
PROBLEM STATEMENT

Our goal is to create algorithms for speech recognition 

inference that scale with increasing vector unit widths, 

increasing number of cores per die, and increasing 

complexity of the memory hierarchy. To do this we 

optimize SIMD efficiency, synchronization costs, and 

data locality and placement. We evaluate which 

algorithmic techniques are applicable across a diverse 

set of architectures including multicore processors, 

manycore GPUs, and virtual local stores.

Ekaterina Gonina and Henry Cook

• The inference process takes the form of a parallel graph 

traversal through an irregular network of states and arcs. 

• Traversal is guided by a sequence of input audio vectors. 

• The algorithm has multiple phases, each of which express fine-

grained parallelism. As the algorithm runs, it computes on a 

continuously changing data set corresponding to the currently 

active states in the underlying Hidden Markov Model. 

• Fine-grained parallelism and changing work set size are the 

primary features that our algorithms must address to achieve 

scalability. 

IMPLEMENTATION DETAILS

FUTURE WORK

• Evaluate scaling on future platforms with wider SIMD or 

more cores

• Optimizations of private storage management for task 

queue model

COLLABORATORS: JIKE CHONG, KISUN YOU, YOUNGMIN YI, 

CHRISTOPHER HUGHES, WONYONG SUNG, KURT KEUTZER

Creating a Scalable HMM based Inference Engine for
Large Vocabulary Continuous Speech Recognition

RESULTS

Manycore

Communication vs. Computation

Memory Hierarchy

Multicore

ALGORITHM DESIGN SPACE EXPLORATION

Speech 
Feature 
Extractor

Inference 
Engine

Voice 
Input

Speech
Features

Word
Sequence

…

I think 

therefore  

I am

Acoustic

Model
Pronunciation

Model
Language 

Model

Phase 1

Phase 2

Phase 3

One iter per
time step:

(~60M inst)

Multiple steps in a 
phase, each has:
1000s to 10,000s 
of concurrent tasks

(10 to 500 instr.)

Architecture 
of the inference engine

Software
structures used

Obs. Prob. compute

Non-eps. traversal

Epsilon traversal

HARDWARE DESIGN SPACE EXPLORATION

Multicore: 
Intel Nehalem 920

Manycore:
NVIDIA G280

Efficient graph traversal
Reduce task management overhead
Enable speedup with more cores

Efficient transition evaluation
Enable speedup with SIMD width

Efficient data placement
Locality, alignment, coalescence
Software vs hardware management

Graph Traversal Techniques

Addressing Core-level 

Synchronization Efficiency

# of states/arcs handled  

T
o

ta
l 
T

im
e
 f
o

r 
S

y
n

c
h
ro

n
iz

a
ti
o

n

(d) Propagation with atomic

memory ops causing contention 

leading to access serialization

Transition 

Evaluation 

Granularity

Addressing

SIMD 

Utilization

Efficiency

Propagate
Traversal 

organized 

at source state

Aggregation
Traversal 

organized at 

destination state

State-based
All out-going / 

in-coming arcs

at a state

Arc-based
One arc

at a time

Arc-based 
Aggregation

Approach

State-based 
Aggregation

Approach

Arc-based 
Propagation 

Approach

State-based 
Propagation 

Approach

INFERENCE ENGINE CHARACTERISTICS

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100

T
o

ta
l 
S

y
n

c
h

ro
n

iz
a

ti
o

n
 C

o
s

t 
[s

e
c

]

Number of Arcs Synchronized [Millions of Arcs]

Synchronization Cost in 
Inference Engine Graph Traversal 

0.00E+00

1.00E+10

2.00E+10

3.00E+10

4.00E+10

5.00E+10

1 2 3

phase

c
y
c
le
s

original
code with
full cache

SW-
managed
code with
VLS

Software management
is most effective for
phases with streaming
memory accesses,
but is less effective 
for phases with
fine-grained random
access patterns


