
CS170 – Spring 2007 – Lecture 8 – Feb 8

1 Fast Fourier Transform, or FFT

The FFT is a basic algorithm underlying much of signal processing, image processing, and

data compression. When we all start inferfacing with our computers by talking to them (not

too long from now), the first phase of any speech recognition algorithm will be to digitize our

speech into a vector of numbers, and then to take an FFT of the resulting vector. So one

could argue that the FFT might become one of the most commonly executed algorithms on

most computers.

There are a number of ways to understand what the FFT is doing, and eventually we will use

all of them:

• The FFT can be described as multiplying an input vector x of n numbers by a particular

n-by-n matrix Fn, called the DFT matrix (Discrete Fourier Transform), to get an output

vector y of n numbers: y = Fn·x. This is the simplest way to describe the FFT, and shows

that a straightforward implementation with 2 nested loops would cost 2n2 operations.

The importance of the FFT is that it performs this matrix-vector in just O(n log n) steps

using divide-and-conquer. Furthermore, it is possible to compute x from y, i.e. compute

x = F−1
n y, using nearly the same algorithm, and just as fast. Practical uses of the FFT

require both multiplying by Fn and F−1
n .

• The FFT can also be described as evaluating a polynomial with coefficients in x at a

special set of n points, to get n polynomial values in y. We will use this polynomial-

evaluation-interpretation to derive our O(n log n) algorithm. The inverse operation in

called interpolation: given the values of the polynomial y, find its coefficients x.

• To pursue the signal processing interpretation mentioned above, imagine sitting down

at a piano and playing a chord, a set of notes. Each note has a characteristic frequency

(middle A is 440 cycles per second, for example). A microphone digitizing this sound

will produce a sequence of numbers that represent this set of notes, by measuring the

air pressure on the microphone at evenly spaced sampling times t1, t2, ... , ti, where

ti = i·∆t. ∆t is the interval between consecutive samples, and 1/∆t is called the sampling

frequency. If there were only the single, pure middle A frequency, then the sequence of

numbers representing air pressure would form a sine curve, xi = d · sin(2 · π · ti · 440). To

be concrete, suppose 1/∆t = 45056 per second (or 45056 Hertz), which is a reasonable
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sampling frequency for sound1. The scalar d is the maximum amplitude of the curve,

which depends on how loud the sound is; for the pictures below we take d = 1. Then a

plot of xi would look like the following (the horizontal axis goes from i = 0 (t0 = 0) to

i = 511 (ti ≈ .011 seconds) so that 2 ·π · ti · 440 goes from 0 to ≈ 10π, and the sine curve

has about 5 full periodic cycles:
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x(i) = sin(2*pi*t(i)*440), t(i) = i/45056

The next plots show the absolute values of the entries of y = Fn · x. In the plot on the

left, you see that nearly all the components are about zero, except for two near i=0 and

i=512. To see better, the plot on the right blows up the picture near i=0 (the other end

of the graph is symmetric):
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We will see that the fact that only one value of yi is large for i between 0 and 256 means

that x consists of a sine wave of a single frequency, and since the large value is y6 then

that frequency is one that consists of 5=6-1 full periodic cycles in xi as i runs from 0 to

512.

To see how the FFT might be used in practice, suppose that the signal consists not just
1I have chosen 45056 to make the pictures below look particularly nice, but all the ideas work for different

sampling frequencies.
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of the pure note A (frequency 440), but also an A one octave higher (i.e. with twice the

frequency) and half as loud: xi = sin(2πti440) + .5 sin(2πti880). Both xi and its FFT

(in the range i = 0 to 20) are shown below. The larger nonzero component of the FFT

corresponds to our original signal sin(2πti440), and the second one corresponds to the

sine curve of twice the frequency and half the amplitude.
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But suppose that there is “noise” in the room where the microphone is recording the

piano, which makes the signal xi “noisy” as shown below to the left (call it x′
i). (In

this example we added a random number between −.5 and .5 to each xi to get x′
i.) x

and x′ appear very different, so that it would seem difficult to recover the true x from

noisy x′. But by examining the FFT of x′
i below, it is clear that the signal still mostly

consists of two sine waves. By simply zeroing out small components of the FFT of x′

