
The Complexity of Accurate Floating Point Computation

or

Can we Compute Eigenvalues In Polynomial Time?

James Demmel

Mathematics and Computer Science

UC Berkeley

Joint work with

Plamen Koev, Yozo Hida, Ben Diament

W. Kahan, Ming Gu, Stan Eisenstat, Ivan Slapničar,

Krešimir Veselić, Zlatko Drmač

Supported by NSF and DOE

Goal

• Compute y = f(x) with floating point data x accurately and efficiently

• f(x) may be

– Rational function

– Solution of linear system Ay = b

– Solution of eigenvalue problem Ay = λy ...

• Accurately means with guaranteed relative error e < 1

– |ycomputed − y| ≤ e · |y|
– e = 10−2 means 2 leading digits of ycomputed correct

– ycomputed = 0 = y must be exact

• Efficiently means in “polynomial time”

• Abbreviation: CAE means “Compute Accurately and Efficiently”

Example: 100 by 100 Hilbert Matrix H(i, j) = 1/(i+ j − 1)

• Eigenvalues range from 1 down to 10−150

• Old algorithm, New Algorithm, both in 16 digit arithmetic

Log10(eigenvalues)

−150

−120

−90

−60

−30
−16

0

• Cost of Old algorithm in high enough precision = O(n3D2) where

D = # digits = log(λmax/λmin) = log cond(A) = 150 decimal digits

• Cost of New algorithm = O(n3 logD)

• When D large, new algorithm exponentially faster

• New algorithm exploits structure of Cauchy matrices

Example: Adding Numbers in Traditional Model of Arithmetic

• fl(a⊗ b) = (a⊗ b)(1 + δ) where roundoff error |δ| ≤ ε � 1

• How can we lose accuracy?

– OK to multiply, divide, add positive numbers

– OK to subtract exact numbers (initial data)

– Accuracy may only be lost when subtracting approximate results:

.12345xxx

- .12345yyy

.00000zzz

• Thm: In Traditional Model it is impossible to add x+ y + z accurately

– Proof: ∀ algorithms ∃ inputs x, y and z and errors δ that make error large

Example: Adding Numbers in Bit Model of Arithmetic

• x = m · 2e where m=mantissa and e=exponent are integers

• fl(x+ y) is correctly rounded result

• Algorithm for S =
∑n
i=1 xi

Sort so |x1| ≥ |x2| ≥ · · · ≥ |xn|
S = 0

for i = 1 to n

S = S + xi

• Thm: Suppose each xi has b-bit mantissa and S has B-bit mantissa,

where b < B ≤ 2b. Then

– If n ≤ 2B−b + 1, then S accurate

– If n ≥ 2B−b + 3, then S may be completely wrong (wrong sign)

• Ex: xi double (b = 53), S extended (B = 64) ⇒ n ≤ 211 + 1 = 2049

Structure of Results (1)

• Classes of rational expressions (matrices whose entries are expressions)

that we can CAE depends strongly on Model of FP Arithmetic

1. Traditional Model (TM for short):

fl(a⊗ b) = (a⊗ b)(1 + δ) where |δ| ≤ ε � 1

no over/underflow

2. Bit model: inputs are m · 2e, with “long exponents” e (LEM for short)

3. Bit model: inputs are m · 2e, with “short exponents” e (SEM for short)

4. Other models have been proposed (not today)

(a) Blum/Shub/Smale

(b) Cucker/Smale

(c) Pour-El/Richards

Structure of Results (2)

• Classes of expressions (matrices) that we can CAE are described by

factorizability properties of expressions (minors of matrices)

TM
⊂

= LEM

⊂

=? SEM

• New algorithms can be exponentially faster than conventional algorithms that

just use high enough precision

• Cost(CAE in LEM) related to Cost(using symbolic computing)

• Cost(CAE in SEM) related to Cost(using integers)

Central Role of Minors

• Being able to CAE det(A) is necessary for CAE

– A = LU with pivoting

– A = QR

– Eigenvalues λi of A ...

∗ Proof: det(A) = ± ∏
i Uii = ± ∏

i Rii =
∏
i λi = · · ·

• Being able to CAE all minors of A is sufficient for CAE

– A−1

∗ Proof: Cramer’s rule, only need n2 + 1 minors

– A = LU or A = LDU with pivoting

∗ Proof: Each entry of L, D, U a quotient of minors; O(n3) needed

– Singular values of A (SVD): Eigenvalues of ATA

∗ Proof: Compute A = LDU with complete pivoting, then SVD of LDU

• Similar result for QR, pseudoinverse via minors of



I A

AT 0


, etc.

