchy n2 n2 n2 n3 n3 n3 n3 n2 n2

TP Cauchy n2 n2 n2 n3 n3 n3 n3 n2 n2 n2

Vandermonde n2 n3 n2

TP Vandermonde n2 n3 n3 n3 n2 n2 n2

Confluent

Vandermonde

TP Confluent

Vandermonde

Vandermonde

3 Term Orth. Poly.

Same

+ other cond.

Generalized

Vandermonde

TP Generalized

Vandermonde

Proof: Vandermonde = Cauchy × DFT

Cost of Accuracy (7)

Known results of others + New Results

Type of Any GE GE GE NE Ax = b Ax = b

Matrix det(A) A−1 minor NP PP CP SVD NP Forw. Backw.

Cauchy n2 n2 n2 n3 n3 n3 n3 n2 n2

TP Cauchy n2 n2 n2 n3 n3 n3 n3 n2 n2 n2

Vandermonde n2 n3 n2

TP Vandermonde n2 n3 exp n2 n2 exp n3 n2 n2 n2

Confluent

Vandermonde

TP Confluent

Vandermonde

Vandermonde

3 Term Orth. Poly.

Same

+ other cond.

Generalized

Vandermonde

TP Generalized

Vandermonde

Proof: Use new alg for Generalized Vandermonde ...

Cost of Accuracy (8)

Known results of others + New Results

Type of Any GE GE GE NE Ax = b Ax = b

Matrix det(A) A−1 minor NP PP CP SVD NP Forw. Backw.

Cauchy n2 n2 n2 n3 n3 n3 n3 n2 n2

TP Cauchy n2 n2 n2 n3 n3 n3 n3 n2 n2 n2

Vandermonde n2 No No No No No n3 n2 No

TP Vandermonde n2 n3 exp n2 n2 exp n3 n2 n2 n2

Confluent

Vandermonde

TP Confluent

Vandermonde

Vandermonde

3 Term Orth. Poly.

Same

+ other cond.

Generalized

Vandermonde

TP Generalized

Vandermonde

Proof: Can’t add x+ y + z in TM

Cost of Accuracy (9)

Known results of others

Type of Any GE GE GE NE Ax = b Ax = b

Matrix det(A) A−1 minor NP PP CP SVD NP Forw. Backw.

Cauchy n2 n2 n2 n3 n3 n3 n3 n2 n2

TP Cauchy n2 n2 n2 n3 n3 n3 n3 n2 n2 n2

Vandermonde n2 No No No No No n3 n2 No

TP Vandermonde n2 n3 exp n2 n2 exp n3 n2 n2 n2

Confluent

Vandermonde
n2 n2

TP Confluent

Vandermonde
n2 n3 n3 n2 n2 n2

Vandermonde

3 Term Orth. Poly.

Same

+ other cond.

Generalized

Vandermonde

TP Generalized

Vandermonde

Cost of Accuracy (10)

Known results of others + New Results

Type of Any GE GE GE NE Ax = b Ax = b

Matrix det(A) A−1 minor NP PP CP SVD NP Forw. Backw.

Cauchy n2 n2 n2 n3 n3 n3 n3 n2 n2

TP Cauchy n2 n2 n2 n3 n3 n3 n3 n2 n2 n2

Vandermonde n2 No No No No No n3 n2 No

TP Vandermonde n2 n3 exp n2 n2 exp n3 n2 n2 n2

Confluent

Vandermonde
n2 No No No No No n2 No

TP Confluent

Vandermonde
n2 n3 n3 n2 n2 n2

Vandermonde

3 Term Orth. Poly.

Same

+ other cond.

Generalized

Vandermonde

TP Generalized

Vandermonde

Proof: Can’t add x+ y + z in TM

Cost of Accuracy (11)

Known results of others

Type of Any GE GE GE NE Ax = b Ax = b

Matrix det(A) A−1 minor NP PP CP SVD NP Forw. Backw.

Cauchy n2 n2 n2 n3 n3 n3 n3 n2 n2

TP Cauchy n2 n2 n2 n3 n3 n3 n3 n2 n2 n2

Vandermonde n2 No No No No No n3 n2 No

TP Vandermonde n2 n3 exp n2 n2 exp n3 n2 n2 n2

Confluent

Vandermonde
n2 No No No No No n2 No

TP Confluent

Vandermonde
n2 n3 n3 n2 n2 n2

Vandermonde

3 Term Orth. Poly.
n2

Same

+ other cond.
n2 n3 n2

Generalized

Vandermonde

TP Generalized

Vandermonde

Cost of Accuracy (12)

Known results of others + New Results

Type of Any GE GE GE NE Ax = b Ax = b

Matrix det(A) A−1 minor NP PP CP SVD NP Forw. Backw.

