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CS267

Computational Methods in Biology

Guest Lecture
CS267 

Spring 2005
UC Berkeley

Reading assignment (not mandatory):
Y. Duan and PA Kollman, "Pathways to a protein folding intermediate observed in
a 1-microsecond simulation in aqueous solution," Science 282, 740 (1998).

CS267

The Golden Age of Computing
Gordon Moore (coGordon Moore (co--founder of founder of 
Intel) predicted in 1965 that the Intel) predicted in 1965 that the 
transistor density of transistor density of 
semiconductor chips would semiconductor chips would 
double roughly every 18 months.double roughly every 18 months.

Intel 8080, 1975, 29K transistors

Intel Pentium Pro, 1995, 5.5M transistors
http://www.nersc.gov/~simon/cs267/Lec1.html
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The Revolution in Experimental Biology

Human Genome Initiative
Microbial organisms

C elegans
Human

Structural Genomics Initiative
High throughput effort 

NIH, new beamlines
LBNL: ALS

Functional Annotation Initiative
Gene deletion projects

Yeast two-hybrid screening 
Gene expression micro-arrays

Sequence 

Structure

Function

CS267

Computational Biology

Bioinformatics Biophysics

Discrete mathematics
Statistics

Linear Algebra, Calculus
Scientific computing

Molecular

Cellular

Systems

Physiology

Breadth of computational biology is enormous: underlying biology and 
methods are very different!

should give better idea as to which comp. bio. courses, and related areas 
in biology, chemistry, physics, statistics, and CS to pursue

Physics
Cell Biology

Genetics, Structural Biology

Integrative Biology
Chemistry
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BE143/243: Class Information
Course Time and Place: MWF 3-4P

310 Hearst Mining 

PreReqs: Lower division physics/chem/bio
Math 53 & 54

Lab: Tu, 5-6pm, 1171 Etcheverry

Instructor: Teresa Head-Gordon
Department of Bioengineering
Donner 272
TLHead-Gordon@lbl.gov

TA: TA in charge of computer lab, 
all homework assignments

CS267

Text/Assessment
Text: Understanding Molecular Simulation: From algorithms to 
applications, D. Frenkel and B. Smit (Academic Press, 1996). 

Text Resources: 
Computer Simulation of Liquids, M. P. Allen and D.J. Tildesley (Oxford 

Univ. Press) 1997. 
Numerical Recipes, the Art of Scientific Computing, W. H. Press, B. P. 

Flannery, S. A. Teukolsky, W. T. Vetterling (Cambridge) 1989. 
Molecular Modelling: Principles and Applications, Andrew R. Leach, 

Prentice Hall.
Web-based notes and hand-outs

Assessment: Homework (40%)
Mid-term    (20%)
Final Project (40%)

Homework is critical for final project that involves a class 
competition
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BE143/243: SyllabusBE143/243: Syllabus
(1) Class Introduction and Organization 

Intro to Physical Theories of Matter/Connections to Simulations
Molecular Biology Primer: Sequence, Structure, Function

(2) Protein Folding, Structure Prediction, and Function
Protein folding and disease; Protein-Ligand or Protein-Protein 
Interactions; Protein Design

(3,4) Physical Interactions: Proteins and liquids
All atom models: ab initio vs. empirical potential energy surfaces
Coarse-grained models: lattice and bead protein models

(5,6,7) Probability Theory
Elementary probability, Stochastic variables, Probability
distribution functions
Discrete distributions: Binomial, Poisson; Random walk in 1D
Continuous distribution: Normal or Gaussian
Central limit theorem

(8,9,10,11) Introduction to Monte Carlo Methods
Monte Carlo Integration; Importance Sampling; Markov chain; 
Detailed balance; Metropolis Monte Carlo; Illustrated for atomic
clusters and for chain molecules 

CS267

BE143/243: SyllabusBE143/243: Syllabus
(12, 13) Statistical and Classical Mechanics

Time vs. ensemble average; Microcanonical, canonical, and other 
ensembles; Symplectic properties/stable numerical trajectories 