• Examine which expressions (minors) we can CAE

Accurate Singular values of any rank-revealing A = LDUT

• Rank-revealing ≡ D diagonal, L and U well-conditioned

• Algorithm 1: Find eigenvalues of


0 A

AT 0


 =



L L

UT −UT

 ·



D/2 0

0 −D/2

 ·



LT U

LT −U



≡ Z · D̂ · ZT

by performing bisection on λD̂ − Z−1Z−T

• Algorithm 2: Two applications of one-sided Jacobi, matrix multiplication

Outline of Remainder of Talk

1. What we can do in Traditional Model (TM)

2. What we can do in Bit Model (SEM and LEM)

How do we CAE A = L ·D · U
for a Hilbert (or Cauchy) Matrix?

• To maintain accuracy, avoid subtracting intermediate results

• Cauchy: C(i, j) = 1/(xi + yj)

• Fact 1: det(C) =
∏
i<j(xj − xi)(yj − yi)/

∏
i,j(xi + yj)

• Fact 2 : Each minor of C also Cauchy

• Fact 3 : Each entry of L, D, U is a (quotient of) minors

• Change inner loop of Gaussian Elimination from

C(i, j) := C(i, j) − C(i, k) ∗ C(k, j)/C(k, k)
to

C(i, j) := C(i, j) ∗ (xi − xk) ∗ (yj − yk)/(xk + yj)/(xi + yk)

• Each entry of L, D, U accurate to most digits!

Cost of Accuracy in TM (1)

Matrix Type det(A) A−1 Any minor GENP GEPP GECP SVD NENP

Cauchy

TP Cauchy

Vandermonde

TP Vandermonde

Confluent

Vandermonde

TP Confluent

Vandermonde

Vandermonde

3 Term Orth. Poly.

Generalized

Vandermonde

TP Generalized

Vandermonde

GENP/PP/CP = Gaussian Elimination with No/Partial/Complete Pivoting

SVD = Singular Value Decomposition

NENP = Neville Elimination (bidiagonal factorization) with No Pivoting

Cost of Accuracy in TM (2)

TP = Totally Positive (all minors nonnegative)

Matrix Type

Cauchy Cij = 1/(xi + yj)

TP Cauchy xi ↗, yj ↗, x1 + y1 > 0

Vandermonde Vij = xj−1
i , xi distinct

TP Vandermonde 0 < xi ↗
Confluent

Vandermonde
if some xi coincide, differentiate rows of V

TP Confluent

Vandermonde
0 < xi ↗

Vandermonde

3 Term Orth. Poly.
Vij = Pj(xi), Pj orthogonal polynomial from 3-term recurrence

Generalized

Vandermonde
Gij = x

λj+j−1
i , λj nonnegative increasing integer sequence

TP Generalized

Vandermonde
0 < xi ↗

Cost of Accuracy in TM (3)

Known results

Matrix Type det(A) A−1 Any minor GENP GEPP GECP SVD NENP

Cauchy n2 n2 n2 n3 n3 n3 n2

TP Cauchy n2 n2 n2 n3 n3 n3 n2

Vandermonde

TP Vandermonde

Confluent

Vandermonde

TP Confluent

Vandermonde

Vandermonde

3 Term Orth. Poly.

Generalized

Vandermonde

TP Generalized

Vandermonde

Proof: Exploit det(C) =
∏
i<j(xj − xi)(yj − yi)/

∏
ij(xi + yj)

Cost of Accuracy in TM (4)

Known results + New Results

Matrix Type det(A) A−1 Any minor GENP GEPP GECP SVD NENP

Cauchy n2 n2 n2 n2 n2 n3 n3 n2

TP Cauchy n2 n2 n2 n2 n2 n3 n3 n2

Vandermonde

TP Vandermonde

Confluent

Vandermonde

TP Confluent

Vandermonde

Vandermonde

3 Term Orth. Poly.

Generalized

Vandermonde

TP Generalized

Vandermonde

Proof: Do GECP, apply new SVD algorithm

Cost of Accuracy in TM (5)

Known results

Matrix Type det(A) A−1 Any minor GENP GEPP GECP SVD NENP

Cauchy n2 n2 n2 n2 n2 n3 n3 n2

TP Cauchy n2 n2 n2 n2 n2 n3 n3 n2

Vandermonde n2 n2

TP Vandermonde n2 n3 n2

Confluent

Vandermonde

TP Confluent

Vandermonde

Vandermonde

3 Term Orth. Poly.

Generalized

Vandermonde

TP Generalized

Vandermonde

Proof: Björck-Pereyra

Cost of Accuracy in TM (6)

