
PROBLEM STATEMENT

Our goal is to create algorithms for speech recognition 

inference that scale with increasing vector unit widths, 

increasing number of cores per die, and increasing 

complexity of the memory hierarchy. To do this we 

optimize SIMD efficiency, synchronization costs, and 

data locality and placement. We evaluate which 

algorithmic techniques are applicable across a diverse 

set of architectures including multicore processors, 

manycore GPUs, and virtual local stores.

Ekaterina Gonina and Henry Cook

• The inference process takes the form of a parallel graph 

traversal through an irregular network of states and arcs. 

• Traversal is guided by a sequence of input audio vectors. 

• The algorithm has multiple phases, each of which express fine-

grained parallelism. As the algorithm runs, it computes on a 

continuously changing data set corresponding to the currently 

active states in the underlying Hidden Markov Model. 

• Fine-grained parallelism and changing work set size are the 

primary features that our algorithms must address to achieve 

scalability. 

IMPLEMENTATION DETAILS

FUTURE WORK

• Evaluate scaling on future platforms with wider SIMD or 

more cores

• Optimizations of private storage management for task 

queue model

COLLABORATORS: JIKE CHONG, KISUN YOU, YOUNGMIN YI, 
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Creating a Scalable HMM based Inference Engine for
Large Vocabulary Continuous Speech Recognition
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HARDWARE DESIGN SPACE EXPLORATION
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Graph Traversal Techniques

Addressing Core-level 

Synchronization Efficiency
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INFERENCE ENGINE CHARACTERISTICS

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100

T
o

ta
l 
S

y
n

c
h

ro
n

iz
a

ti
o

n
 C

o
s

t 
[s

e
c

]

Number of Arcs Synchronized [Millions of Arcs]

Synchronization Cost in 
Inference Engine Graph Traversal 
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Software management
is most effective for
phases with streaming
memory accesses,
but is less effective 
for phases with
fine-grained random
access patterns