(14,15,16) Introduction to Molecular Dynamics
Numerical integration schemes: Verlet, Velocity Verlet, Beeman, 
Predictor-Corrector
Liquids: Periodic boundary condition; Minimum image; 
Temperature; Velocity assignment: Box Mueller 

(17,18,19,20) Introduction to Optimization
Mathematical optimization: definitions
Local optimization: Golden Section; bracketing minima; Steepest
descent; Conjugate gradients; Newton Method; BFGS
Global optimization: Simulated Annealing; Dynamic programming;
Branch and Bound

(21,22,23,24) Biologically Inspired Computing
Genetic Algorithms; Neural Networks; DNA computing

(25) CASP/Class Competition in Simulation and Prediction
(26, 27, 28) Treating Bulk Systems

Truncation schemes and corrections; Neighbor Lists; Ewald;  
other methods
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BE143/243: SyllabusBE143/243: Syllabus
Exam Review (Lectures 1-28); Exam

(29, 30, 31, 32) Advanced Monte Carlo Methods
Hybrid Monte Carlo/Molecular Dynamics; Smart Monte Carlo; 
Force Bias; configurational-bias Monte Carlo: Lattice chains,
Flexible chains; Stiff chains

(33, 34, 35, 38) Advanced Molecular Dynamics Methods
Stochastic and Extended System methods; Algorithms for 
Dynamics in NVT and NPT ensembles; Nose- Hoover thermostats
and barostats; multiple time step approach; constraint dynamics

(36, 37) ab initio MD and Quantum Computing
(Guest lectures) 

(39, 40, 41, 42) Coarse-Grained Simulation Methods
Langevin equation; Brownian Dyanmics; Multipole expansions; 
Hydrodynamic Interactions; application to enzymatics

Finals: Projects Due 
Competition Results and Presentation by Group Leaders

CS267

Class Competition in Simulation and 
Prediction (Finals Project)

Global Optimization of 
Lennard-Jones Clusters and Lattice Proteins

and
Protein Design of Lattice Proteins

Winner is announced during Finals Week. Team leaders (or 
appointed spokesperson) will present their teams results 

during the 3 hour final.

Every person turns in their own scientific paper on their 
teams problem and method

Start early! 
Determine teams and starting rounding up cpu, resources
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Theoretical Framework for Simulation
Quantum Mechanics Potential energy surfaces

Classical Mechanics How to move on PE surfaces

These theoretical frameworks describe physical matter at the level of 
microscopic atoms and molecules

Thermodynamics Macroscopic Observables

This theoretical framework describes physical matter at equilibrium at 
the level of macroscopic observables under certain externally controllable 

conditions: temperature, pressure, etc

Statistical Mechanics Microscopic to macroscopic

This theoretical framework permits for the correct averaging of atomic 
level structure and dynamics, under specified conditions of T, P, etc, to 

connect to macroscopic observables

Numerical simulation when analytical statistical mechanics is intractable
CS267

Quantum Mechanical 
Potential Energy Surfaces
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Increasing basis function per 
atom (or just number atoms)

HF or DFT
MP2
MP3

CCSD

Full CI

What we can handle 
without sampling 
dimension

2 10 100 1000
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Quantum Mechanical 
Potential Energy Surfaces

In
cr
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si

ng
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ee

Increasing basis function per 
atom (or just number atoms)

HF or DFT
MP2
MP3

CCSD

Full CI

Sam
plin

g

Will cover very briefly at the end of the 
semester

1 ps
1 ns

1 µs

Marriage of statistical mechanics 
(sampling) with quantum mechanics 

(potential energy accuracy) 

CS267

Protein Folding

Y. Duan and PA Kollman, 
"Pathways to a protein folding 
intermediate observed in
a 1-microsecond simulation in 
aqueous solution," Science 282, 
740 (1998).

What quality of the potential energy surface to be sampled 
with statistical precision can we afford? 