(those below the “noise level”) we can recover the FFT of our two pure sine curves, and

then get nearly the original signal x(i) back. This is a very simple example of filtering,

and is discussed further in other EE courses.
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For a Java applet that plots x and y = Fn · x at the same time, and lets you move the

xi (or yi) with your mouse, and automatically updates yi (or xi), see
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http://sepwww.stanford.edu/oldsep/hale/FftLab.html. Playing with this will help your in-

tuition about what the FFT does.

Another interactive tool for exploring the FFT is Matlab, for which there is a campus-wide

site liense. All the above graphs were produced using Matlab.

Here is one more example, using the FFT for image compression. An image is just a two

dimension array of numbers, or a matrix, where each matrix entry represents the brightness of

a pixel. For example, 0 might mean black, 1 might mean pure white, and numbers in between

are various shades of gray. Below is shown such a 200-by-320 image.
Original 200 by 320 gray scale image
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What does it mean to use the FFT to compress this image? After all, an image is 2-dimensional,

and so far we have talked about FFTs of 1-dimensional arrays. It turns out that the right thing

to do is the following. Let X be the m-by-n array, or image. Then the easiest way to describe

the algorithm is to compute ffX = Fm · X · Fn. The way these two matrix-multiplications

are actually implemented is as follows:

1. For each column of X, compute its FFT. Call the m-by-n array of column FFTs fX. In

other words, column i of fX is the FFT of column i of X.

2. For each row of fX, compute its FFT. Call the m-by-n array of row FFTs ffX. In

other words, row i of ffX is the FFT of row i of fX.

ffX is called the 2-dimensional FFT of X.

We use ffX for compression as follows. The motivation is similar to what we saw before,
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that the FFT of a pure sine curve has only two nonzero entries. Rather than store all the

zeros, we could simply store the nonzero entries, and their locations. To compress, we will

not only “throw away” the zero entries, but all entries whose absolute values are less than

some threshold t. If we choose t to be small, we keep most entries, and do not compress very

much, but the compressed version will look very similar to the original image. If we choose t

to be large, we will compress a lot, but perhaps get a worse image. For example, when ffX is

200-by-320, and throwing away all the entries of ffX greater than .002 times the largest entry

of ffX leave only 8.6% of the original entries, then the storage drops from 200*320 = 64000

words to 3*.086*64000 = 16512 words. (The factor 3 comes from having to store each nonzero

entry, along with its row index and column index. More clever storage schemes for ffX use

even less space.)

This is called “lossy compression”, as opposed to the “lossless compression” of a scheme like

Lempel-Ziv (used in gzip). The idea is that we can compress more if we are willing to actually

lose information. If all we care about is whether an image “looks good”, which is subjective,

then it is ok to lose some information.

Here are some examples of compressed clowns. The tradeoff between compression and loss of

accuracy is evident.
Image Compressed by FFT,  keep components > 0.001 times largest

Compression (fraction nonzero components) = 0.30325
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Image Compressed by FFT,  keep components > 0.002 times largest

Compression (fraction nonzero components) = 0.086125
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Image Compressed by FFT,  keep components > 0.003 times largest

Compression (fraction nonzero components) = 0.047125
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Image Compressed by FFT,  keep components > 0.006 times largest

Compression (fraction nonzero components) = 0.019484
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Image Compressed by FFT,  keep components > 0.01 times largest

Compression (fraction nonzero components) = 0.0085469
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The complete Matlab program that produced the above images is available on the class home

page. MPEG uses the FFT to compress images, although in a more sophisticated way than

described here.