Known results + New Results

Matrix Type det(A) A−1 Any minor GENP GEPP GECP SVD NENP

Cauchy n2 n2 n2 n2 n2 n3 n3 n2

TP Cauchy n2 n2 n2 n3 n3 n3 n3 n2

Vandermonde n2 n3 n2

TP Vandermonde n2 n3 n3 n2

Confluent

Vandermonde

TP Confluent

Vandermonde

Vandermonde

3 Term Orth. Poly.

Generalized

Vandermonde

TP Generalized

Vandermonde

Proof: Vandermonde = Cauchy × DFT

Cost of Accuracy in TM (7)

Known results + New Results

Matrix Type det(A) A−1 Any minor GENP GEPP GECP SVD NENP

Cauchy n2 n2 n2 n2 n2 n3 n3 n2

TP Cauchy n2 n2 n2 n2 n2 n3 n3 n2

Vandermonde n2 n3 n2

TP Vandermonde n2 n3 exp n2 n2 exp n3 n2

Confluent

Vandermonde

TP Confluent

Vandermonde

Vandermonde

3 Term Orth. Poly.

Generalized

Vandermonde

TP Generalized

Vandermonde

Proof: Special case of TP Generalized Vandermonde

Cost of Accuracy in TM (8)

Known results + New Results

Matrix Type det(A) A−1 Any minor GENP GEPP GECP SVD NENP

Cauchy n2 n2 n2 n2 n2 n3 n3 n2

TP Cauchy n2 n2 n2 n2 n2 n3 n3 n2

Vandermonde n2 No No No No No n3 n2

TP Vandermonde n2 n3 exp n2 n2 exp n3 n2

Confluent

Vandermonde

TP Confluent

Vandermonde

Vandermonde

3 Term Orth. Poly.

Generalized

Vandermonde

TP Generalized

Vandermonde

Proof: Can’t add x+ y + z accurately

Cost of Accuracy in TM (9)

Known results

Matrix Type det(A) A−1 Any minor GENP GEPP GECP SVD NENP

Cauchy n2 n2 n2 n2 n2 n3 n3 n2

TP Cauchy n2 n2 n2 n2 n2 n3 n3 n2

Vandermonde n2 No No No No No n3 n2

TP Vandermonde n2 n3 exp n2 n2 exp n3 n2

Confluent

Vandermonde
n2 n2

TP Confluent

Vandermonde
n2 n3 n3 n2

Vandermonde

3 Term Orth. Poly.

Generalized

Vandermonde

TP Generalized

Vandermonde

Proof: Higham

Cost of Accuracy in TM (10)

Known results + New Results

Matrix Type det(A) A−1 Any minor GENP GEPP GECP SVD NENP

Cauchy n2 n2 n2 n2 n2 n3 n3 n2

TP Cauchy n2 n2 n2 n2 n2 n3 n3 n2

Vandermonde n2 No No No No No n3 n2

TP Vandermonde n2 n3 exp n2 n2 exp n3 n2

Confluent

Vandermonde
n2 No No No No No n2

TP Confluent

Vandermonde
n2 n3 n3 n2

Vandermonde

3 Term Orth. Poly.

Generalized

Vandermonde

TP Generalized

Vandermonde

Proof: Can’t add x+ y + z accurately

Cost of Accuracy in TM (11)

Known results

Matrix Type det(A) A−1 Any minor GENP GEPP GECP SVD NENP

Cauchy n2 n2 n2 n2 n2 n3 n3 n2

TP Cauchy n2 n2 n2 n2 n2 n3 n3 n2

Vandermonde n2 No No No No No n3 n2

TP Vandermonde n2 n3 exp n2 n2 exp n3 n2

Confluent

Vandermonde
n2 No No No No No n2

TP Confluent

Vandermonde
n2 n3 n3 n2

Vandermonde

3 Term Orth. Poly.
n2

Generalized

Vandermonde

TP Generalized

Vandermonde

Proof: Higham

Cost of Accuracy in TM (12)

Known results + New Results

Matrix Type det(A) A−1 Any minor GENP GEPP GECP SVD NENP

Cauchy n2 n2 n2 n2 n2 n3 n3 n2

TP Cauchy n2 n2 n2 n2 n2 n3 n3 n2

Vandermonde n2 No No No No No n3 n2

TP Vandermonde n2 n3 exp n2 n2 exp n3 n2

Confluent

Vandermonde
n2 No No No No No n2

TP Confluent

Vandermonde
n2 n3 n3 n2

Vandermonde

3 Term Orth. Poly.
n2 n3

Generalized

Vandermonde

TP Generalized

Vandermonde

Proof: Poly Vand(x) = Cauchy(x,y) × Poly Vand(y)