Cauchy n2 n2 n2 n3 n3 n3 n3 n2 n2

TP Cauchy n2 n2 n2 n3 n3 n3 n3 n2 n2 n2

Vandermonde n2 No No No No No n3 n2 No

TP Vandermonde n2 n3 exp n2 n2 exp n3 n2 n2 n2

Confluent

Vandermonde
n2 No No No No No n2 No

TP Confluent

Vandermonde
n2 n3 n3 n2 n2 n2

Vandermonde

3 Term Orth. Poly.
n2 n3

Same

+ other cond.
n2 n3 n3 n2

Generalized

Vandermonde

TP Generalized

Vandermonde

Proof: See Koev’s talk

Cost of Accuracy (13)

Known results of others + New Results

Type of Any GE GE GE NE Ax = b Ax = b

Matrix det(A) A−1 minor NP PP CP SVD NP Forw. Backw.

Cauchy n2 n2 n2 n3 n3 n3 n3 n2 n2

TP Cauchy n2 n2 n2 n3 n3 n3 n3 n2 n2 n2

Vandermonde n2 No No No No No n3 n2 No

TP Vandermonde n2 n3 exp n2 n2 exp n3 n2 n2 n2

Confluent

Vandermonde
n2 No No No No No n2 No

TP Confluent

Vandermonde
n2 n3 n3 n2 n2 n2

Vandermonde

3 Term Orth. Poly.
n2 n3

Same

+ other cond.
n2 n3 n3 n2

Generalized

Vandermonde
No No No No No No No No No

TP Generalized

Vandermonde

Proof: Can’t add x+ y + z in TM

Cost of Accuracy (14)

Known results of others + New Results

Type of Any GE GE GE NE Ax = b Ax = b

Matrix det(A) A−1 minor NP PP CP SVD NP Forw. Backw.

Cauchy n2 n2 n2 n3 n3 n3 n3 n2 n2

TP Cauchy n2 n2 n2 n3 n3 n3 n3 n2 n2 n2

Vandermonde n2 No No No No No n3 n2 No

TP Vandermonde n2 n3 exp n2 n2 exp n3 n2 n2 n2

Confluent

Vandermonde
n2 No No No No No n2 No

TP Confluent

Vandermonde
n2 n3 n3 n2 n2 n2

Vandermonde

3 Term Orth. Poly.
n2 n3

Same

+ other cond.
n2 n3 n3 n2

Generalized

Vandermonde
No No No No No No No No No

TP Generalized

Vandermonde
Λn + n2 Λn2 + n3 exp Λn2 Λn2 exp exp Λn2 Λn2 Λn2

Gij = x
λj+j−1
i , 0 ≤ λi ↗

Λ = (λ1 + 1) · (λ2 + 1)2 · · · (λn + 1)
2 (For Proof, see Koev’s PhD thesis)

Previous best algorithm: nλ1+···+λn

Other examples in Traditional 1 + δ model

• Diagonal * Totally Unimodular (TU) * Diagonal
– TU ⇔ each minor ∈ {0, ±1}
– Poincaré: Signed incidence matrix on graph ⇒ TU

– Includes 2nd centered difference approximations to

Sturm-Liouville equations and elliptic PDEs on uniform meshes

– One-line change to GE makes it accurate

• M-Matrices
– Store as off-diagonals, nonnegative row sums

– See Koev’s PhD thesis

• Sparse matrices with
– Acyclic sparsity patterns, Cost = O(n3)

– Particular sparsity and sign patterns (“Total Sign Compound”)

Cost = O(n4)

• Other Totally Positive matrices (but cost not always poly)

• What do these matrices have in common?

Traditional 1 + δ Model - What we can do

• Goal: evaluate homogeneous polynomial f(x) accurately on D
• Property A: f =

∏
m fm where each factor fm satisfies one of

– fm of the form xi, xi − xj or xi + xj

– |fm| bounded away from 0 on D
• Conjecture 1: f satisfies Prop. A iff f(x) can be evaluated accurately

• Conjecture 2: f satisfies Prop. A iff f(x) has a relative perturbation theory:

– relative error in output = O(κrel· relative error in input)
– κrel = 1/min

|xi±xj |
|xi|+|xj| = 1 / smallest relative gap among inputs

– Tiny outputs often well conditioned

∗ Smallest eigenvalues often desired
∗ Relative perturbation theory justifies computing them!

