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Goal

• Compute y = f(x) with floating point data x accurately and efficiently

• f(x) may be
– Rational function

– Solution of linear system Ay = b

– Solution of eigenvalue problem Ay = λy ...

• Accurately means with guaranteed relative error e < 1
– |ycomputed − y| ≤ e · |y|
– e = 10−2 means 2 leading digits of ycomputed correct

– ycomputed = 0 = y must be exact

• Efficiently means in “polynomial time”
• Abbreviation: CAE means “Compute Accurately and Efficiently”



Example: 100 by 100 Hilbert Matrix H(i, j) = 1/(i+ j − 1)

• Eigenvalues range from 1 down to 10−150

• Old algorithm, New Algorithm, both in 16 digit arithmetic
Log10(eigenvalues)
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0

• Cost of Old algorithm in high enough precision = O(n3D2) where

D = # digits = log(λmax/λmin) = log cond(A) = 150 decimal digits

• Cost of New algorithm = O(n3 logD)

• When D large, new algorithm exponentially faster

• New algorithm exploits structure of Cauchy matrices



Example: Adding Numbers in Traditional Model of Arithmetic

• fl(a⊗ b) = (a⊗ b)(1 + δ) where roundoff error |δ| ≤ ε � 1

• How can we lose accuracy?
– OK to multiply, divide, add positive numbers

– OK to subtract exact numbers (initial data)

– Accuracy may only be lost when subtracting approximate results:

.12345xxx

- .12345yyy

.00000zzz

• Thm: In Traditional Model it is impossible to add x+ y + z accurately

– Proof sketch later

• Adding numbers represented as bits easier ...



Adding Numbers in Bit Model of Arithmetic

• x = m · 2e where m and e are integers, m at most b bits

• fl(x+ y) is correctly rounded result

• Cancellation is obstable to accuracy and efficiency:
– (2e + 1)− 2e requires e bits of intermediate precision
– Not polynomial time!

• “Sort and Sum” Algorithm for S = ∑n
i=1 xi

Sort so |e1| ≥ |e2| ≥ · · · ≥ |en| ... |x1| ≥ · · · ≥ |xn| more than enough
S = 0 ... B > b bits

for i = 1 to n

S = S + xi

• Thm: Let N = 1 + 2B−b + 2B−2b + · · · 2B mod b = 1 + 	 2B−b
1−2−b
. Then

– If n ≤ N , then S accurate to nearly b bits, despite any cancellation

– If n ≥ N + 2, then S may be completely wrong (wrong sign)

– If n = N + 1, 2 cases, depending on whether s2 denormal

• Ex: xi double (b = 53), S extended (B = 64) ⇒ N = 2049



Structure of Prior Results

• Classes of rational expressions (matrices whose entries are expressions)
that we can CAE depends strongly on Model of FP Arithmetic

1. Traditional Model (TM for short):

fl(a⊗ b) = (a⊗ b)(1 + δ) where |δ| ≤ ε � 1

no over/underflow

2. Bit model: inputs are m · 2e, with “long exponents” e (LEM for short)

3. Bit model: inputs are m · 2e, with “short exponents” e (SEM for short)

• Classes of expressions (matrices) that we can CAE are described by
factorizability properties of expressions (minors of matrices)

TM
⊂

= LEM

⊂

=? SEM

• New algorithms can be exponentially faster than conventional algorithms that
just use high enough precision



Structure of New Results

• All in Traditional Model (TM): fl(a⊗ b) = (a⊗ b)(1 + δ) where |δ| ≤ ε � 1

• Necessary condition on polynomial p(x) for existence of algorithm for accurate
evaluation in TM model

– Just depends on variety V (p) = {x : p(x) = 0}
– Conjecture from ICM 2002 half right - not sufficient in real case!

