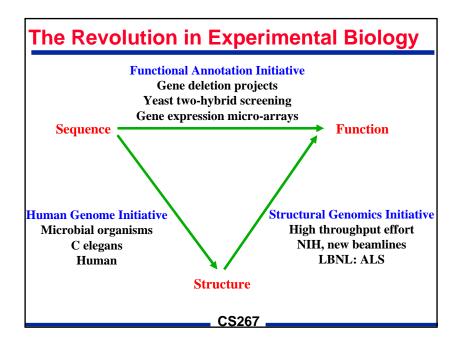
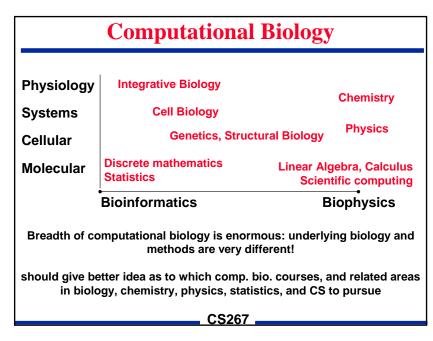


The Golden Age of Computing

Intel 8080, 1975, 29K transistors Gordon Moore (co-founder of Intel) predicted in 1965 that the transistor density of semiconductor chips would double roughly every 18 months. 1975 10M (transistors 1M IOOK 1.0 10K 0.1 0.01 http://www.nersc.gov/~simon/cs267/Lec1.html Intel Pentium Pro, 1995, 5.5M transistors CS267





BE143/243: Class		Text/Assessment
Course Time and Place:	MWF 3-4P 310 Hearst Mining	Text: <u>Understanding Molecular Simulation: From algorithms to</u> <u>applications</u> , D. Frenkel and B. Smit (Academic Press, 1996).
PreReqs:	Lower division physics/chem/bio Math 53 & 54	Text Resources: ≻ <u>Computer Simulation of Liquids</u> , M. P. Allen and D.J. Tildesley (Oxford Univ. Press) 1997. ≻Numerical Recipes, the Art of Scientific Computing, W. H. Press, B. P.
Lab:	Tu, 5-6pm, 1171 Etcheverry	 Flannery, S. A. Teukolsky, W. T. Vetterling (Cambridge) 1989. <u>Molecular Modelling: Principles and Applications</u>, Andrew R. Leach, Prentice Hall.
Instructor:	Teresa Head-Gordon Department of Bioengineering	Web-based notes and hand-outs
	Donner 272 TLHead-Gordon@lbl.gov	Assessment: Homework (40%) Mid-term (20%) Final Project (40%)
TA:	TA in charge of computer lab, all homework assignments CS267	Homework is critical for final project that involves a class competition CS267

BE143/243: Syllabus

(1) Class	Introduction and Organization	(12, 13) Stat
1	ntro to Physical Theories of Matter/Connections to Simulations	Time Time
n n	Iolecular Biology Primer: Sequence, Structure, Function	ense
(2) Prote	in Folding, Structure Prediction, and Function	(14,15,16) In
	Protein folding and disease; Protein-Ligand or Protein-Protein nteractions; Protein Design	Num Prec
(3,4) Phy	vsical Interactions: Proteins and liquids	Liqu
	All atom models: ab initio vs. empirical potential energy surfaces	Tem
(Coarse-grained models: lattice and bead protein models	(17,18,19,20
(5,6,7) P	robability Theory	Mati
E	Elementary probability, Stochastic variables, Probability	Loca
c	listribution functions	des
[Discrete distributions: Binomial, Poisson; Random walk in 1D	Glob
	Continuous distribution: Normal or Gaussian	Brar
(Central limit theorem	(21,22,23,24
(8,9,10,1	1) Introduction to Monte Carlo Methods	Gen
I I	Nonte Carlo Integration; Importance Sampling; Markov chain;	(25) CASP/0
[Detailed balance; Metropolis Monte Carlo; Illustrated for atomic	(26, 27, 28)
c	lusters and for chain molecules	Trur othe
1		i oune

CS267

BE143/243: Syllabus

(12, 13) Statistical and Classical Mechanics

Time vs. ensemble average; Microcanonical, canonical, and other ensembles; Symplectic properties/stable numerical trajectories

