

Manycore:

NVIDIA G280

• Fine-grained parallelism and changing work set size are the primary features that our algorithms must address to achieve scalability.

L1 Private Local Store

Virtual Local Store

CPU

CPU

RESULTS Communication vs. Computation Speedup Over 2.0 2.5 3.0 3.5 Sequential Case SIMD Utilization 50% Sequential 40% - 30% - 20% Decoding Multicore Time per Second of Manycore Speech Multicore Arc-based Propagation Sequential RTF: 3.17; 1x RTF: 1.006; 3.2x 2.623 0.737 0.242 □ 0.474 0.026 0.073 0.001 **State-based Propagation** State-based Aggregation RTF: 2.593; 1.2x RTF: 0.925; 3.4x **RTF: Real Time Factor** ■ 0.732 0.754 3.4x: Speedup vs Seq □ 1.356 0.157 Phase 1 0.035 0.482 Phase 2 0.001 0.001 Phase 3 Seq. Overhead Manycore Arc-based Aggregation **Arc-based Propagation Synchronization Cost in** RTF: 0.302; 10.5x Inference Engine Graph Traversal RTF: 0.912; 3.5x _ 3.5 0.148 ■ 0.148 0.469 0.103 0.043 0.281 **o**^o 2.5 0.008 Aggregation State-based Aggregatior State-based Propagation 1.5 RTF: 1.203; 2.6x RTF:0.776; 4.1x Populate active states/arcs 0.148 ■ 0.147 □ 0.77 0.512 Collect unique labels 0.108 0.272

Memory Hierarchy

0.014

Software management is most effective for phases with streaming memory accesses but is less effective for phases with fine-grained random access patterns

FUTURE WORK

- Evaluate scaling on future platforms with wider SIMD or more cores
- Optimizations of private storage management for task queue model

COLLABORATORS: JIKE CHONG, KISUN YOU, YOUNGMIN YI, CHRISTOPHER HUGHES, WONYONG SUNG, KURT KEUTZER