• Intuition: Everything works if f(x) has factors only of forms

– xi

– xi ± xj

– positive stuff

Otherwise, ∀ algorithms ∃ roundoff errors that make relative error large

Bit Models of FP Arithmetic

• Inputs of form f · 2e, e and f integers

• size(X) = # bits used to represent X

• size(f · 2e) = #bits(f) + #bits(e)

• Can evaluate any rational expression accurately
– Convert to poly/poly, using high enough precision

– Question is cost

• Cost depends strongly on # exponent bits

– Small Exponent Model (SEM)

∗ #bits(e) = O(log(#bits(f)))

∗ Equivalent to integer arithmetic
∗ Can CAE many problems

– Large Exponent Model (LEM)

∗ #bits(e) and #bits(f) independent
∗ “Natural” model for algorithm design

∗ Algorithms work for any input magnitudes

Differences between SEM and LEM - 1

• Recall definitions for size of f · 2e

– Small Exponent Model (SEM): #bits(e) = O(log(#bits(f)))

– Large Exponent Model (LEM): #bits(e), #bits(f) independent

• SEM and “integer arithmetic” equivalent

– Represent f · 2e as integer, not pair (f, e)

– #bits(f · 2e) = #bits(f) + e ≈ #bits(f) + 2#bits(e) = poly(#bits(f))

• LEM and “integer arithmetic” not equivalent

– 2#bits(e) exponentially larger than #bits(e)

• # bits in FP expressions much bigger for LEM than SEM

– SEM: size(x · y) ≤ size(x) + size(y)

– LEM: size(x · y) ≤ size(x) · size(y)
– The product of two n-bit numbers:

size(x · y) = size(
n∑

i=1
2ri · n∑

j=1
2sj)

= size(
n∑

i,j=1
2ri+sj)

= n2 bits , not 2n bits

Differences between SEM and LEM - 2

• Recall definitions for size of f · 2e

– Small Exponent Model (SEM): #bits(e) = O(log(#bits(f)))

– Large Exponent Model (LEM): #bits(e), #bits(f) indep.

• Cond(A) in LEM can be exponentially larger than in SEM

– SEM: log cond(A) is poly(size(A))

∗ Conventional algorithms using log cond(A) bits are polynomial
– LEM: log cond(A) can be exponential in size(A)

∗ κ(diag(2e, 1)) = 2e ≈ 22
#bits(e)

∗ Conventional algorithms using log cond(A) bits are not polynomial
• log log cond(A) is lower bound on complexity of any FP algorithm
– # bits needed to print out exponent of answer

Differences between SEM and LEM - 3

• Recall definitions for size of f · 2e

– Small Exponent Model (SEM): #bits(e) = O(log(#bits(f)))

– Large Exponent Model (LEM): #bits(e), #bits(f) indep.

• Determinant of any SEM matrix computable exactly in poly time

– Put all Aij(x) = Pij(x)/Qij(x) over common denominator

– Compute each numerator, denominator exactly

– Compute determinant accurately in poly time using Clarkson’s Alg.

– Can do accurate linear algebra in poly time

• Getting arbitrary bit of expression in LEM very hard

– Getting arbitrary bit of
∏n

i=1(1 + xi) is as hard as permanent(A)

– A null vector of singular matrix of LEM floats can have exponentially many

bits

∗ Testing singularity may not even be in NP!
– Matrices need structure to CAE

How to CAE S = ∑n
i=1 si

• Suppose
– All si have m-bit fractions, normalized

– One M -bit register S available (M > m)

– Let n̄ = 1 + 2M−m + 2M−2m + · · ·+ 2M mod m

• Algorithm for
∑n

i=1 si:

1. Sort so EXP(s1) ≥ EXP(s2) ≥ · · · ≥ EXP(sn)

2. S = 0; for i = 1 to n do S = S + si ... round to nearest

• Theorem (D., Hida): Exactly one error bound below applies, is attainable:

1. If n ≤ n̄ then relative error in S at most 1 ulp

2. If n = n̄+ 1 and M ≥ 2m then relative error in S at most 2 ulps

3. If n = n̄+ 1 and M < 2m then relative error in S at most 22m−M ulps

4. If n ≥ n̄+ 2 then relative error in S can be arbitrary

• Example: S =
∑n

i=1 xi · yi, m = 2 · 24 = 48, M = 53 → n̄ = 25 + 1 = 33

• Example: S =
∑n

i=1 xi · yi, m = 2 · 24 = 48, M = 64 → n̄ = 216 + 1 = 65537

• Sorting can be mostly eliminated
• Priest, Knuth, Kahan, Bohlender, Dekker, Pichat, ...

Which FP Expressions can we CAE
in the Large Exponent Model (LEM)?