(14,15,16) Introduction to Molecular Dynamics

Numerical integration schemes: Verlet, Velocity Verlet, Beeman, Predictor-Corrector

iquids: Periodic boundary condition; Minimum image; Temperature; Velocity assignment: Box Mueller

(17,18,19,20) Introduction to Optimization

Mathematical optimization: definitions Local optimization: Golden Section; bracketing minima; Steepest descent; Conjugate gradients; Newton Method; BFGS Global optimization: Simulated Annealing; Dynamic programming; Branch and Bound

(21,22,23,24) Biologically Inspired Computing

Genetic Algorithms; Neural Networks; DNA computing

25) CASP/Class Competition in Simulation and Prediction

(26, 27, 28) Treating Bulk Systems

Truncation schemes and corrections; Neighbor Lists; Ewald; other methods CS267

4

BE143/243: Syllabus

Exam Review (Lectures 1-28); Exam

(29, 30, 31, 32) Advanced Monte Carlo Methods

- Hybrid Monte Carlo/Molecular Dynamics; Smart Monte Carlo; Force Bias; configurational-bias Monte Carlo: Lattice chains, Flexible chains; Stiff chains
- (33, 34, 35, 38) Advanced Molecular Dynamics Methods Stochastic and Extended System methods; Algorithms for Dynamics in NVT and NPT ensembles; Nose- Hoover thermostats and barostats; multiple time step approach; constraint dynamics
- (36, 37) ab initio MD and Quantum Computing (Guest lectures)
- (39, 40, 41, 42) Coarse-Grained Simulation Methods
 - Langevin equation; Brownian Dyanmics; Multipole expansions; Hydrodynamic Interactions; application to enzymatics
- Finals: Projects Due

Competition Results and Presentation by Group Leaders

CS267

Class Competition in Simulation and Prediction (Finals Project)

Global Optimization of Lennard-Jones Clusters and Lattice Proteins and

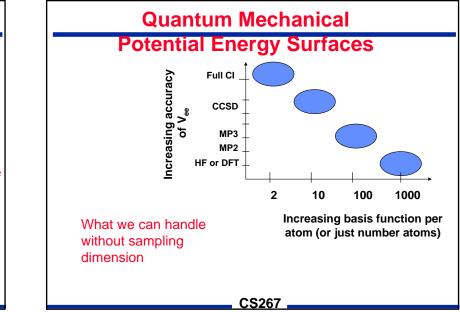
Protein Design of Lattice Proteins

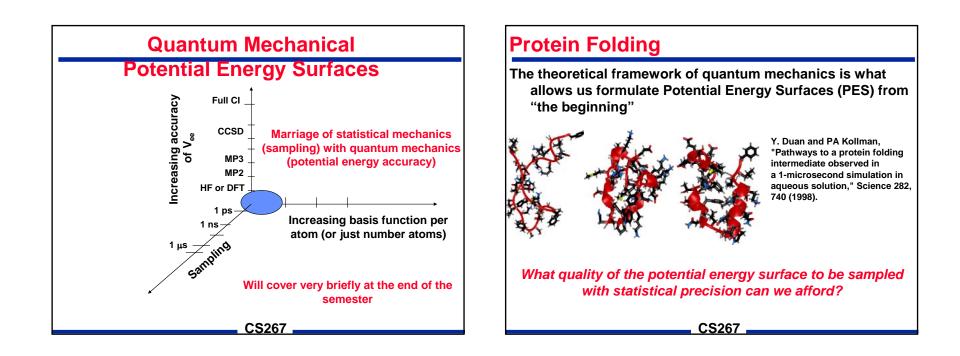
Winner is announced during Finals Week. Team leaders (or appointed spokesperson) will present their teams results during the 3 hour final.