7



2 Review of Complex Arithmetic

To define the DFT matrix Fn, we will first review complex numbers. We let i denote
√−1,

that is i2 = −1. i is called the pure imaginary unit. Then complex numbers are of the form

z = a + i · b, where a and b are any real numbers. a is the real part of z, sometimes written

a = Rez, and b is the imaginary part of z, sometimes written a = Imz. |z| =
√

a2 + b2 is called

the absolute value or magnitude of z. z̄ = a− i ·b is called the complex conjugate of z = a+ i ·b.
We can think about complex number geometrically by thinking of z = a + i · b as a point

in a 2-dimensional plane, called the complex plane, where a is the x-coordinate and b is the

y-coordinate (you will explore this further on your homework).

We can do addition, subtraction, multiplication and division with complex numbers analo-

gously to real numbers:

(a + i · b) + (c + i · d) = (a + c) + i · (b + d)

(a + i · b) · (c + i · d) = [a · c] + [a · (i · d)] + [(i · b) · c] + [(i · b) · (i · d)]

= [a · c] + [a · (i · d)] + [(i · b) · c] + [b · d · i2]
= [a · c] + [a · (i · d)] + [(i · b) · c] − [b · d]

= [a · c − b · d] + i · [a · d + b · c]

All the usual arithmetic rules (commutativity, associativity and distributivity) can be shown

to hold for complex arithmetic. For example, the reader can confirm that z · z̄ = |z|2 for any

complex number z. Two complex numbers z1 = a + i · b and z2 = c + i · d are the same if and

only if a = c and b = d, i.e. if z1 − z2 = 0 + i · 0 = 0. We leave it to the reader to show that

(a + i · b) · ( a

a2 + b2
− i · b

a2 + b2
) = 1 + i · 0 = 1

so that
1
z

=
1

a + i · b =
a

a2 + b2
− i · b

a2 + b2
=

z

|z|2
Another fact about complex numbers that we need is that for any number θ

ei·θ = cos θ + i · sin θ

To illustrate this fact note that by the law of exponents and above definition of ei·θ

ei·a · ei·b = ei·(a+b)

= cos(a + b) + i · sin(a + b) (1)

But we can also write

ei·a · ei·b = (cos a + i · sin a) · (cos b + i · sin b)

= (cos a · cos b − sin a · sin b) + i · (sin a · cos b + cos a · sin b) (2)
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Comparing equations (1) and (2), we get

cos(a + b) = cos a · cos b − sin a · sin b

sin(a + b) = sin a · cos b + cos a · sin b

which are standard trigonometric identities (remembering that ei·a · ei·b = ei·(a+b) and ei·θ =

cos θ + i · sin θ is probably the easiest way to remember them!).

Another simple fact we will need is that

ei·θ = cos θ + i · sin θ = cos θ − i · sin θ = cos(−θ) + i · sin(−θ) = e−i·θ

3 Definition of the DFT Matrix

We next need to define the primitive n-th root of unity

ω = e2πi/n = cos
2π
n

+ i · sin 2π
n

It is called an n-th root of unity because

ωn = e(2πi/n)n = e2πi = cos 2π + i · sin 2π = 1 + i · 0 = 1

Note that all other integer powers ωj are also n-th roots of unity; since they are all powers of

ω, ω is called primitive.

Finally, we can define the n-by-n DFT matrix Fn. We will denote its entries by f
(n)
jk or just

fjk if n is understood from context. To make notation easier later we will let the subscripts j

and k run from 0 to n − 1 instead of from 1 to n. Then

f
(n)
jk = ωjk = e

2πijk
n

Here is an important formula that shows that the inverse of the DFT matrix is very simple:

Lemma. Let Gn = 1
nFn, that is

gjk =
f jk

n
=

ωjk

n
=

ω−jk

n

Then Gn is the inverse matrix of Fn. In other words, if y = Fn · x, then x = Gn · y.

Proof: We compute the j, k-th component of the matrix product Gn · Fn, and confirm that it

equals 1 if j = k and 0 otherwise.

