
Finite Element Simulation of Nonlinear Elastic
Dynamics Using Cuda

Christopher Cameron

May 10, 2009



The Problem

Compute how an elastic object deforms over time when subjected to
external forces.

• Many applications including stress-testing buildings and vehicles.

• Artifically constrain implementation to fit on one GPU (small-scale
simulations are still have applications, e.g, surgical simulation).

1



The Discrete Time Differential Equation

Given the inputs

• A discretized domain Ω with n nodes and e elements

• A time-varying vector q(t) ∈ R3n which describes the displacement of
the nodes of the mesh

• A mass matrix M ∈ R3n×3n describing the mass distribution in the body

• Internal force function resulting from deformation, fint : R3n → R3n, and
its derivative f ′int : R3n → R3n×3n

• A time-varying external force function from user input fext(t) ∈ R3n

Solve the differential equation (looks like Newton’s second law)

Mq̈(t) = fint(q(t)) + fext(t)

2



Solution Details

Running a simulation consists of, for each time value ti in t1, ..., tm,
computing q(ti+1) from q(ti). This involves

1. For each element, compute fext and f ′ext for just that element.

– For the 8-node brick elements used, fext ∈ R24 and f ′ext ∈ R24×24

2. Assemble the per-element fext and f ′ext into whole-mesh fext and f ′ext

3. Solve a sparse symmetric positive definite linear system involving fext,
f ′ext, and M

We focus on step 1 in this project. The remaining steps are very common
and well-studied.

3



Implementation Details

• Implemented on a GeForce 8800 GT with 512 MB of memory.

• Only uses single precision floating-point.

– GPUs with double precision are available (just expensive).
– Has very severe stability implications.

• One thread per element.

– No communication between elements is necessary until assembly stage.
– More threads in flight means more opportunity to hide latency.
– One thread per quadrature point possible, but more complicated and

results in more communication or over-computation.

• Use texture to read thread input values (e.g, node positions,
displacement, etc).

– Texture has a cache to lower latency
– Using texture removes need to do coalesced reads

4



Future work

• Exploit capabilities of newer hardware (e.g GeForce GTX 280).

– Double precision support is available now.
– Reading/writing coalescing constraints have been relaxed
∗ No need to use texture for reading.
∗ Potentially merge per-element computation step with assembly step.

• Full end-to-end solution on GPU

– Perform assembly and and conjugate gradient solve on the GPU.
– Should be much faster due to
∗ No data transfer between CPU and GPU
∗ GPU implementation of CG solve should be faster than CPU

• Extend to larger problems

– Multi-GPU and multi-system implementations.
– Double precision support allows larger systems to be stable.

5



The End

6