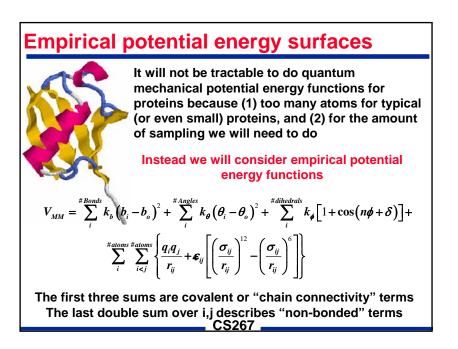
Every person turns in their own scientific paper on their teams problem and method

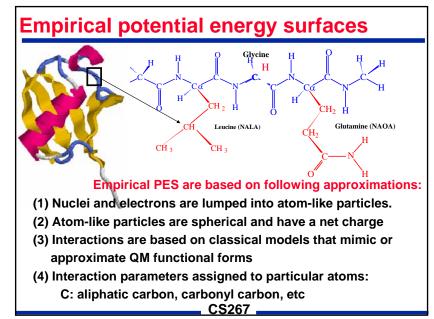
Start early! Determine teams and starting rounding up cpu, resources

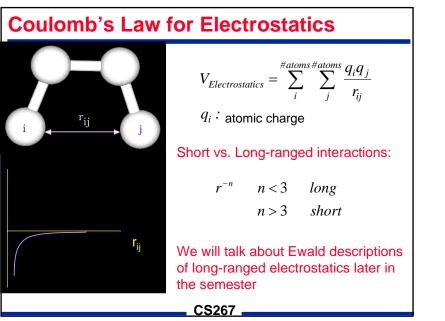
Theoretical Framework for Simulation				
Quantum Mechanics	Potential energy surfaces			
Classical Mechanics	How to move on PE surfaces			
	eworks describe physical matter at the level of oscopic atoms and molecules			
Thermodynamics	Macroscopic Observables			
the level of macroscopic o	ork describes physical matter at equilibrium at bservables under certain externally controllable ons: temperature, pressure, etc			
Statistical Mechanics	Microscopic to macroscopic			
level structure and dyna	ork permits for the correct averaging of atomic mics, under specified conditions of T, P, etc, to et to macroscopic observables			
Numerical simulation wh	en analytical statistical mechanics is intractable CS267			

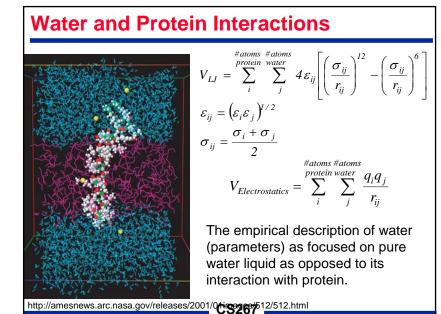






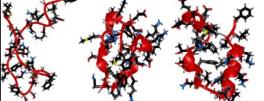






The Computational Cost of Protein

Folding Are all atom empirical force fields computationally tractable for something like protein folding?

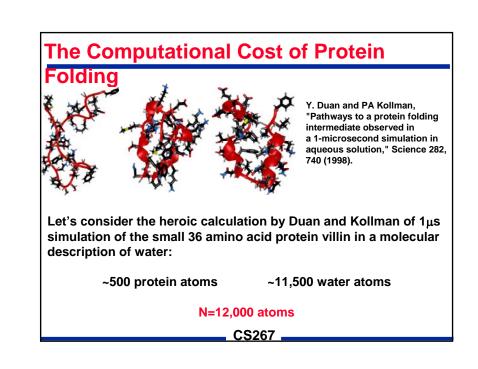


Y. Duan and PA Kollman. "Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution," Science 282, 740 (1998).

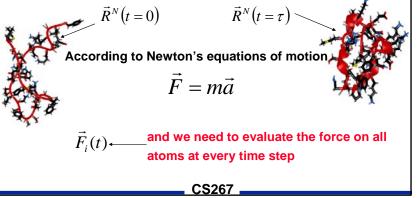
The fastest folding timescales of measurable protein folding is on ~10⁻⁶ seconds=1 μ s. the order of tens of microseconds:

Some of the earliest folding events (formation of secondary structure, hydrophobic collapse) occur faster than 1 microsecond

What does it take (computationally) to simulate a microsecond? CS267



In BE143/243 we will learn about basic molecular dynamics simulation. It is sufficient right now to say that we are evolving configurations in time of villin and water molecules