• Goal: decision procedure to either exhibit accurate algorithm for p, or

proof that one does not exist

– When data complex: Simple necc. & suff. condition on V (p)

– When data real: Will show main induction step
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Cost of Accuracy in TM (1)

Matrix Type det(A) A−1 Minor GENP GEPP GECP SVD NENP EVD

Cauchy

TP Cauchy

Vandermonde

TP Vandermonde

Confluent

Vandermonde

TP Confluent

Vandermonde

Vandermonde

3 Term Orth. Poly.

Generalized

Vandermonde

TP Generalized

Vandermonde

Any TP

GENP/PP/CP = Gaussian Elimination with No/Partial/Complete Pivoting

SVD = Singular Value Decomposition

NENP = Neville Elimination (bidiagonal factorization) with No Pivoting

EVD = Eigenvalue Decomposition



Cost of Accuracy in TM (2)

TP = Totally Positive (all minors nonnegative)

Matrix Type

Cauchy Cij = 1/(xi + yj)

TP Cauchy xi ↗, yj ↗, x1 + y1 > 0

Vandermonde Vij = xj−1i , xi distinct

TP Vandermonde 0 < xi ↗
Confluent

Vandermonde
if some xi coincide, differentiate rows of V

TP Confluent

Vandermonde
0 < xi ↗

Vandermonde

3 Term Orth. Poly.
Vij = Pj(xi), Pj orthogonal polynomial from 3-term recurrence

Generalized

Vandermonde
Gij = x

λj+j−1
i , λj nonnegative increasing integer sequence

TP Generalized

Vandermonde
0 < xi ↗

Any TP Given by its Neville Factorization



Cost of Accuracy in TM

Known results + New Results

Matrix Type det(A) A−1 Minor GENP GEPP GECP SVD NENP EVD

Cauchy n2 n2 n2 n2 n2 n3 n3 n2

TP Cauchy n2 n2 n2 n2 n2 n3 n3 n2 n3

Vandermonde n2 No No No No No n3 n2

TP Vandermonde n2 n3 exp n2 n2 exp n3 n2 n3

Confluent

Vandermonde
n2 No No No No No n2

TP Confluent

Vandermonde
n2 n3 n3 n3 n2 n3

Vandermonde

3 Term Orth. Poly.
n2 n3

Generalized

Vandermonde
No No No No No No No

TP Generalized

Vandermonde
Λn2 Λn3 exp Λn2 Λn2 exp Λn3 Λn2 Λn3

Any TP n n3 exp n3 exp exp n3 0 n3



Other examples in Traditional Model

• Diagonal * Totally Unimodular * Diagonal
– Includes 2nd centered difference approximations to

Sturm-Liouville equations and elliptic PDEs on uniform meshes

• Sparse matrices with
– Acyclic sparsity patterns

– Particular sparsity and sign patterns: “Total Sign Compound”

• Weakly Diagonally Dominant M-Matrices

• What do these examples have in common?
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What do all these examples have in common?

• Notation
– p(x) is polynomial to be evaluated, x = (x1, x2, ...)

– pcomp(x, δ) is result of algorithm for p(x)

– δ = (δ1, δ2, ...) is vector of rounding errors

• Goal: Decide if ∃ algorithm pcomp(x, δ) to evaluate p(x) with small relative

error on domain D:
∀ 0 < η < 1 ... for any η = desired relative error

∃ 0 < ε < 1 ... there is an ε = maximum rounding error

∀ x ∈ D ... so that for all x in the domain

∀ |δi| ≤ ε ... and for all rounding errors bounded by ε

|pcomp(x, δ)− p(x)| ≤ η · |p(x)| ... relative error is at most η
• Given p(x) and D, seek effective procedure (”compiler”) to exhibit algorithm,
or show one does not exist

• Not obviously Tarski-decideable: how do we express ”∃ algorithm”?



Formalizing an Algorithm under Traditional Model

• Numerical operations included
– Include ±, ×, (exact) unary −
– We omit ÷ (restrictive?)

• Comparison and Branching
– Assume branching on exact comparisons a > b, c ≤ d, ...

