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PROBLEM STATEMENT

Our goal Is to create algorithms for speech recognition
Inference that scale with increasing vector unit widths,
Increasing number of cores per die, and increasing
complexity of the memory hierarchy. To do this we
optimize SIMD efficiency, synchronization costs, and
data locality and placement. We evaluate which
algorithmic technigues are applicable across a diverse
set of architectures including multicore processors,
manycore GPUs, and virtual local stores.
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* The inference process takes the form of a parallel graph
traversal through an irregular network of states and arcs.

* Traversal is guided by a sequence of input audio vectors.

* The algorithm has multiple phases, each of which express fine-
grained parallelism. As the algorithm runs, it computes on a
continuously changing data set corresponding to the currently
active states in the underlying Hidden Markov Model.

* Fine-grained parallelism and changing work set size are the
primary features that our algorithms must address to achieve
scalabillity.
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ALGORITHM DESIGN SPACE EXPLORATION
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Efficient transition evaluation
Enable speedup with SIMD width

Efficient data placement
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Software vs hardware management
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FUTURE WORK

COLLABORATORS: JIKE CHONG, KISUN YOU, YOUNGMIN Y,
CHRISTOPHER HUGHES, WONYONG SUNG, KURT KEUTZER

» Evaluate scaling on future platforms with wider SIMD or
more cores
« Optimizations of private storage management for task
gueue model