The Computational Cost of Protein Folding

The computational cost of the force, which is the position derivative of the potential energy at each time step

$$\vec{F}_i = -\frac{\partial V}{\partial \vec{r}_i}$$

is dominated by the evaluation of the double sum over non-bonded interactions

$$V_{Non-bonded} = \sum_{i}^{N} \sum_{j}^{N} 4\varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right] + \frac{q_{i}q_{j}}{4\pi\varepsilon_{o}r_{ij}}$$

which scales as N² where N=number of atoms. Later lets improve on this CS267

The Computational Cost of Protein Folding

Lets say that each force evaluation costs 100 operations (computer evaluations such as adds, divides, multiples, memory fetches, etc). Therefore for villin in water:

100 ops x (12,000)²= 1.44 x10¹⁰ ops per time step

How many time steps do we have to do? To execute stable trajectories we need a time step of

t=1.0 femtosecond (fs) where 1fs=10⁻¹⁵ seconds

and 1.0 microsecond (10⁻⁶ seconds) of simulation requires

10⁻⁶ seconds/(10⁻¹⁵seconds/timestep)=10⁹ time steps

CS267

The Computational Cost of Protein Folding

Therefore one 1us simulation of villin protein in water requires

 $(1.44 \times 10^{10} \text{ ops/time step}) \times (10^9 \text{ time steps}) = 1.44 \times 10^{19} \text{ ops}$

However, one folding trajectory is only anecdotal. We require thousands of trajectories to get the correct folding measure of a population or ensemble of folding events (more typical of real experiments).

10³x1.44x10¹⁹ ops=1.44x10²² ops

This outlines how many computer operations we need to simulate the fastest protein folding experiment for a very small protein in water

The Computational Cost of Protein Folding

Current best supercomputers are 10-100 teraflops (teraops) or 10¹³ ops/second wall time

Lets imagine that we have exclusive and dedicated access to this supercomputer for as long as we need to finish this protein folding calculation.

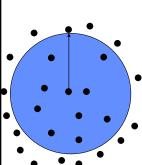
(1.44 x10²² ops)/(10¹³ ops/second wall time)=1.44x10⁹ seconds

(1.44x10⁹ seconds)/(8.64x10⁴ seconds/day)

1.67x10⁴ days~46 years

CS267

How did they do it?



- They did one trajectory
 This published calculation truncated electrostatic interactions at 8Å when ranges more like 15-20Å are a better estimate. So effectively N² ~ M²
 - What is M? Assume a constant density of atoms, so that atom number increases with larger volume elements ~8³/15³~15% of 12,000 or ~1800 atoms

100 ops x (1800)²= 3.2 x10⁸ ops per time step (3.2x10⁸ ops/time step)x(10⁹ time steps)=3.2x10¹⁷ ops CS267

How did they do it?

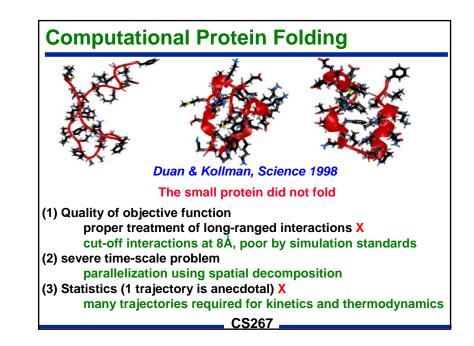
Best supercomputers in 1997 were ~0.1 teraflops (teraops) or 10^{11} ops/second wall time

Assume again that a supercomputer is dedicated to the completion of this calculation

 $(3.2 \times 10^{17} \text{ ops})/(10^{11} \text{ ops/second wall time})=3.2 \times 10^{6} \text{ seconds}$

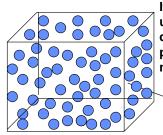
(3.2x10⁶ seconds)/(8.64x10⁴ seconds/day)~37days

(Duan and Kollman had 0.25 of Cray YMP for ~3 months and about 0.5 of Cray XMP for ~1 year)



Treating Bulk Systems

We are meant to be simulating bulk properties of a macroscopic system, but really we can only typically handle at most 10³-10⁶ particles on today's best computers



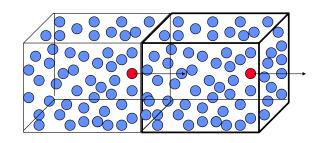
If we simulate such a small system size under a fixed volume, then we will be dominated by edge effects. Most particles will experience fewer nearest neighbors relative to those at the center