The theoretical framework of quantum mechanics is what 
allows us formulate Potential Energy Surfaces (PES) from 
“the beginning”
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Empirical potential energy surfaces
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The first three sums are covalent or “chain connectivity” terms
The last double sum over i,j describes “non-bonded” terms

It will not be tractable to do quantum 
mechanical potential energy functions for 
proteins because (1) too many atoms for typical 
(or even small) proteins, and (2) for the amount 
of sampling we will need to do 

Instead we will consider empirical potential 
energy functions
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H
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Empirical potential energy surfaces
H

O

C
C

N
Cα

C
N

C

H

O
H H

H

CH

CH 3CH 3

CH 2

Leucine (NALA)

Glycine

H

(1) Nuclei and electrons are lumped into atom-like particles. 
(2) Atom-like particles are spherical and have a net charge 
(3) Interactions are based on classical models that mimic or

approximate QM functional forms 
(4) Interaction parameters assigned to particular atoms:

C: aliphatic carbon, carbonyl carbon, etc

Empirical PES are based on following approximations:
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Coulomb’s Law for Electrostatics
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We will talk about Ewald descriptions 
of long-ranged electrostatics later in 
the semester
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Water and Protein Interactions
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The empirical description of water 
(parameters) as focused on pure 
water liquid as opposed to its 
interaction with protein. 

http://amesnews.arc.nasa.gov/releases/2001/01images/512/512.html
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The Computational Cost of Protein 
Folding

Y. Duan and PA Kollman, 
"Pathways to a protein folding 
intermediate observed in
a 1-microsecond simulation in 
aqueous solution," Science 282, 
740 (1998).

The fastest folding timescales of measurable protein folding is on 
the order of tens of microseconds: ~10-6 seconds=1µs. 

Some of the earliest folding events (formation of secondary 
structure, hydrophobic collapse) occur faster than 1 microsecond

What does it take (computationally)  to simulate a microsecond?

Are all atom empirical force fields computationally tractable 
for something like protein folding?

CS267

The Computational Cost of Protein 
Folding

Y. Duan and PA Kollman, 
"Pathways to a protein folding 
intermediate observed in
a 1-microsecond simulation in 
aqueous solution," Science 282, 
740 (1998).

Let’s consider the heroic calculation by Duan and Kollman of 1µs 
simulation of the small 36 amino acid protein villin in a molecular 
description of water: 

~500 protein atoms ~11,500 water atoms

N=12,000 atoms 
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The Computational Cost of Protein 
Folding

( )τ=tRN
r

In BE143/243 we will learn about basic molecular dynamics 
simulation. It is sufficient right now to say that we are evolving 
configurations in time of villin and water molecules

amF rr
=

According to Newton’s equations of motion

( )0=tRN
r

and we need to evaluate the force on all 
atoms at every time step

)(tFi

r

CS267

The Computational Cost of Protein 
Folding
The computational cost of the force, which is the position 
derivative of the potential energy at each time step 

is dominated by the evaluation of the double sum over non-bonded 
interactions
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which scales as N2             where N=number of atoms.
Later lets improve on this
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The Computational Cost of Protein 
Folding
Lets say that each force evaluation costs 100 operations 
(computer evaluations such as adds, divides, multiples, memory 
fetches, etc). Therefore for villin in water:

100 ops x (12,000)2= 1.44 x1010 ops per time step

How many time steps do we have to do? To execute stable 
trajectories we need a time step of

t=1.0 femtosecond (fs)     where      1fs=10-15 seconds

and 1.0 microsecond (10-6 seconds) of simulation requires

10-6 seconds/(10-15seconds/timestep)=109 time steps

CS267

The Computational Cost of Protein 
Folding
Therefore one 1us simulation of villin protein in water requires

(1.44 x1010 ops/time step)x(109 time steps)=1.44x1019 ops

However, one folding trajectory is only anecdotal. We require 
thousands of trajectories to get the correct folding measure of a 
population or ensemble of folding events (more typical of real 
experiments). 

103x1.44x1019 ops=1.44x1022 ops

This outlines how many computer operations we need to simulate 
the fastest protein folding experiment for a very small protein in 
water
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The Computational Cost of Protein 
Folding
Current best supercomputers are 10-100 teraflops(teraops) or

1013 ops/second wall time

Lets imagine that we have exclusive and dedicated access to this
supercomputer for as long as we need to finish this protein 
folding calculation. 