– Will sketch proof in nonbranching case

• Determinism
– Is 3 + 7 same no matter where computed?

– Will assume nondeterministic for now

• Available constants
– With

√
2, could compute x2− 2 = (x− √

2)× (x+√
2) accurately, else not

– Will sketch proof when no constants

– Limits us to integer coefficients, zero constant term in p(x)

∗ Replace 2× x by x+ x, etc.

∗ No loss of generality for homogeneous polynomials, integer coeffs



Recognizing Accuracy

• Ex: Compute p(x) = x1 + x2 + x3

– Try pcomp(x, δ) = ((x1 + x2)(1 + δ1) + x3)(1 + δ2)

– rel err(x, δ) =
pcomp(x,δ)−p(x)

p(x)
= x1+x2

x1+x2+x3
(δ1 + δ2 + δ1 · δ2) + x3

x1+x2+x3
(δ2)

– ∀ε > 0, rel err(x, δ) unbounded on an open subset of (x, δ) with |δi| < ε

• Generally: rel err(x, δ) = ∑
α
pα(x)
p(x)

· δα

– Each pα(x)
p(x)

must be bounded near p(x) = 0

• Ex: p(x) > 0 (positive definite) and homogeneous of degree d
– If pα(x) also homogeneous of degree d, then

pα(x)
p(x)

bounded

– Holds if all intermediate results in pcomp are homogeneous



Examples

• M2(x, y, z) = z6 + x2 · y2 · (x2 + y2 − 2 · z2)
– Positive definite and homogenous, easy to evaluate accurately

• M3(x, y, z) = z6 + x2 · y2 · (x2 + y2 − 3 · z2)
– Motzkin polynomial, nonnegative, zero at |x| = |y| = |z|

if |x− z| ≤ |x+ z| ∧ |y − z| ≤ |y + z|
p = z4 · [4((x− z)2 + (y − z)2 + (x− z)(y − z))] +

+z3 · [2(2(x− z)3 + 5(y − z)(x− z)2 + 5(y − z)2(x− z) +

2(y − z)3)] +

+z2 · [(x− z)4 + 8(y − z)(x− z)3 + 9(y − z)2(x− z)2 +

8(y − z)3(x− z) + (y − z)4] +

+z · [2(y − z)(x− z)((x− z)3 + 2(y − z)(x− z)2 +

2(y − z)2(x− z) + (y − z)3] +

+(y − z)2(x− z)2((x− z)2 + (y − z)2)

else ... 2#vars−1 more analogous cases

• M4(x, y, z) = z6 + x2 · y2 · (x2 + y2 − 4 · z2)
– Impossible to evaluate accurately



Allowable Sets

• Define basic allowable sets

– Zi = {x : xi = 0}
– Sij = {x : xi + xj = 0}
– Dij = {x : xi − xj = 0}

• Def: A set is allowable if it can be written as an arbitrary

union and intersection of basic allowable sets (plus null set, Rn)

• We say p(x) is allowable if its variety V (p) is allowable



Necessary condition for existence of an Accurate Algorithm

• Theorem: A necessary condition for the existence of an accurate algorithm to
evaluate p(x) on Rn or Cn is that V (p) be allowable.

– Proof sketch later (if time)

• Examples
– p(x, y, z) = x+ y + z not allowable (D., Koev)

–M2(x, y, z) = z6 + x2 · y2 · (x2 + y2 − 2 · z2) is allowable: V (M2) = {0}
–M3(x, y, z) = z6 + x2 · y2 · (x2 + y2 − 3 · z2) is allowable:
V (M3) = {|x| = |y| = |z|}.

–M4(x, y, z) = z6 + x2 · y2 · (x2 + y2 − 4 · z2) is unallowable
– V (det(Toeplitz)) is unallowable ⇒ no accurate linear algebra for Toeplitz

matrices in TM: need arbitrary precision arithmetic

– V (det(your favorite structured matrix)) ...



