CS267
MPI

Bill Saphir

Berkeley Lab/NERSC
Phone: 510-486-4373
wcsaphir@lbl.gov

~y

A

rreeeer ‘m

BERKELEY LAB

What is Message Passing?

» Message passing is a model for programming distributed memory
parallel computers

 Every processor executes an independent process
e Disjoint address spaces, no shared data

« All communication between processes is done cooperatively,
through subroutine calls

« SPMD: single program, multiple data

 Every processes Is the “same” (e.g. a.out); may act on different
data

« MPMD: multiple program, multiple data
* Not all processes are the “same” (e.g. a.out, b.out, c.out) R

i A
rrreere ||||

CS267 - MPI 2/2005 W. Saphir

What is the Message Passing Interface?

MP1 is the de facto standard for scientific programming on distributed
memory parallel computers.

* MPI is a library of routines that enable message passing applications
* MPI is an interface specification, not a specific implementation

« Almost all high performance scientific applications run at NERSC and other
supercomputer centers use MPI

The message passing model is
« A painful experience for many application programmers
 Old technology — “assembly language for parallel programming”

Message passing has succeeded because
* It maps well to a wide range of hardware
e Parallelism is explicit and communication is explicit

* Forces the programmer to tackle parallelization from the beginning.
» Parallelizing compilers are very hard /\I A
¢ MPI makes programs portable |

CS267 - MPI 2/2005 W. Saphir

MPI History

» Before MPI: different library for each type of computer:
« CMMD (Thinking Machines CM5)
* NX (Intel iPSC/860, Paragon)
 MPL (SP2)
« and many more
* PVM: tried to be a standard, but not high performance, not carefully
specified
* MPI was developed by the MPI Forum: voluntary organization
representing industry, government labs, academia
« 1994 MPI-1 — codified existing practice
« 1997 MPI-2 — research project

* Both MPI-1 and MPI-2 were designed by committee. There Is a core
of good stuff but just because it’s in the standard doesn’t mean you
should use it. /\I A

||||

CS267 - MPI 2/2005 W. Saphir

What’s in MPI

* MPI-1
o Utilities: “who am 1?7, “how many processes are there”
 Send/receive communication
 Collective communication e.g. broadcast, reduction, all-to-all
» Many other things

* MPI-2
e Parallel 1/0
o C++/Fortran 90
» One-sided communication — get/put
e Many other things

* Not in MPI
 Process startup, environment, standard input/output)\I A
« Fault tolerance |

BERKELEY LAaB

CS267 - MPI 2/2005 W. Saphir

An MPI1 Application

An MPI application

The elements of the application are:
4 processes, numbered zero through three
« Communication paths between them

The set of processes plus the communication channels is called
“MPI _COVM WORLD”. More on the name later.

e

~

,,—\l /\
rererrer

BERKELEY (.N-]

j

CS267 2/2000 Bill Saphir

8

/

e

“Hello World” — C

#i ncl ude <npi . h>
mai n(int argc, char *argv[])

{
I nt me, nprocs
MPl Init(&argc, &argv)
VPl Conmm si ze(MPI _COVM WORLD, &nprocs)
VPl Comm rank(MPI _COVM WORLD, &ne)
printf(“H fromnode % of %\n”, ne,
MPI _Finalize()

}

Npr ocs)

-~

ﬁ A
rrerrererr

BERKELEY LAB

CS267 2/2000 Bill Saphir

©

Compiling and Running

Different on every machine.

Compile:
npicc -o hello hello.c
nmpif77 -o hello hello.c

Start four processes (somewhere):

npirun -np 4 ./hello

CS267 2/2000 Bill Saphir

~

,,—\l /\
reererer

BERKELEY LAB

10

“Hello world” output

Run with 4 processes:

Hi
Hi
Hi
Hi

Note:

fromnode 2 of 4
fromnode 1 of 4
fromnode 3 of 4
fromnode O of 4

Order of output is not specified by MPI
Ability to use st dout is not even guaranteed by MPI!

CS267 2/2000 Bill Saphir

~

,"\l /\
reererer

BERKELEY LAB

11

-

Point-to-point communication in MPI

MPI_Send(data, ...)

-

MPI1_Recv(data, ...)