(1.44 x1022 ops)/(1013 ops/second wall time)=1.44x109 seconds

(1.44x109 seconds)/(8.64x104 seconds/day)

1.67x104 days~46 years
CS267

How did they do it?
(1) They did one trajectory 
(2) This published calculation truncated 

electrostatic interactions at 8Å when 
ranges more like 15-20Å are a better 
estimate. So effectively N2 ~ M2

What is M? Assume a constant density 
of atoms, so that atom number 
increases with larger volume elements

~83/153~15% of 12,000 
or ~1800 atoms

100 ops x (1800)2= 3.2 x108 ops per time step
(3.2x108 ops/time step)x(109 time steps)=3.2x1017 ops
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How did they do it?

Best supercomputers in 1997 were ~0.1 teraflops (teraops) or
1011 ops/second wall time

Assume again that a supercomputer is dedicated to the 
completion of this calculation

(3.2 x1017 ops)/(1011 ops/second wall time)=3.2x106 seconds

(3.2x106 seconds)/(8.64x104 seconds/day)~37days

(Duan and Kollman had 0.25 of Cray YMP for ~3 months and about 
0.5 of Cray XMP for ~1 year)

CS267

Computational Protein Folding

Duan & Kollman, Science 1998
The small protein did not fold

(1) Quality of objective function 
proper treatment of long-ranged interactions X
cut-off interactions at 8Å, poor by simulation standards

(2) severe time-scale problem
parallelization using spatial decomposition

(3) Statistics (1 trajectory is anecdotal) X
many trajectories required for kinetics and thermodynamics
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Treating Bulk Systems
We are meant to be simulating bulk properties of a macroscopic 
system, but really we can only typically handle at most 103-106

particles on today’s best computers

( ) ( ) ( )
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ii tT
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⎠

⎞
⎜⎜
⎝

⎛
= αα

If we simulate such a small system size 
under a fixed volume, then we will be 
dominated by edge effects. Most 
particles will experience fewer nearest 
neighbors relative to those at the center

We minimize this surface effect by 
surrounding the central simulation 
box with identical images of itself

CS267

Periodic Boundary Conditions

The trajectory of a particle in the central box is replicated by its 
periodic images in all surrounding boxes. 

When a particle’s trajectory approaches and leaves on a face of 
the box, its periodic image enters the box from the opposite face.
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Treating Bulk Systems
But now we could in principle have an infinite number of 
interactions

This reintroduces the original problem of large N needed to 
simulate bulk systems, and with periodicity to boot!
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CS267

Truncation for Short-ranged Potential
(1) Simple truncation 
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Suitable only for Monte Carlo. Not suitable for molecular 
dynamics since forces are discontinuous at rcut, and EOM become 
unstable
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Truncation for Short-ranged Potential
(3) Truncation and Shift 

Where now discontinuity has been shifted to second derivatives 
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Now define a correction to the missing interactions as rcut
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Which assumes that the interaction is isotropic beyond rcut with 
constant density ρ. 

But note that correction becomes unbounded for potentials that 
are long-ranged: r-n where n<3

CS267

Long-ranged potentials: Ewald Sum
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Long-ranged potentials: Ewald Sum
Instead we will introduce a diffuse 
charge distribution around charge 

i with opposite sign. For 
convenience we will make this a 

Gaussian charge distribution. 

At large distances (near the tails) 
this screening charge value goes 
to zero rapidly. 

Therefore the original sum is more 
rapidly convergent than 1/r due to 
this screening. 

( ) ( ) ( )223 rexp/qr /
i απαρ −⇒

CS267

Long-ranged potentials: Ewald Sum
But this is not the true charge 
distribution itself.

We add back in a compensating 
charge distribution that will cancel 
out the screened charge distribution. 
This now will result in two fully 
convergent sums. 