Sufficient conditions for accurate evaluation

• Over Cn, V (p) being allowable is necessary and sufficient for accuracy
– Proof Sketch: Can show V (p) allowable ⇒ p = c · ∏

i pi where each pi of

form xj or xj ± xk

• Over Rn, V (p) being allowable not a sufficient condition for accuracy:

– p = (u4 + v4) + (u2 + v2)(x+ y + z)2 and

q = (u4 + v4) + (u2 + v2)(x2 + y2 + z2)

are both allowable: V (p) = V (q) = {u = v = 0}
– But q can be evaluated accurately and p can’t be

– Why: dominant term of q near V (q) is

qdom = (u
2 + v2)(x2 + y2 + z2) which is allowable

– But pdom = (u
2 + v2)(x+ y + z)2 is not allowable

– Idea of inductive decision procedure: look at all ”dominant terms” near all

components of V (p)

∗ Ask if each dominant term can be evaluated accurately

∗ Build accurate algorithm for p by using accureate algorithms for each

pdom

∗ Need Thm: ∃ accurate pcomp iff ∀pdom∃ accurate pdom,comp



What are ”dominant terms near V (p)”?

• Example:
p = (x81 + x82) · (x3 + x4 + x5)

2 + (x21x
4
2 + x41x

2
2) · ((x3 − x4)

4 + x45)

≡ (x81 + x82) · p1 + (x21x42 + x41x
2
2) · p2

• V (p) = {x1 = x2 = 0} ∪ {x3 = x4 = x5 = 0} allowable
• Near {x1 = x2 = 0} dominant terms are
1. x82 · p1 when |x1| � x22

2. x82 · p1 + x21x
4
2 · p2 when |x1| ≈ x22

3. x21x
4
2 · p2 when x22 � |x1| � |x2|

4. (x21x
4
2 + x41x

2
2) · p2 when |x1| ≈ |x2|

5. x41x
2
2 · p2 when x21 � |x2| � |x1|

6. x41x
2
2 · p2 + x81 · p1 when x21 ≈ |x2|

7. x81 · p1 when |x2| � x21

• In Cases 1 and 7, pdom not allowable ⇒ no accurate algorithm

• These cases arise from examining set of exponents of x1, x2, namely

(8, 0), (4, 2), (2, 4), (0, 8): Newton polytope



Proof Sketch that V (p) allowable is necessary for accuracy (1/4):

• Def: Allow(x) is the smallest allowable set containing x
Allow(x) = Rn ∩ (∩i: xi=0Zi) ∩ (∩i,j: xi+xj=0Sij) ∩ (∩i,j: xi−xj=0Dij)

• Ex: Allow((0, 1,−1, 2)) = Z1 ∩ S23

• If V (p) not allowable, then
G(p) ≡ V (p)− ∪A

is nonempty, where the union is over all allowable sets A contained in V (p)

• Def: G(p) called the set of points in “general position” in V (p)



Proof Sketch (2/4)

• Assume no branching for simplicity
• Let pcomp(x, δ) denote result of computation.
• Main Lemma: Choose any x. One of following two cases must hold:
1. pcomp(x, δ) is nonzero at x for all δ in a Zariski-open set

2. pcomp(y, δ) = 0 for all y ∈ Allow(x) and all δ
• Suppose V (p) not allowable. Choose any x ∈ G(p) ⊂ V (p). Then either

1. pcomp(x, δ) is nonzero at x for all δ in a Zariski-open set

but p(x) = 0, so the relative error is ∞
2. pcomp(y, δ) = 0 for all y ∈ Allow(x) and all δ
but p(y) 
= 0 a.e., so the relative error is 1

• Can use continuity argument to show that relative error must be large on open
set of (x, δ): i.e. large error on ”large” set



Proof Sketch (3/4)

• Main Lemma: Choose any x. One of following two cases must hold:
1. pcomp(x, δ) is nonzero at x for all δ in a Zariski-open set