We minimize this surface effect by surrounding the central simulation box with identical images of itself

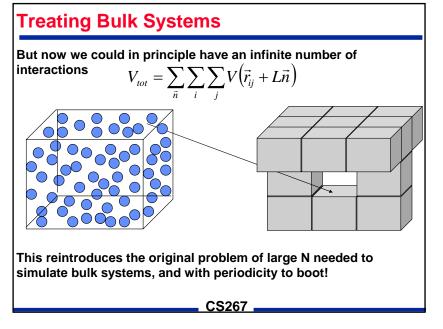
CS267

Periodic Boundary Conditions

The trajectory of a particle in the central box is replicated by its periodic images in all surrounding boxes.



When a particle's trajectory approaches and leaves on a face of the box, its periodic image enters the box from the opposite face.



(1) Simple tru	uncation #atoms #atoms	
	$V = \sum_{i}^{\# \text{ diffusions } \# \text{ diffusions } } \sum_{i}^{\# \text{ diffusions } } V(r_{ij})$	$r_{ij} \leq r_{cut}$
	V = 0	$r_{ij} > r_{cut}$
(2) Truncatio	on and Shift	
V	$V = \sum_{i}^{\#atoms} \sum_{j}^{\#atoms} V(r_{ij}) - V(r_{cut})$	$r_{ij} \leq r_{cut}$
V	$\tilde{f} = 0$	$r_{ii} > r_{cut}$

Truncation for Short-ranged Potential

(3) Truncation and Shift

$$V = \sum_{i}^{\text{#atoms #atoms}} \sum_{j}^{V} V(r_{ij}) - V(r_{cut}) - \frac{dV(r)}{dr} \Big|_{r=r_{cut}} (r - r_{cut}) \qquad r_{ij} \le r_{cut}$$
$$V = 0 \qquad r_{ii} > r_{cut}$$

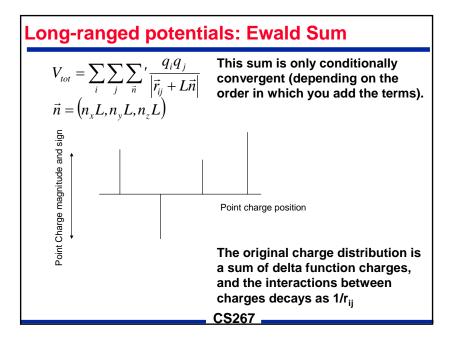
Where now discontinuity has been shifted to second derivatives

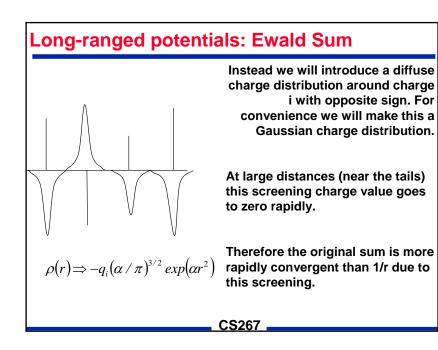
Now define a correction to the missing interactions as r_{cut}

$$V_{LJ} = \sum_{i}^{\#atoms} \sum_{j}^{\#atoms} V(r_{ij}^{cut}) + \frac{N\rho}{2} \int_{r^{cut}}^{\infty} V(r) 4\pi r^2 dr$$

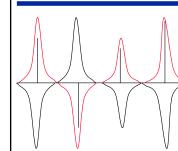
Which assumes that the interaction is isotropic beyond r_{cut} with constant density ρ .

But note that correction becomes unbounded for potentials that are long-ranged: r⁻ⁿ where n<3 CS267





Long-ranged potentials: Ewald Sum



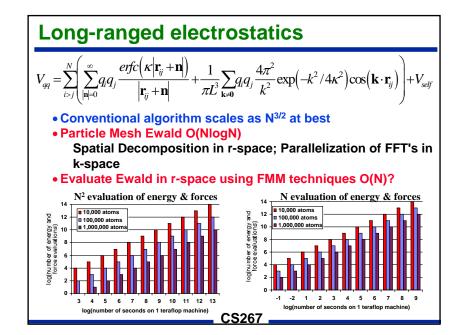
But this is not the true charge distribution itself.