We will reformulate the original non-convergent sum 

with two sums: a real-space sum (r-sum: screened) and inverse-
space sum (k-sum: compensating) which we can derive from 
Poisson’s equation ( ) ( )rr rr πρΦ 42 =∇−
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Long-ranged electrostatics
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N2 evaluation of energy & forces N evaluation of energy & forces

•Conventional algorithm scales as N3/2 at best
•Particle Mesh Ewald O(NlogN) 

Spatial Decomposition in r-space; Parallelization of FFT's in 
k-space

•Evaluate Ewald in r-space using FMM techniques O(N)?
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Water as a Dielectric Continuum
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The computational cost of simulating a protein and water is dominated 
by water-water non-bonded interactions. Hence approximations that 
ignore molecular detail of water while modeling its *effective* influence 
on protein are often used.

dielectric constant
~80 for liquid water

Water “screens” electrostatic 
interactions between protein atoms. 
Protein-protein electrostatics are 
scaled by dielectric constant, making 
effective interaction more short-ranged
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Free Energy of Solvation
Protein-water interactions are most importantly manifested as the free 
energies of amino acid or protein solvation. We can qualitatively 
describe this as being composed of three separable terms 

http://amesnews.arc.nasa.gov/releases/2001/01images/512/512.html
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Replace water molecules with Generalized Born/ Solvent 
Accessibility
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Simplification of Protein Folding Simulations

100 ops x (500 protein atoms)2= 2.5 x107 ops per time step

2.5x107 ops/time step)x(109 time steps)=2.5x1016 ops

103 trajectories x (2.5 x1016 ops)=2.5x1019 ops

2.5x1019 ops /(1013 ops/second wall time)=2.5x106 seconds

(2.5x106 seconds)/(8.64x104 seconds/day)~29days
Folding@home
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 Simplifying Protein Interactions

H-H interactions are attractive
mimics how hydrophobic groups 
segregate into core
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 Protein Bead Models

100 ops x (36)2= 1.3 x105 ops per time step
1.3x105 ops/time step)x(109 time steps)=1.3x1014 ops

103 trajectories x (1.3 x1014 ops)=1.3x1017 ops
1.3x1017 ops /(1013 ops/second wall time)=1.3x104 seconds

(2.5x104 seconds)/(8.64x104 seconds/day)~3.5 hours
Now don’t need massive computing resources but more 

intermediate computing platforms are adequate
Protein bead models possible for those in class who are 

ambitious 
CS267

 Protein Lattice Models

Protein lattice models: amino acids on a chain are 
restricted to points on some type of lattice

Greatly reduces the number of accessible protein 
states by restricting the continuous Cartesian 
space to discrete lattice points

http://www.lbl.gov/Science-Articles/Archive/model-protein-folding2.html

Example sequence 
PHHPHP
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The Computational Cost of Protein 
Folding

Y. Duan and PA Kollman, 
"Pathways to a protein folding 
intermediate observed in
a 1-microsecond simulation in 
aqueous solution," Science 282, 
740 (1998).

Let’s consider the heroic calculation by Duan and Kollman of 1µs 
simulation of the small 36 amino acid protein villin in a molecular 
description of water: 

N=36 residues 

CS267

The Computational Cost of Protein 
Folding
Lets say that each energy evaluation costs 10 operations 
(computer evaluations such as adds, divides, multiples, memory 
fetches, etc). Therefore for villin in water:

10 ops x (36)2= 1.3 x104 ops per time step

How many time steps do we have to do? In each lattice move I am 
effectively executing a time step of

t=10.0 picosecond (ps)     where      10ps=10-11 seconds

and 1.0 microsecond (10-6 seconds) of simulation requires

10-6 seconds/(10-11seconds/timestep)=105 time steps



24

CS267

The Computational Cost of Protein 
Folding
Therefore one 1us simulation of lattice model of villin protein in 
water requires

(1.3 x104 ops/time step)x(105 time steps)=1.3x109 ops

However, one folding trajectory is only anecdotal. We require 
thousands of trajectories to get the correct folding measure of a 
population or ensemble of folding events (more typical of real 
experiments). 

103x1.3x109 ops=1.3x1012 ops
This outlines how many computer operations we need to simulate 
the fastest protein folding experiment for a very small protein in 
water

CS267

The Computational Cost of Protein 
Folding
Current best laptops are ~1 gigaflops or 109 ops/second wall time

Lets imagine that we have exclusive and dedicated access to this
laptop for as long as we need to finish this protein folding 
calculation. 