(Gn · Fn)j,k =
n−1∑
r=0

gjrfrk

=
1
n

n−1∑
r=0

f̄jrfrk
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=
1
n

n−1∑
r=0

ω−jrωrk

=
1
n

n−1∑
r=0

ωr(k−j)

Now if j = k, then ωr(k−j) = ω0 = 1, and the expression equals 1 as desired. Otherwise, if

j �= k, we have a geometric sum which equals

(Gn · Fn)j,k =
1
n

n−1∑
r=0

(ωk−j)r

=
1
n

ω(k−j)n − 1
ωj−k − 1

=
1
n

(ωn)k−j − 1
ωj−k − 1

=
1
n

1k−j − 1
ωj−k − 1

= 0

as desired.

Note that evaluating y = Fn · x by standard matrix-vector multiplication would cost 2n2

arithmetic operations. The FFT is a way to perform matrix-multiplication by the special

matrix Fn in just O(n log n) operations.

4 Interpreting y = Fn · x as polynomial evaluation

By examining the formula for yj in y = Fn · x we see

yj =
n−1∑
k=0

fjk · xk =
n−1∑
k=0

(ωj)k · xk

so that yj is just the value of the polynomial p(z) at z = ωj , where

p(z) =
n−1∑
k=0

zk · xk

In other words, the xk are just the coefficients of the polynomial p(z), from the constant term

x0 to the highest order term xn−1. Note that the degree of p(z), the highest power of z that

appears in p(z), is at most n − 1 (if xn−1 �= 0).

By our Lemma in the last section x = 1
nFn · y gives a formula for finding the coefficients xj

of the polynomial p(z) given its values at the n-th roots of unity ωk, for 0 ≤ k ≤ n − 1.

Computing polynomial coefficients given polynomial values is called interpolation.
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5 Deriving the FFT

We will use this polynomial evaluation interpretation to derive an O(n log n) algorithm using

divide and conquer. More precisely, the problem that we will divide-and-conquer is “evaluate

a polynomial of degree n − 1 at n points”. Write the polynomial p that we just defined as

follows, putting the “even terms” into one group and the “odd terms” into another:

p(z) = x0 + x1 · z + x2 · z2 + · · · + xn−1 · zn−1

= (x0 + x2 · z2 + x4 · z4 + · · ·) + (x1 · z + x3 · z3 + x5 · z5 + · · ·)
= (x0 + x2 · z2 + x4 · z4 + · · ·) + z · (x1 + x3 · z2 + x5 · z4 + · · ·)
= peven(z2) + z · podd(z2)

Here we have defined two new polynomials with the even-numbered coefficients (peven(z′) =
∑n/2−1

i=0 x2iz
′i) and odd-numbered coefficients (podd(z′) =

∑n/2−1
i=0 x2i+1z

′i) as coefficients. So

we have reduced the problem of computing the FFT, or evaluating p at n points ωj (0 ≤
j ≤ n − 1), to evaluating the two polynomials peven and podd at z′ = z2 = ω2j . To get a

divide-and-conquer algorithm, we have to show that evaluating peven and podd are “half as big

problems” as evaluating p:

• Both peven and podd have degree at most n/2 − 1, whereas p has degree at most n − 1.

So the “degree + 1” has been cut in half.

• We have to show that we only have to evaluate peven and podd at n/2 points instead of

n. It appears that we have to evaluate them at the n points ω2j, 0 ≤ j ≤ n − 1. But it

turns out that only n/2 − 1 of these numbers are distinct, because

ω2j = e2πi 2j
n = e2πi( 2j

n
+1) = e2πi

2(j+ n
2

)

n = ω2(j+ n
2
)

i.e. the n
2 numbers ω2·0, ω2·1, ω2·2, . . . ω2·(n

2
−1) are the same as the n

2 numbers ω2·n
2 ,

ω2·(n
2
+1), ω2·(n

2
+2), . . . ω2·(n

2
+(n

2
−1)).
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This lets us write down our first, recursive version of the FFT:

function FFT(x) ... n = length(x)

if n = 1

return x ... 1-by-1 FFT is trivial

else

peven =FFT((x0, x2, x4, ...xn−2))

podd =FFT((x1, x3, x5, ...xn−1))

ω = e2πi/n

for j = 0 to n/2 − 1

pj = peven,j + ωj · podd,j

pj+n/2 = peven,j + ωj+n/2 · podd,j

endfor

end if

We analyze the complexity of this divide-and-conquer scheme in the usual fashion, by writing

down a recurrence: T (n) = 2T (n/2) + Θ(n), or T (n) = O(n log n) by our general solution to

such recurrences.