-~

/—\l /\
rererrr

BERKELEY (.N-]

J

CS267 2/2000 Bill Saphir

12

Point-to-point Example

Process 0 sends array “A” to process 1 which receives it as “B”

0)

#defi ne TAG 123

doubl e A[10];

VPl Send(A, 10, MPI _DOUBLE, 1, TAG MPI COVIVI VWORLD)
1

#defi ne TAG 123

doubl e B[10];

VPl Recv(B, 10, MPI _DOUBLE, 0, TAG

VPRI COVM WORLD, &st at us)

or

VPl Recv(B, 10, MPI _DOUBLE, MPI _ANY_ SOURCE, .
MPI _ANY_TAG, MPI COVM WORLD, &st at us) ,\I A

CS267 2/2000 Bill Saphir 13

Some Predefined datatypes

C:
MPl | NT
MPl _FLOAT
MPI _DOUBLE
MPl _CHAR
MPl _LONG
MPl _UNSI GNED

Fortran:
MPI | NTEGER
MPI _REAL
MPI _DOUBLE PRECI SI ON
MPI _CHARACTER
MPI _COVPLEX
MPI LOG CAL

Language-independent
MPI _BYTE

CS267 2/2000 Bill Saphir

~

rreereee ‘m

14

Source/Destination/Tag

src/ dest

dest
* Rank of process message is being sent to (destination)

* Must be a valid rank (0...N-1) in communicator
Src

« Rank of process message is being received from (source)
e “Wildcard” MPI _ ANY_SOURCE matches any source

t ag
* On the sending side, specifies a label for a message
e On the receiving side, must match incoming message
e On receiving side, MPI _ ANY_TAGmatches any tag

~

,"\l /\
reererer

|||‘
BERKELEY LaB

CS267 2/2000 Bill Saphir 15

Status argument

In C: MPI_Status is a structure
st at us. MPlI _TAG s tag of incoming message
(useful if MPI _ANY _TAGwas specified)
st at us. MPI _SOURCE is source of incoming message
(useful if MPI _ANY _SOURCE was specified)

How many elements of given datatype were received
MPI _Get count (I N status, | N datatype, OUT count)

In Fortran: status Is an array of integer

| nt eger status(MPl _STATUS Sl ZE)
st at us(MPI _SOURCE)
status(MPl _TAG

In MPI1-2: Will be able to specify MPI _STATUS_| GNORE

~

,"\l /\
reererer

|||‘
BERKELEY LaB

CS267 2/2000 Bill Saphir

Guidelines for using wildcards

Unless there is a good reason to do so, do not use wildcards
Good reasons to use wildcards:

Receiving messages from several sources into the same buffer but
don’t care about the order (use MPI _ ANY_SOURCE)

Receiving several messages from the same source into the same
buffer, and don’t care about the order (use MPl _ANY_TAG)

-)

,,—\l /\
reererer

BERKELEY LAB

CS267 2/2000 Bill Saphir

17

-

Exchanging Data

_

MPI1_Send(A, ...)
MPI_Recv(B, ...)

« Example with two processes: 0 and 1
* General data exchange is very similar

MPI1_Send(A, ...)
MPI_Recv(B, ...)

Requires Buffering to succeed!

-~

/—\l /\
rererrer

BERKELEY (.N-]

J

CS267 2/2000 Bill Saphir

18

Deadlock

The MPI specification is wishy-washy about deadlock.

A safe program does not rely on system buffering.

An unsafe program may rely on buffering but is not as portable.
Ignore this. MPI is all about writing portable programs.
Better:

A correct program does not rely on buffering

A program that relies on buffering to avoid deadlock is incorrect.

In other words, it is your fault it your program deadlocks.

-)

,,—\l /\
reererer

|||‘
BERKELEY LaB

CS267 2/2000 Bill Saphir 19

Non-blocking operations

Split communication operations into two parts.
First part initiates the operation. It does not block.
Second part waits for the operation to complete.

MPI Recv(buf, count, type, dest, tag, conm status)

MPl |recv(buf, count, type, dest, tag, comm
+

MPlI Wi t (, &St at us)
VPl Send(buf, count, type, dest, tag, comm
VPl | send(buf, count, type, dest, tag, comm

+
MPI Wi t (, &St at us)

CS267 2/2000 Bill Saphir

-)

,,—\l /\
reererer

BERKELEY LAB

20

Using non-blocking operations

#defi ne MYTAG 123

#defi ne WORLD MPI _COVM WORLD
MPlI Request request;
MPI St at us st at us;

Process O:

MPI Irecv(B, 100, MPI _DOUBLE, 1, MYTAG WORLD, &request)
VPl Send(A, 100, MPI _DOQUBLE, 1, MYTAG WORLD)
(& equest, &st at us)

Process 1:

MPI Irecv(B, 100, MPI _DOUBLE, 0, MYTAG WORLD, &request)
VPl Send(A, 100, MPI _DQUBLE, 0, MYTAG WORLD)
(& equest, &st at us)

No deadlock
Data may be transferred concurrently

~

rreereee ‘m

CS267 2/2000 Bill Saphir 21

Using non-blocking operations (11)
Also possible to use nonblocking send:

#defi ne MYTAG 123

#defi ne WORLD MPI _COVM WORLD
MPlI Request request;
MPI St at us st at us;

p=1-ne; /* calculates partner in 2 process exchange */

Process 0 and 1:

MPl | send(A, 100, MPI _DOUBLE, p, MYTAG WORLD, &request)
MPI Recv(B, 100, MPI DOUBLE, p, MYTAG WORLD, &st atus)
MPI Wit (& equest, &status)

No deadlock

“status” argument to MPl _Wai t doesn’t return useful info here.

