
Parallel POPCycle ImplementationParallel POPCycle Implementation
Ben Steffen- Integrative BiologyBen Steffen- Integrative Biology

 CS267: Applications of Parallel Computers-Spring 2009 CS267: Applications of Parallel Computers-Spring 2009

 Background:
POPCYCLE is an individual-based simulation mod-
el for the population dynamics of marine zooplank-
ton. The model tracks a population of individuals
through growth, reproduction, mortality, and tracks
where individuals move and are advected within a
realistic fl ow fi eld. The physical and biological fi elds
used by POPCYCLE are generated by another mod-
el, the Regional Ocean Modeling System (ROMS).

Figure 1. Plot of spatial data produced by
POPCYCLE over a several-day run.

Figure 2. Sample of sea-surface tempera-
tures for the California Current produced
by the Regional Ocean Modeling System
(ROMS).

 Abstract:
This project involved implementing a parallel version
of POPCYCLE, an individual-based model of the
population dynamics of marine zooplankton. The
model is parallelized by having a master process
subdivide the population among slave processes, with
each slave process computing for its subpopulation
independently and then reporting back to the master
process at set intervals. This parallel implementation
achieves signifi cant speedups over the serial version,
particularly when the population size is large. Increas-
ing the frequency of communications between the
master and slaves slows the model slightly, but is not
a major performance bottleneck. The results also sug-
gest that to attain additional speedup of the algorithm,
it may be necessary to look at the fi le output process.

 Parallel implementation:
The motive for working on the parallel implementation
of POPCYCLE was to set up a parallel framework on
which future versions could be built. The basic design
for the parallel implementation of POPCYCLE was to
have a master process distribute the work to slave

up according to their spatial location, so each slave
process does not need to keep track of when to pass
individuals to other processes. This way of dividing
up the population would have to change if there were
interactions between neighboring individuals, but for
the model’s current application to modeling krill, it is
unlikely that there will be any interaction between in-
dividuals other than through the density of the entire
population.

processes. Each slave process receives its own
segment of the population from the master, and
computes time steps for that subpopulation up
until a fi xed ‘report’ time, when all slave pro-
cesses send their subpopulations back to the
master, which allows the master to output sta-
tistics on the entire population before redistrib-
uting the population. The particles are not split

Figure 3. Effi ciency scal-
ing of 16-processor runs with
population size. Due to the
signifi cant overhead of out-
putting data to fi les, the scal-
ing we actually obtained for
increasing the number of
processors was not great for
small problem sizes, though it
improved substantially as the
problem size increased.

 Conclusion:
As expected, implementing a parallel version of POP-
CYCLE does yield a signifi cant speedup in time to so-
lution. Scaling on small initial population sizes is less
than ideal, but improves greatly for larger populations.
In practice, the poor scaling for small populations
should not be a problem, as the parallel solution will
only be needed for large problem sizes. The fact that
communication did not seem to be a major bottleneck
will be helpful if neighbor interactions are ever imple-
mented, which will involve a more communication
intensive model. Lastly, the issue with the fi le output
possibly slowing the model may have to be dealt with,
but the format of the output is likely to change with
specifi c applications of POPCYCLE, so it may be
more suitable to address that problem then.

Figure 4. Comparing scaling for the default re-
port time of 1/day with that of a report time at every
timestep (96/day). From these results, it seems that
while the model does run slower with more communi-
cation, it still scales pretty close to the case with very
little communication. This suggests that the main per-
formance bottleneck is not with the communication.

Figure 1.

Figure 2