6 Making the FFT Efficient

In practice the FFT may not be implemented recursively, but with two simple, nested loops,

that we get by “unwinding” the recurrence. The complexity is the same in the O(.) sense, but

may be more efficient.

Like matrix multiplication, the FFT is so important that an automatic tuning system to search

for the fastest implementation on any particular computer and for any value of n has been

written; see www.fftw.org.

First we can eliminate some arithmetic in the inner loop by noting that

ωj+n/2 = e2πi(j+n/2) = e2πij+πi = e2πi · eπi = −e2πi = −ωj

so the loop

for j = 0 to n/2 − 1

pj = peven,j + ωj · podd,j

pj+n/2 = peven,j + ωj+n/2 · podd,j

endfor
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reduces to

for j = 0 to n/2 − 1

tmp = ωj · podd,j

pj = peven,j + tmp

pj+n/2 = peven,j − tmp

endfor

The next figure unwinds the recursion for n = 8. Note there are 4 = log2 n + 1 levels in the

tree; the bottom level would consist of recursive calls to FFTs of vectors of length 1, and so

this is just the initial data. Thus there are really log2 n levels of recursion.

FFT( 0,1,2,...,7 )

= FFT( xxx_2 )

| |

---------------- ----------------

| |

FFT( even ) FFT( odd )

= FFT( 0,2,4,6 ) = FFT( 1,3,5,7 )

= FFT( xx0_2 ) = FFT( xx1_2 )

| | | |

------ ------- ------ -------

| | | |

FFT( even ) FFT( odd ) FFT( even) FFT( odd)

= FFT( 0,4 ) = FFT( 2,6 ) = FFT( 1,5 ) = FFT( 3,7 )

= FFT( x00_2 ) = FFT( x10_2 ) = FFT( x01_2 ) = FFT( x11_2 )

| | | | | | | |

---- ---- ---- ---- ---- ---- ---- ----

| | | | | | | |

| | | | | | | |

FFT(even) FFT(odd) FFT(even) FFT(odd) FFT(even) FFT(odd) FFT(even) FFT(odd)

= FFT(0) = FFT(4) = FFT(2) = FFT(6) = FFT(1) = FFT(5) = FFT(3) = FFT(7)

We have indicated which components of x are passed as arguments to each recursive call. To

keep track of the “evens” and “odds”, we have both written out the subscripts explicitly in

the figure above, as well as shown their bit patterns. For example, in the root xxx 2 means

that the subscripts of the arguments consist of all 8 binary numbers with 3 bits (each x could

be a 0 or 1). In the right child of the root, corresponding to the recursive call on the even

subscripts 0,2,4,6, the bit pattern of these subscripts is shown as xx0 2, meaning all 4 binary

numbers with a 0 rightmost bit. Similarly, the right child of the root handles odd subscripts

1,3,5,7 with bit patterns xx1 2.
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What is important to note is that this pattern repeats at each level, the even subscripts are

gotten by taking the rightmost x in the bit pattern of the parent, and changing it to 0. The

odd subscripts are gotten by taking the same bit and changing it to 1.