(1.3 x1012 ops)/(109 ops/second wall time)=1.3x103 seconds

(13x102 seconds)/(6.0x101 seconds/hr)

~20 hours
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 Cubic Lattice
Each lattice point has six nearest neighbor lattice points

)0,0,1(1 =ar

)1,0,0(3 =ar

)0,1,0(5 −=ar

)0,1,0(2 =ar

)0,0,1(4 −=ar

)1,0,0(6 −=ar

Given a protein fold, and placing 
it on a cubic lattice, results in a 
Root Mean Square Deviation 
(RMSD) of >8Å: low resolution

( )∑
=

−=
N

i

native
i

lattice
i rr

N
RMSD

1

21 rr
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 Diamond Lattice
Each lattice point has four nearest neighbor lattice points

)1,1,1(1 η=ar

)1,1,1(3 −−=ηar

( )m1−=η

)1,1,1(2 −−=ηar

)1,1,1(4 −−=ηar

Given a protein fold, and placing it 
on a diamond lattice, results in a 
Root Mean Square Deviation 
(RMSD) of ~4Å: medium resolution

m: the number of steps 
from a given lattice point 

J. Chem. Phys. 119, 3453-3460 (2003)
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 Chess Knight (210) Lattice
Each lattice point has up to 24 nearest neighbor lattice points

( )0,1,241 ±±=−ar )1,0,2(85 ±±=−ar

Given a protein fold, and placing 
it on a 210 lattice, results in a 
Root Mean Square Deviation 
(RMSD) of ~2Å: high resolution

J. Chem. Phys. 119, 3453-3460 (2003)

)1,2,0(129 ±±=−ar Etc.
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 Protein Lattice Model Interactions
HP models: amino acids on a chain are restricted to 
two flavors: Hydrophobic (H) and Polar (P)

http://www.lbl.gov/Science-Articles/Archive/model-protein-folding2.html

Example sequence 
PHHPHP

⎥
⎦

⎤
⎢
⎣

⎡−
=

= ∑
≠−

00
01

P
H

H

PH

HV

ij

1ji
j,i

ij
pair

Each amino acid bead 
interacts with only its 
nearest neighbors, 

excepting its bonding 
partner
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 Protein Lattice Model Interactions
Miyazawa-Jernigan (MJ) models: all twenty amino acids 

Pxx=probability of observing a residue-residue contact in the protein 
databank (PDB). These are known as “statistical potentials”

Each amino acid bead interacts with only its 
nearest neighbors, excepting its bonding 
partner, but through PES:

...

...

LLLQLGLTLC

QLQQQGQTQC

GLGQGGGTGC

TLTQTGTTTC

CLCQCGCTCC

PPPPPL
PPPPPQ
PPPPPG
PPPPPT
PPPPPC
LQGTC

== ∑
≠−

ij

ji
ji

ij HHV

1
,
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( ) ( ) ( )

( )

2 2 2

12 6

1

# #Impropers#

# # #
cos

AnglesBonds
U k b b k kb i o i o i oi i i

q qdihedrals atoms atoms i j ij ijk n ijr r ri i i j ij ij ij

θ θ τ τθ τ

σ σ
φ δ εφ

= − + − + − +∑ ∑ ∑

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥⎪ ⎪⎜ ⎟ ⎜ ⎟⎡ ⎤+ + + + −∑ ∑ ∑ ⎨ ⎬⎢ ⎥⎣ ⎦ ⎜ ⎟ ⎜ ⎟< ⎪ ⎪⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭Scales as N2; 
slow timescales

Scales as N; fast 
timescales

Time-Scale of motions bottlenecks (∆t)
Timestep limited by fastest timescale in your system 
* bond vibrations: period of 10-14 seconds (10fs): ∆t =1fs
*shake/rattle bonds (project out force along bond) ∆t =2fs

multiple timescale algorithms (~4fs to 10fs) 
(active area of research)*

*Preserve symplectic,reversible properties!