Better to use | r ecv instead of | send if only using one. ,-\| \
recccrrc|

CS267 2/2000 Bill Saphir 29

Overlapping communication and computation

On some computers it may be possible to do useful work while data is

being transferred.
MPlI _Request requests|?2];
MPlI St atus statuses|[?2];

MPI Irecv(B, 100, MPI _DOUBLE, p, 0, WORLD, &request[1])
MPlI | send(A, 100, MPI _DOUBLE, p, 0, WORLD, &request[O0])

do sonme useful work here

MPI Waitall (2, requests, statuses)

| r ecv/l send initiate communication

Communication proceeds “behind the scenes” while processor is
doing useful work

Need both | send and | r ecv for real overlap (not just one)

Hardware support necessary for true overlap ,-\| \
This is why “0” in “LogP” is interesting. LLALLLE N
’ / 9

CS267 2/2000 Bill Saphir 23

Operations on MPI_Request

MPI Vit (1 NOUT request, OUT status)

Waits for operation to complete

Returns information (if applicable) in status

Frees request object (and sets to MPI_ REQUEST NULL)
MPI _Test (I NOUT request, OUT flag, OUT status)

Tests to see if operation is complete

Returns information in status if complete

Frees request object if complete
MPI Request free(l NOUT request)

Frees request object but does not wait for operation to complete
MPI VWaitall (..., INOUT array_of requests, ...)
MPI Testall (..., INOUT array_of requests, ...)
MPI Wit any/MPl _Test any/MPl Wi t sone/MPl _Test sone

MPI _Cancel cancels or completes a request. Problematic.

~

,"\l /\
reererer

|||‘
BERKELEY LaB

CS267 2/2000 Bill Saphir 24

Non-blocking communication gotchas

Obvious caveats:

1. You may not modify the buffer between | send() and the
corresponding Wai t () . Results are undefined.

2. You may not look at or modify the buffer between I r ecv() and the
corresponding Wai t () . Results are undefined.

3. You may not have two pending | r ecv() s for the same buffer.
Less obvious gotchas:

4. You may not look at the buffer between | send() and the
corresponding Vi t () .

-)

5. You may not have two pending Isend() s for the same buffer. ,r\r| »

|||‘
BERKELEY LaB

CS267 2/2000 Bill Saphir o5

MPI_Send semantics

Most important:
* Buffer may be reused after MPI_Send() returns

Others:
» Messages are non-overtaking
* Progress happens
* Fairness not guaranteed

obeys these semantics.

-

* May or may not block until a matching receive is called (non-local)

MPI1_Send does not require a particular implementation, as long as it

-)

,,—\l /\
rererrer

BERKELEY (.N-]

J

CS267 2/2000 Bill Saphir

28

Send Modes

Standard

* Send may not complete until matching receive is posted
- MPI _Send, MPlI | send

Synchronous

* Send does not complete until matching receive is posted
« MPI _Ssend, MPl | ssend

Ready

* Matching receive must already have been posted
-« MPI _Rsend, MPl _Irsend

Buffered

 Buffers data in user-supplied buffer
- MPI _Bsend, MPl | bsend

-

CS267 2/2000 Bill Saphir

wcs
Text Box

Don't use these.

They exist because MPI was designed by committee and they offer little benefit.

Communicators

* MPI_COMM_WORLD is a communicator

« A communicator is an object that represents
o A set of processes
 Private communication channels between those processes

 Uses of communicators
 Scope for collective operations
 Writing safe libraries
1send(); 1recv();
library call with _internal _communication();

MP1 Wait(); eceen) ’\|

CS267 - MPI 2/2005 W. Saphir

Collective Operations

Collective communication is communication among a group of processes:
Broadcast
Synchronization (barrier)
Global operations (reductions)
Scatter/gather
Parallel prefix (scan)

e
/ -

\ g o e

~

,"\l /\
reererer

|||‘
BERKELEY LaB

CS267 2/2000 Bill Saphir

Barrier

MPlI _Barrier(conmuni cat or)

No process leaves the barrier until all processes have entered it.