The nonrecursive FFT evaluates the above tree by doing all the leaf nodes first, then all their

parents, then all their parents, etc., up to the root. In contrast, the recursive FFT amounts

to doing postorder traversal on the above tree. Any order is legal as long as the children

are completed before the parents, but our nonrecursive FFT (see below) will require just two

nested loops: the outer one from tree level log2 n down to 1, and the inner loop from 0 to n,

to do all the arithmetic in the body of the FFT. Let s = log2 n.

function FFT(x) ... overwrite x with FFT(x)

for j = 0 to s − 1 ... for each level of the tree from bottom to top

for k = 0 to n/2 − 1 ... for each pair of even/odd values to combine

let k = (k0k1 · · · ks−3ks−2)2 be the binary representation of k

... i.e. k0 is the leading bit of k, k1 is the next bit, etc.

... note that k only has s − 1 bits

let keven = (k0 · · · kj−10kj · · · ks−2)2 ... subscript of even coefficient

...i.e. take the bits of k, and insert a 0 before bit kj and/or after bit kj−1

let kodd = (k0 · · · kj−11kj · · · ks−2)2 ... subscript of odd coefficient

...i.e. take the bits of k, and insert a 1 before bit kj and/or after bit kj−1

x even = xkeven

x odd = xkodd

w = e2πie(j,k)/n ... power of ω stored in a table

tmp = w · x odd

xkeven = x even + tmp

xkodd
= x even − tmp

endfor

endfor

In this algorithm, as bits k0 · kj−1 take on their 2j possible values for a fixed value of bits

kj · · · ks−2, the inner loop executes one 2j+1 point FFT at level j of the tree (j = s − 1 is the

root). Different values of bits kj · · · ks−2 correspond to different FFT calls at the same level of

the tree.

This implementation makes it easy to see that the complexity is s · (n/2) · 3 = (3/2)n log2 n,

where we have counted the number of complex arithmetic operations in the inner loop, and

assumed that w is looked up in a table depending on the integer e(j, k). If we take into
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account that complex addition costs 2 real additions, and complex multiplications take 4 real

multiplications and 2 real additions, the real operation count is 5n log2 n.

Let us examine the pattern of subscripts produced by the algorithm. The values of keven and

kodd produced by this can be seen to be

j = 0 j = 1 j = 2

k = 0 keven 0 0 0

kodd 4 2 1

k = 1 keven 1 1 2

kodd 5 3 3

k = 2 keven 2 4 4

kodd 6 6 5

k = 3 keven 3 5 6

kodd 7 7 7

A graphical way to see the pattern of subscripts being combined in the inner loop is as follows.
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Data Dependencies in an

There is one column of dots for each level in the tree. Each dot represents the value of an
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entry of the vector x at a level in the tree. So the leftmost column of dots represents the initial

data, and the rightmost column represents the final answers. There is an edge connecting a

dot to another dot to its right if the value of the right dot is computed using the value of

the left dot. For example, consider the top, leftmost, heavy black “butterfly”. These 4 edges

connecting x0 = x0002 and x4 = x1002 in the leftmost column to x0 = x0002 and x4 = x1002 in

the next column mean that in the first pass through the inner loop (j = k = 0), xkeven = x0

and xkodd
= x4 are combined to get new values of x0 and x4. Thus each “butterfly” represents

one pass through the inner loop.

The numbers at the left of the picture are the subscripts of the initial data. The numbers

at the right are the subscripts of the final data, the computed FFT. It turns out that they

are not returned in order, but in bit reverse order. In other words when the computation

is completed x1 = x0012 does not contain component 1 = 0012 of the FFT, but component

4 = 1002, because 1002 is the bit reversal of 0012.

7 Multiplying Polynomials

At the beginning of our discussion of FFTs, we motivated them by a signal processing appli-

cation, namely filtering noise from a signal (sound received by a microphone and digitized).

We will now talk about to do polynomial multiplication using the FFT, and then how to use

this to do filtering. Another common term for this process is convolution.