Choose y as roots of Orth Poly ⇒ Poly Vand(y) = diagonal × orthogonal

Cost of Accuracy in TM (13)

New Results

Matrix Type det(A) A−1 Any minor GENP GEPP GECP SVD NENP

Cauchy n2 n2 n2 n2 n2 n3 n3 n2

TP Cauchy n2 n2 n2 n2 n2 n3 n3 n2

Vandermonde n2 No No No No No n3 n2

TP Vandermonde n2 n3 exp n2 n2 exp n3 n2

Confluent

Vandermonde
n2 No No No No No n2

TP Confluent

Vandermonde
n2 n3 n3 n2

Vandermonde

3 Term Orth. Poly.
n2 n3

Generalized

Vandermonde
No No No No No No No No

TP Generalized

Vandermonde

Proof: Can’t add x+ y + z accurately

Cost of Accuracy in TM (14)

New Results

Matrix Type det(A) A−1 Any minor GENP GEPP GECP SVD NENP

Cauchy n2 n2 n2 n2 n2 n3 n3 n2

TP Cauchy n2 n2 n2 n2 n2 n3 n3 n2

Vandermonde n2 No No No No No n3 n2

TP Vandermonde n2 n3 exp n2 n2 exp n3 n2

Confluent

Vandermonde
n2 No No No No No n2

TP Confluent

Vandermonde
n2 n3 n3 n2

Vandermonde

3 Term Orth. Poly.
n2 n3

Generalized

Vandermonde
No No No No No No No No

TP Generalized

Vandermonde
Λn + n2 Λn2 + n3 exp Λn2 Λn2 exp exp Λn2

• Gij = x
λj+j−1
i , 0 ≤ λi ↗

• Λ = (λ1 + 1) · (λ2 + 1)2 · · · (λn + 1)2

• Exponential speedup over previous best algorithm: nλ1+···+λn

• Proof: Divide-and-conquer to evaluate Schur polynomials (see MacDonald)

Other examples in Traditional Model

• Diagonal * Totally Unimodular (TU) * Diagonal

– TU ⇔ each minor ∈ {0,±1}
– Poincaré: Signed incidence matrix on graph ⇒ TU

– Includes 2nd centered difference approximations to

Sturm-Liouville equations and elliptic PDEs on uniform meshes

– One-line change to GECP makes it accurate

• Sparse matrices with

– Acyclic sparsity patterns, Cost = O(n3)

– Particular sparsity and sign patterns (“Total Sign Compound”)

Cost = O(n4)

• Other Totally Positive matrices (but cost not always poly)

• What do these matrices have in common?

Traditional Model - What we can do

• Goal: evaluate homogeneous polynomial f(x) accurately on domain D
• Property A: f =

∏
m fm where each factor fm satisfies one of

1. fm of the form xi, xi − xj or xi + xj, or

2. |fm| bounded away from 0 on D
• Conjecture 1: f satisfies Prop. A iff f(x) can be evaluated accurately

• Conjecture 2: f satisfies Prop. A iff f(x) has a relative perturbation theory:

– relative error in output = O(κrel· relative error in input)

– κrel = O(1/min
|xi±xj|
|xi|+|xj|) = O(1/ smallest relative gap among inputs)

– Tiny outputs often well conditioned

– Relative perturbation theory justifies computing them!

• Intuition:

– Everything works if f(x) has factors only of forms

xi, xi − xj, xi + xj, positive stuff

– Otherwise, ∀ algorithms ∃ inputs, errors that make relative error large

Bit Models of Arithmetic

• Inputs of form x = m · 2e, e and m integers

• size(x) = # bits used to represent x = #bits(m) + #bits(e)

• Can evaluate any rational expression accurately

– Convert to poly/poly, using high enough precision

– Question is cost

• Cost depends strongly on #bits(e)

– Short Exponent Model (SEM)

∗ #bits(e) = O(log(#bits(m)))

∗ Equivalent to integer arithmetic

∗ Can CAE many problems

– Long Exponent Model (LEM)

∗ #bits(e) and #bits(m) independent

∗ Natural model for algorithm design

∗ Like symbolic algebra, which is much harder

Differences between Short and Long Exponent Models - 1

• SEM and integer arithmetic “equivalent”