2. pcomp(y, δ) = 0 for all y ∈ Allow(x) and all δ
• For simplicity, suppose no branching, no data reuse, nondeterminism
– Implies that pcomp(x, δ) can be represented as a graph:

∗ Source nodes representing data xi, output edges connected to ...
∗ Computational nodes, arranged in a tree, of following kinds:

· 2-inputs, producing fl(a ⊗ b) = (a ⊗ b)(1 + δnode) (⊗ ∈ {+,−,×})
with independent |δnode| ≤ ε for each node

· 1-input, producing fl(x⊗ x) = (x⊗ x)(1 + δnode)

(note: fl(x− x) = 0 exactly)

· 1-input, producing −x exactly
∗ Destination node, one input, no output



Proof Sketch (4/4)

• Main Lemma: Choose any x. One of following two cases must hold:
1. pcomp(x, δ) is nonzero at x for all δ in a Zariski-open set

2. pcomp(y, δ) = 0 for all y ∈ Allow(x) and all δ
• Def: Choose x. Call computational node “nontrivial” if it
– Computes fl(a± b), both a and b nonzero as polynomials in δ

– At least one of a and b not an input xi

• Lemma: Output of all nontrivial nodes nonzero on Zariski-open set of δ
• If ultimate output is from nontrivial node, done (Case 1)

• Otherwise, “trace back” zero output through tree as far as possible
• Can show (case analysis) that zero must result from one of

– xi = 0 (allowable)

– xi ± xj = 0 (allowable)

– x− x or x+ (−x) (in which case alg(x, δ) ≡ 0)

• In any case, pcomp(y, δ) must be zero on Allow(x) (Case 2)



Other results and Future Work

• Need to complete decision procedure
• Want to incorporate
– Determinism (simulate deterministic machine by nondeterministic one)

– Constants (add {x : xi ± α = 0} to basic allowable sets for constant α)
– Domain D limited to (allowable?) semialgebraic sets

– Division and rational functions

– Other basic operation besides ±, ×
∗ How much more can we do with FMA (x+ y · z), x · w − y · z,
det(3 × 3),...

∗ Use this to evaluate instruction sets, extended precision libraries
• Extend to interval arithmetic
• Perturbation theory
– Conjecture: Accurate evaluation possible iff condition number can have

certain simple singularities (depend on reciprocal distance to set of

ill-posed problems)



Conclusions

• We have identified many classes of floating point expressions and
matrix computations that permit

– Accurate solutions: relative error < 1

– Efficient solutions: time = poly(input size)

• Explored 3 natural models of arithmetic
– Traditional Model (TM)

– Long Exponent Model (LEM)

– Short Exponent Model (SEM)

• New efficient algorithms for each: TM ⊂

= LEM

⊂

=? SEM

• New necessary condition for existence of accurate algorithm
to evaluate p(x) in TM – working on effective decision procedure

• Lots of open problems
• For more information see
– www.cs.berkeley.edu/~demmel

– math.mit.edu/~plamen



Extra Slides



Improving LAPACK and ScaLAPACK

• Proposal by J. Demmel and J. Dongarra
• Many opportunities for improvment
– Putting more of LAPACK into ScaLAPACK

– Better (faster and/or more accurate) algorithms

– New functions

– Improving ease of use

– Performance tuning

– Support and reliability

• Seeking suggestions via on-line survey:
– icl.cs.utk.edu/lapack-survey.html



Better (faster and/or more accurate) algorithms

• Offer 2 ”settings” for each driver:
1. As fast as possible with ”standard” accuracy

2. As accurate as possible with ”standard” speed

3. What about memory usage?

• Consider SVD/EVD: Choice of algorithm depends on

– values only / few vectors / many vectors,

– left vectors / right / both

• Options for ”fast as possible”
– Successive Band Reduction (Lang et al)

– Howell/Fulton bidiagonalization

– One-sided bidiagonalization (Ralha et al, Barlow et al, ...)

– Other?

• Options for ”as accurate as possible”
– Jacobi SVD (Drmač et al)

– Symmetric EVD?