Let p(z) =
∑n−1

k=0 pkz
k and q(z) =

∑n−1
j=0 qjz

j be two polynomials of degree at most n−1. Then

their product r(z) = p(z) · q(z) is the polynomial of degree at most 2(n − 1):

r(z) =
2(n−1)∑
m=0

rmzm

= p(z) · q(z)

= (
n−1∑
k=0

pkz
k) · (

n−1∑
j=0

qjz
j)

=
n−1∑
k=0

n−1∑
j=0

pkqjz
k+j

=
2(n−1)∑
m=0

m∑
l=0

plqm−lz
m where m = k + j

=
2(n−1)∑
m=0

zm
m∑

l=0

pkqm−l

so rm =
∑m

l=0 pkqm−l. The following picture explain how we transformed the sum in line 4

above to the sum in line 5 (each grid point represents a (j, k) value when n = 4, and m is

constant along diagonals):

16



��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

����������������������

m=0     1      2      3      4       5      6

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

��
��
��

��
��
��

j

k

We also say that the vector of coefficients of r(z) is the convolution of the vector of coefficients

of p(z) and q(z).

If we evaluated the rm using the above formula straightforwardly, it would cost
∑2(n−1)

m=0 m =

O(n2) operations. The FFT lets us compute all the rm in O(n log n) time instead. Here is the

algorithm described in terms of polynomials:

1) Evaluate p(z) at 2n points (ωj, 0 ≤ j ≤ 2n − 1)

2) Evaluate q(z) at 2n points (ωj , 0 ≤ j ≤ 2n − 1)

3) Multiply r(ωj) = p(ωj) · q(ωj), 0 ≤ j ≤ 2n

4) Interpolate to get the coefficients of r(z) from the values of r(ωj)

Using the FFT, this becomes

1) Let p = [p0, p1, ..., pn−1, 0, 0, ...0] be a vector of length 2n

(the n coefficients of p followed by n zeros)

p′ =FFT(p)

2) Let q = [q0, q1, ..., qn−1, 0, 0, ...0] be a vector of length 2n

(the n coefficients of p followed by q zeros)

q′ =FFT(q)

3) for m = 0 to 2n − 1

r′m = p′m · q′m
endfor

4) r =inverseFFT(r′)

The cost of steps 1), 2) and 4) is O(n log n), the cost of 3 FFTs. The cost of step 3) is n

multiplications.

Here is how to use the FFT to do filtering. Recall our example from Lecture 13: We start

with the noisy signal x′ at the top left below, and wish to recover the filtered signal x below

it. We do this by taking the FFT of the noisy signal y′ = Fn · x′ (top right plot), setting the

tiny (“noise”) components of y′ to zero to get y (bottom right plot), and taking the inverse

FFT to get the filtered signal x = F−1
n · y (recall that F−1

n = 1
nFn is the inverse FFT).
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To relate y to y′, let the array f ′ (called the filter) be defined by

fj =

⎧⎨
⎩

1 if j ∈ {6, 11, 503, 508}
0 otherwise

Then yj = fj · y′j for all j; this just sets all components of y to zero except 6, 11, 503 and 508

(the last two are not shown). In other words, if we let g = F−1
n · f , we see that filtering the

noise out of y′ is equivalent to taking the convolution of y′ and g to get y. Below is a plot of

g (which you do not need to form in practice):
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As another example, consider the “bass” button on your stereo, which you push to make the
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bass louder. This is equivalent to multiplying the FFT by a filter function which is large for low

frequencies (j near 0 - and because of symmetry - j near 512) and small for high frequencies.

For example, let x′ be a noisy signal similar to the one above (2 pure frequencies at 440Hz

and 880Hz with noise added) and f be a (very strong!) filter equal to one up to j = 25 (and

for j ≥ 489), equal to .1 for 27 ≤ j ≤ 487, and equal to (1 + .1)/2 = .55 at j = 26 and j = 488

(these two values are set so that g = F−1
n · f is real). Then the following are pictures of the

noisy signal x′, the FFT of the noisy signal y′ = Fn · x′ (shown up to j = 50), the FFT of the

filtered signal y where yj = fj · y′j (shown up to j = 50), and the filtered signal x = F−1
n · y.
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Here we show a picture of the filter f and its inverse FFT g = F−1
n · f (shown up to j = 256;

the graphs are symmetric about this point):
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