– Represent m · 2e as integer with
#bits = #bits(m) + e ≈ #bits(m) + 2#bits(e) = poly(#bits(m))

– Any minor of any SEM matrix A computable accurately in poly time

∗ Put all Aij over common denominator

∗ Compute each numerator, denominator exactly

∗ Compute minor using Clarkson’s Algorithm

– Can do accurate linear algebra in polynomial time

• LEM and integer arithmetic not equivalent

–
∏n
i=1(1 + xi) can have exponentially more bits if xi LEM than SEM

– Getting arbitrary bit of
∏n
i=1(1 + xi) as hard as permanent

– Testing if an LEM matrix is singular may not be in NP

– For efficiency, matrices need structure

Differences between Short and Long Exponent Models - 2

• Cond(A) in LEM can be exponentially larger than in SEM

– SEM: log cond(A) is poly(size(A))

∗ Conventional algorithms using log cond(A) bits are polynomial

– LEM: log cond(A) can be exponential in size(A)

∗ cond(diag(2e, 1)) = 2e ≈ 22
#bits(e)

∗ Conventional algorithms using log cond(A) bits are not polynomial

• log log cond(A) is lower bound on complexity of any FP algorithm

– # bits needed to print out exponent of answer

Which FP Expressions can we CAE
in the Long Exponent Model (LEM)?

• Def: r(x) is in factored form if

r(x) =
n∏

i=1
pi(x1, ..., xk)

ei

where

pi(x1, ..., xk) =
t∑

j=1
αij · xeij11 · · ·xeijkk

and

size(r) = #bits to write down r

• Theorem: We can CAE r in time poly(size(r))

– Compute each monomial αij · xeij11 · · ·xeijkk , exactly

– Compute pi(x1, ..., xk) by sorting and adding monomials, rounding

– Compute pi(x1, ..., xk)
ei by repeated squaring, rounding

– Compute
∏n
i=1 pi(x1, ..., xk)

ei by multiplying, rounding

• Def: A family An(x) of n-by-n rational matrices is polyfactorable if

each minor r(x) is in factored form of size size(r) = O(poly(n))

• Thm: Suppose An(x) is polyfactorable. Then in the LEM

we can CAE LU with pivoting, A−1, singular values.

Cost comparison of LEM to symbolic algebra

• Cost(Accurate evaluation in Long Exponent Model) ≥
Cost(deciding if symbolic expression ≡ 0)

• Proof idea: Simulate symbolic algebra using numbers with large exponents

– 2a and 2b are like indeterminates x and y, because

a and b can be extracted from 2a · 2b = 2a+b

– Given p(X1, ...,Xn), ∃ numbers x1, ..., xn such that p ≡ 0 iff p(x1, ..., xn) = 0

– Cost(Accurate evaluation of p) ≥ Cost(deciding if p ≡ 0)

• Example: determinant of A each entry of which is rational

Summary of differences between Arithmetic Models

• What can we CAE in LEM that we could not in TM?

– Rational Expressions

∗ LEM: anything in factored form can be computed accurately

in polynomial time

· Not detA where each Aij independent: size is n!

∗ TM: factors limited to being

· xi, xi + xj, xi − xj, or

· bounded away from 0

– Matrix computations

∗ Take any A(x) that we can CAE in TM, substitute xi = pi(y)

∗ Green’s matrices (inverses of tridiagonals, represented as Aij = xiyj)

• What can we CAE in SEM that we could not in LEM?

– Rational matrices with arbitrary polynomial-sized entries

Open Questions

• Are there FP expressions that we provably cannot CAE in LEM?

–
∏n
i=1(1 + xi) − ∏n

j=1(1 + yj)

– Determinant of general matrix

– Determinant of tridiagonal matrix

• What changes if we have sign information?

– We have accurate algorithms for all TP matrices, but not efficient

– How big a class of TP matrices can we do efficiently?

• Differential equations

– Only simplest ones understood (eg M-matrices)

– What about other discretizations?

– Conjecture: Accuracy depends only on geometry, not material properties

• Exploit sparsity for efficiency

• What about nonsymmetric eigenproblem?

Conclusions

• We have identified many classes of floating point expressions and

matrix computations that permit

– Accurate solutions: relative error < 1

– Efficient solutions: time = poly(input size)

• Explored 3 natural models of arithmetic

– Traditional Model (TM)

– Long Exponent Model (LEM)

– Short Exponent Model (SEM)

• New efficient algorithms for each

• TM
⊂

= LEM

⊂

=? SEM

• Lots of open problems

• See www.cs.berkeley.edu/~demmel for more information