We add back in a compensating charge distribution that will cancel out the screened charge distribution. This now will result in two fully convergent sums.

We will reformulate the original non-convergent sum

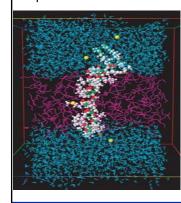
$$V_{tot} = \sum_{i} \sum_{j} \sum_{\vec{n}} \frac{q_i q_j}{\left| \vec{r}_{ij} + L\vec{n} \right|} = \sum_{i} q_i \boldsymbol{\Phi}(\vec{r}_i)$$

with two sums: a real-space sum (r-sum: screened) and inversespace sum (k-sum: compensating) which we can derive from Poisson's equation $-\nabla^2 \Phi(\vec{r}) = 4\pi\rho(\vec{r})$ CS267



Water as a Dielectric Continuum

The computational cost of simulating a protein and water is dominated by water-water non-bonded interactions. Hence approximations that ignore molecular detail of water while modeling its *effective* influence on protein are often used.



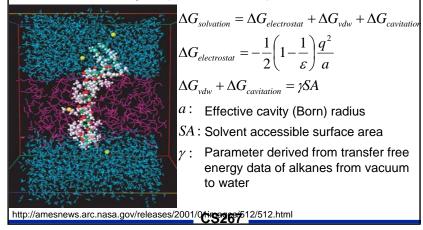
Water "screens" electrostatic interactions between protein atoms. Protein-protein electrostatics are scaled by dielectric constant, making effective interaction more short-ranged

$$V_{Electrostatics} = \sum_{i}^{\#atoms} \sum_{j}^{\#atoms} \frac{q_{i}q_{j}}{\mathcal{E}r_{ij}}$$

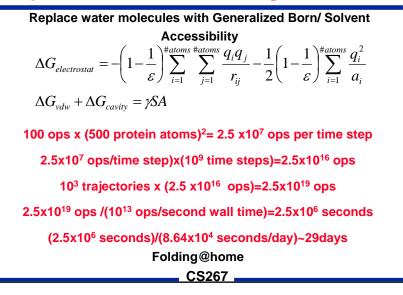
 ε : dielectric constant ~80 for liquid water

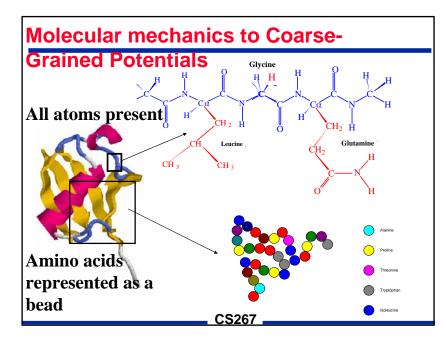
Free Energy of Solvation

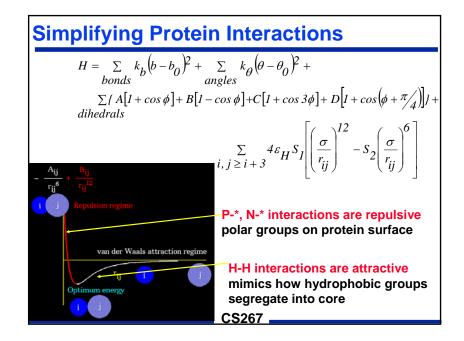
Protein-water interactions are most importantly manifested as the free energies of amino acid or protein solvation. We can qualitatively describe this as being composed of three separable terms