Model for collective communication:
All processes in communicator must participate
Process might not finish until have all have started.

~

rreereee ‘m

CS267 2/2000 Bill Saphir 45

Broadcast

VPl Bcast (buf, len, type, , conm

Process with rank = root is source of data (in buf)
Other processes receive data

VPl Comm rank(MPI _COW WORLD, &nyid);

if (nyid == 0) {
/* read data fromfile */
}

VPl Bcast(data, len, type, 0, MPI_COVM WORLD) ;

Note:
All processes must participate
MPI has no “multicast” that is matched by a receive

CS267 2/2000 Bill Saphir

-)

,,—\l /\
reererer

BERKELEY LAB

46

Reduction

Combine elements in input buffer from each process, placing result in
output buffer.

MPl Reduce(i ndata, outdata, count, type, op, root, comm
MPI Al lreduce(indata, outdata, count, type, op, conm

Reduce: output appears only in buffer on root
Allreduce: output appears on all processes

operation types:

VPl SUM

VPl _PROD

VPl MAX

MPI M N

MPI _BAND

arbitrary user-defined operations on arbitrary user-defined ’:\rl A
datatypes —

CS267 2/2000 Bill Saphir 47

Reduction example: dot product

/* distribute two vectors over all processes such that
processor 0 has elenments 0...99
processor 1 has elenents 100...199
processor 2 has elenents 200...299

etc.
*/
doubl e dot prod(doubl e a[100], doubl e b[100])
{

doubl e gresult = lresult = 0.0;

| nt eger i

/* conpute | ocal dot product */

VPl Al lreduce(lresult, gresult, 1, MPl _DOUBLE,
VPl SUM MPI _COVM WORLD) ;
return(gresult);

} =
rreereee ‘m

CS267 2/2000 Bill Saphir 48

Data movement: all-to-all

All processes send and receive data from all other processes.

VPl Al ltoall (sendbuf, sendcount, sendtype,
recvbuf, recvcount, recvtype,

conm

For a communicator with N processes:
sendbuf contains N blocks of sendcount elements each
r ecvbuf receives N blocks of r ecvcount elements each
Each process sends block I of sendbuf to process i
Each process receives block i of r ecvbuf from process |

Example: multidimensional FFT (matrix transpose)

~

,"\l /\
reererer

BERKELEY LAB

CS267 2/2000 Bill Saphir 49

Other collective operations

There are many more collective operations provided by MPI:
MPlI _Gat her /Gat her v/Al | gat her /Al | gat herv

each process contributes local data that is gathered into a larger
array

MPI Scatter/Scatterv
subparts of a single large array are distributed to processes

MPI Reduce_scatter
same as Reduce + Scatter

Scan
prefix reduction

The “v” versions allow processes to contribute different amounts _

of data ,r\r| A

|||‘
BERKELEY LaB

CS267 2/2000 Bill Saphir 50

Semantics of collective operations

For all collective operations:
Must be called by all processes in a communicator

Some collective operations also have the “barrier” property:
Will not return until all processes have started the operation

MPI Barrier, MPl _Allreduce, MPI _Alltoall,etc.

Others have the weaker property:
May not return until all processes have started the operation
MPI Bcast, MPl _Reduce, MPl _Conm dup, etc.

CS267 2/2000 Bill Saphir

~

,"\l /\
reererer

BERKELEY LAB

o1

Performance of collective operations

Consider the following implementation if MPl _Bcast :

if (me == root) {
for (i =0; i <N i++) {
i f (i '=nme) MPI_Send(buf, ..., dest=i, ...);
}
} else {
MPI Recv(buf, ..., src=i, ...);
}

Non-scalable: time to execute grows linearly with number of processes.

High-quality implementations of collective operations use algorithms
with better scaling properties if the network supports multiple
simultaneous data transfers.

Algorithm may depend on size of data

Algorithm may depend on topology of network

~

rrereer ”

BERKELEY LAB

CS267 2/2000 Bill Saphir 52

Where to get more information

Home pages
http://ww. npi-forum org
http://ww. nts. anl . gov/ npi

Newsgroups
comp.parallel.mpi

Books
Using MPI, by Gropp, Lusk, Skjellum. The MIT Press
MPI: The Complete Reference, by Snir, Otto, Huss-Lederman,
Walker, Dongarra. The MIT Press
MPI: The Complete Reference, Volume 2, by Gropp, Lederman,
Lusk, Nitzberg, Saphir, Snir. The MIT Press
Parallel Programming with MPI, by Pacheco. Morgan
Kauffman

~

frrerrerer

|||‘
BERKELEY LaB

CS267 2/2000 Bill Saphir 74