• Def: r(x) is in factored form if

r(x) =
n∏

i=1
pi(x1, ..., xk)

ei

where

pi(x1, ..., xk) =
t∑

j=1
αij · x

eij1
1 · · · x

eijk
k

and

size(r) = #bits to write down r

• Theorem: We can CAE r in time poly(size(r))

– Compute each monomial αij · x
eij1
1 · · · x

eijk
k exactly

– Compute pi(x1, ..., xk) by sorting and adding monomials

– Compute pi(x1, ..., xk)
ei by repeated squaring, rounding

– Compute
∏n

i=1 pi(x1, ..., xk)
ei by multiplying, rounding

• Def: A family An(x) of n-by-n rational matrices is polyfactorable if

each minor r(x) is in factored form of size size(r) = O(poly(n))

• Thm: Suppose An(x) is polyfactorable. Then in the LEM

we can CAE LU with pivoting, A−1, singular values.

Differences between Models

• What can we CAE in LEM that we could not in TM?

– Rational Expressions

∗ LEM: anything polynomial in size (in factored form) can be computed
accurately in polynomial time

∗ (Not detA where each Aij independent: size is n!)

∗ TM: Constraints on zero/pole set: inside
A =

⋃
i{xi = 0} ∪ ⋃

i�=j{xi = xj} ∪ ⋃
i�=j{xi = −xj}

– Matrix computations

∗ LEM: Take any A(x) that we can CAE in TM, substitute xi = pi(y)

∗ Green’s matrices (inverses of tridiagonals, represented as Aij = xiyj)

• What can we CAE in SEM that we could not in LEM?

– Rational matrices with arbitrary poly-sized entries

Cost comparison of LEM to symbolic algebra

• Cost(Accurate evaluation in Large Exponent Model) ≥
Cost(symbolic expression ≡ 0?)

• Proof idea: Simulate symbolic algebra using large exponents
– 2a, 2b like x and y, because we can extract a and b from 2a · 2b = 2a+b

– Cost(Accurate evaluation of p) ≥ Cost(p ≡ 0?)

– Suppose p(x0, ..., xm−1) a symbolic polynomial with
max degree D − 1, integer coeffs of max # bits B − 1

– Let Xi = 2
B·Di

– Then p(X0, ..., Xm−1) = 0 iff p ≡ 0

∗ Idea: bits in typical term α · xe1
1 · · · x

em−1
m−1

of p do not “overlap” so cannot cancel in sum

• Example: determinant of A each entry of which is rational

Open Questions

• Are there FP expressions that we provably cannot CAE in LEM?
–

∏n
i=1(1 + xi)− ∏n

j=1(1 + yj)

– Determinant of general matrix

– Determinant of tridiagonal matrix

– Such an example could distinguish LEM from SEM

• What does symbolic computing complexity tell us about complexity in LEM?
• What changes if we have sign information?
– We have accurate algorithms for all TP matrices, but not efficient

– How big a class of TP matrices can we do efficiently?

• Differential equations
– Only simplest ones understood (M-matrices)

– What about other discretizations?

– Conjecture: Accuracy depends only on geometry, not material properties

• Relationship to graph-based preconditioners of Vaidya et al
• Exploit sparsity
• What about nonsymmetric eigenproblem?

Conclusions

• We have identified many classes of floating point expressions and
matrix computations that permit

– Accurate solutions: relative error < 1

– Efficient solutions: time = poly(input size)

• Explored 3 natural models of arithmetic: TM, LEM, SEM
– New efficient algorithms for each

– TM
⊂
�= LEM

⊂
�=? SEM

• Lots of open problems
• Reports available
– Upcoming ICM paper at www.cs.berkeley.edu/~demmel/ICM_final.ps

– Koev’s UC Berkeley PhD thesis at www.math.berkeley.edu/~plamen/a.ps

– Accurate FP Addition, www.cs.berkeley.edu/~demmel/AccurateSummation.ps

– D + Koev paper on LEM in Structured Matrices in Math, CS and Eng II,

AMS, 2001 (www.cs.berkeley.edu/~demmel/NASC.ps)

– SIMAX, v. 21, n. 2, pp 562–580, 1999

– Lin. Alg. Appl., vol 299, issue 1-3, pp 21–80, 1999

– These slides: www.cs.berkeley.edu/~demmel/HH02.ps

Postdocs Available!

• One to work on Parallel Eigensolvers (Holy Grail)
• One to work on Parallel Direct Solvers (SuperLU)
• See me or email: demmel@cs.berkeley.edu

There was a numerical analyst from Nantucket ...

There was a numerical analyst from Nantucket

Who sorted his exponents with a bucket.

There was a numerical analyst from Nantucket

Who sorted his exponents with a bucket.

When asked ”How do you cope

With huge exponent scope?”

There was a numerical analyst from Nantucket

Who sorted his exponents with a bucket.

When asked ”How do you cope

With huge exponent scope?”

Said: “When I see such a problem, I duck it!”