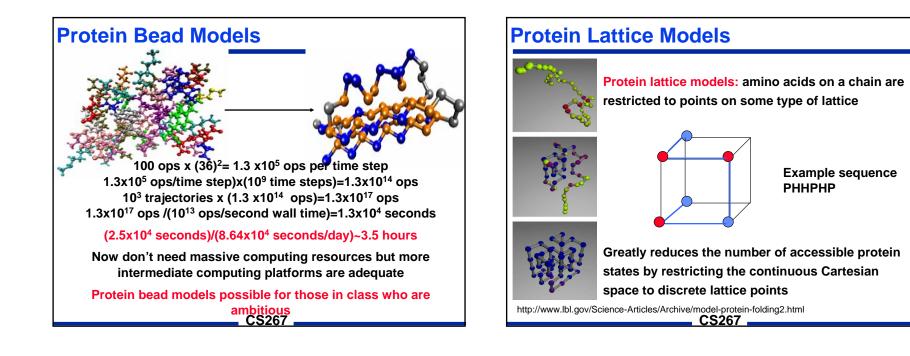


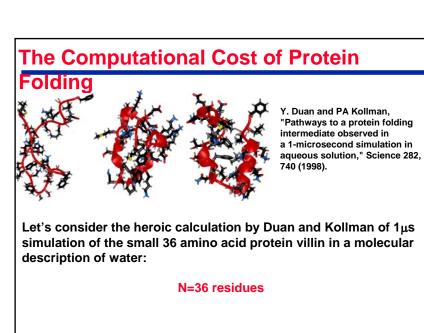
Simplification of Protein Folding Simulations











CS267

The Computational Cost of Protein Folding

Lets say that each energy evaluation costs 10 operations (computer evaluations such as adds, divides, multiples, memory fetches, etc). Therefore for villin in water:

10 ops x $(36)^2 = 1.3 \times 10^4$ ops per time step

How many time steps do we have to do? In each lattice move I am *effectively* executing a time step of

t=10.0 picosecond (ps) where 10ps=10⁻¹¹ seconds

and 1.0 microsecond (10⁻⁶ seconds) of simulation requires

10⁻⁶ seconds/(10⁻¹¹seconds/timestep)=10⁵ time steps

The Computational Cost of Protein Folding

Therefore one 1us simulation of *lattice model* of villin protein in water requires

$(1.3 \times 10^4 \text{ ops/time step}) \times (10^5 \text{ time steps}) = 1.3 \times 10^9 \text{ ops}$

However, one folding trajectory is only anecdotal. We require thousands of trajectories to get the correct folding measure of a population or ensemble of folding events (more typical of real experiments).

10³x1.3x10⁹ ops=1.3x10¹² ops

This outlines how many computer operations we need to simulate the fastest protein folding experiment for a very small protein in water

CS267

The Computational Cost of Protein Folding

Current best laptops are ~1 gigaflops or 10⁹ ops/second wall time

Lets imagine that we have exclusive and dedicated access to this laptop for as long as we need to finish this protein folding calculation.

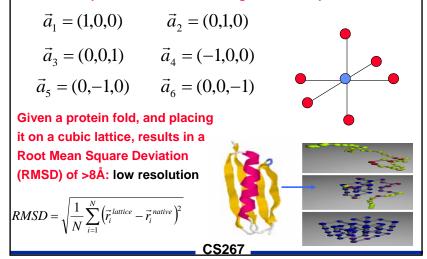
 $(1.3 \times 10^{12} \text{ ops})/(10^9 \text{ ops/second wall time})=1.3 \times 10^3 \text{ seconds}$

(13x10² seconds)/(6.0x10¹ seconds/hr)

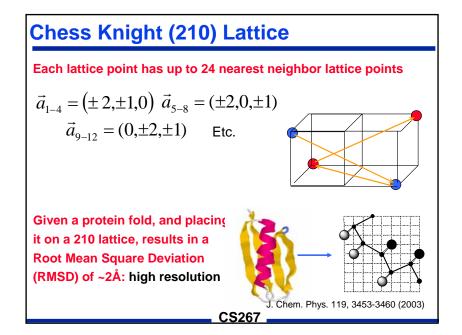
~20 hours

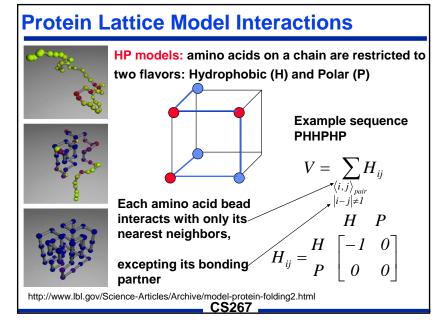
Cubic Lattice

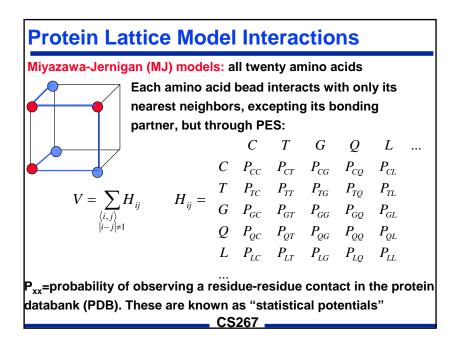
Each lattice point has six nearest neighbor lattice points