Bigger Time Steps



28

CS267

Better Computers: IBM Blue Gene
Blue Gene will do
(1) Robust objective function

All atom simulation with molecular water present
Proper treatment of long-ranged interactions (Ewald)
Part of the objective is to interrogate energy functions

(2) Severe time-scale problem
109 energy/forces: parallelization (spatial decomposition)
Blue Gene will simulate on the microsecond-millisecond

(3) Statistics (1 trajectory is anecdotal)
Blue Gene can do 1000’s

CS267

Funneled Energy Landscape

Sequence, an objective function, a search method   Tertiary Structure

♦Protein and Aqueous Solvent Energy Surface 
♦Incorporation of Constraints Predicted by Machine Learning Methods
♦Global Optimization Approach to Predict Tertiary Structure
♦Parallelization of Tree Search Problems

Global Optimization: Protein Structure 
Prediction

Native State: Global Free Energy
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♦Use of Constraints Predicted by Machine Learning Methods
AI/Bioinformatics

♦Global Optimization Approach to Predict Tertiary Structure
Mathematical Optimization/Applied Mathematics

♦Parallelization of Tree Search Problems
Computer Science/Tools

♦Protein and Aqueous Solvent Energy Surface
Biophysics and physical chemistry

Experiments and theory 

Protein Structure Prediction is Multi-
disciplinary

CS267

Critical Assessment of Structure Prediction 
(CASP)
It consists of three parts:

1. The collection of targets from the experimental 
community.

2. The collection of blind predictions from the modeling 
community over a period of ~3 months

Comparative modeling (high sequence homology)
Fold recognition (high structural homology)
Ab initio (genuine new folds; generally applicable)

3. The assessment and discussion of the results.

Organizers ranked protein targets by difficulty (database)

Various objective measure/metrics have been defined
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Stochastic/perturbation in sub-space of dihedral angles predicted coil
(1) Local minimization of a set of start points in sub-space
(2) Define a critical radius 

a measure of whether a point is within a basis of attraction
(3) Generate many sample points in sub-space volume, V
(4) Evaluate r.m.s. between new sample points and minimizers of (1)

If  (r.m.s. < rk) ignore this sample point
(5) Minimize sample points not in critical distance, merge into (1)

Choose new set of coil dihedral angles and repeat

Crivelli, Philip, Byrd, Eskow, Schnabel,Yu, Head-Gordon (1999). In New Trends in Computational Methods for 
Large Molecular Systems, in press.

Probabilistic theoretical guarantees of global optimum in sub-spaces
Global optimization of full space: solve series of global optimum in sub-spaces?

n/12/n

k
logV

2
n11r

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +⎟

⎠
⎞

⎜
⎝
⎛=

ρ
ρσΓ

π

GO Algorithm: Stochastic Perturbation

CS267

The work complexity to reach a minimum is highly variable

Central Processor
↓

GOPT1 GOPT2 GOPT3 GOPT4 GOPT5
↓ ↓ ↓ ↓ ↓

W1,1→W1,11 W2,1→W2,11 W3,1→W3,11 W4,1→W4,11 W5,1→W5,11

Central Processor: Assigns starting coordinates to GOPT’s
Task time is highly variable

GOPT’s: Divide up sub-space into N regions for global search
  Task time is variable

Workers: Generate sample points; find best minimizer in region
(Number of workers depends on sub-space)

Dynamical load balancing of tasks: reassigning GOPT/workers to GOPT/workers

Crivelli, Head-Gordon, Byrd, Eskow, Schnabel (1999). Lecture Notes in Computer Science, Euro-Par '99

Parallelization Strategy
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Emphasize ab initio methods can be complementary to other approaches that 
rely on database tertiary structure information

Crivelli, Eskow, Bader, Lamberti, Byrd, Schnabel, Head-Gordon (2001). Biophysical Journal, in press

Our CASP Blind Prediction Results
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Submitted to CASP4

lowest energy structure

RMSD=8.8

EQR1=148

Runs after CASP4

lowest energy 
structure

RMSD=7.7

Experiment

T124: New Fold & One of Most Difficult 
Targets