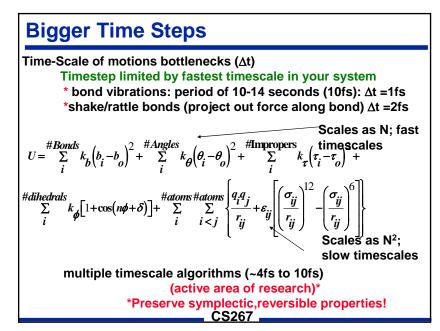


Diamond Lattice Each lattice point has four nearest neighbor lattice points $\vec{a}_1 = \eta(1,1,1)$ $\vec{a}_2 = \eta(1,-1,-1)$ $\vec{a}_3 = \eta(-1,-1,1)$ $\vec{a}_4 = \eta(-1,1,-1)$ $\eta = (-1)^m$ m: the number of steps from a given lattice point Given a protein fold, and placing it on a diamond lattice, results in a Root Mean Square Deviation (RMSD) of ~4Å: medium resolution $\mathbf{CS267}$









Better Computers: IBM Blue Gene

Blue Gene will do

(1) Robust objective function

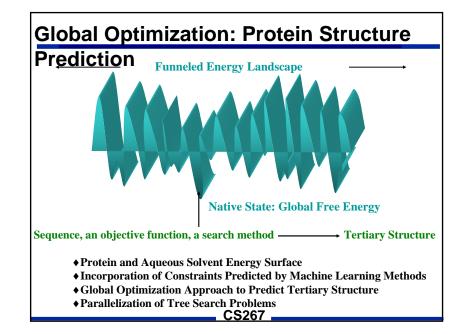
All atom simulation with molecular water present Proper treatment of long-ranged interactions (Ewald) Part of the objective is to interrogate energy functions

(2) Severe time-scale problem

10⁹ energy/forces: parallelization (spatial decomposition) Blue Gene will simulate on the microsecond-millisecond

(3) Statistics (1 trajectory is anecdotal)

Blue Gene can do 1000's



Protein Structure Prediction is Multidisciplinary

• Use of Constraints Predicted by Machine Learning Methods Al/Bioinformatics

• Global Optimization Approach to Predict Tertiary Structure Mathematical Optimization/Applied Mathematics

Parallelization of Tree Search Problems
 Computer Science/Tools

Protein and Aqueous Solvent Energy Surface
 Biophysics and physical chemistry
 Experiments and theory

CS267

Critical Assessment of Structure Prediction (CASP)

It consists of three parts:

- 1. The collection of targets from the experimental community.
- 2. The collection of blind predictions from the modeling community over a period of ~3 months
 - Comparative modeling (high sequence homology)
 - ✓ Fold recognition (high structural homology)
 - ✓ Ab initio (genuine new folds; generally applicable)
- 3. The assessment and discussion of the results.

Organizers ranked protein targets by difficulty (database)

Various objective measure/metrics have been defined

Stochastic/perturbation in sub-space of dihedral angles predicted coil

(1) Local minimization of a set of start points in sub-space

(2) Define a critical radius

$$r_{k} = \left[\left(\frac{1}{\pi}\right)^{n/2} \Gamma\left(1 + \frac{n}{2}\right) \frac{V\sigma \log \rho}{\rho} \right]^{1/n}$$

a measure of whether a point is within a basis of attraction

(3) Generate many sample points in sub-space volume, V

(4) Evaluate r.m.s. between new sample points and minimizers of (1)

If $(r.m.s. < r_k)$ ignore this sample point

(5) Minimize sample points not in critical distance, merge into (1)

Choose new set of coil dihedral angles and repeat

Crivelli, Philip, Byrd, Eskow, Schnabel, Yu, Head-Gordon (1999). In New Trends in Computational Methods for Large Molecular Systems, in press.

Probabilistic theoretical guarantees of global optimum in sub-spaces Global optimization of full space: solve series of global optimum in sub-spaces?

CS267

Parallelization Strategy

