r
L/

C

PROBLEM STATEMENT

Our goal Is to create algorithms for speech recognition
Inference that scale with increasing vector unit widths,
Increasing number of cores per die, and increasing
complexity of the memory hierarchy. To do this we
optimize SIMD efficiency, synchronization costs, and
data locality and placement. We evaluate which
algorithmic technigues are applicable across a diverse
set of architectures including multicore processors,
manycore GPUs, and virtual local stores.

INFERENCE ENGINE CHARACTERISTICS

Recognition Network

Acoustic Pronunciation Language
Model Model Model
Speech

Voice Word
Input SpeeCh Features I n fe re n Ce Sequence
—>| Feature 0 — . © think

Extractor U E N gl ne therefore
‘ ‘ D I am

Software
structures used

PR

Architecture
of the inference engine

One iter per
J time step:
4 l) (~60M inst)
M

Obs. Prob. compute

Non-eps. traversal

Phase 2

Phase 3 Epsilon traversal

LT

Multiple stepsin a

phase, each has:
1000s to 10,000s
of concurrent tasks

(10 to 500 instr.)

* The inference process takes the form of a parallel graph
traversal through an irregular network of states and arcs.

* Traversal is guided by a sequence of input audio vectors.

* The algorithm has multiple phases, each of which express fine-
grained parallelism. As the algorithm runs, it computes on a
continuously changing data set corresponding to the currently
active states in the underlying Hidden Markov Model.

* Fine-grained parallelism and changing work set size are the
primary features that our algorithms must address to achieve
scalabillity.

»

n
AJIC

C MM Dbasec

Ekaterina Gonina and Henry Cook
ALGORITHM DESIGN SPACE EXPLORATION

Active Mapped SIMD
States onto SIMD Utilization
Arc-based Arc-based Arc-based Iransition [E”lra—"fnﬁ"; "% St Based Traversal
Propagation Aggregation One arc Evalu?thn :é - i L, IR 0 Syes O o
Approach Approach atatime Granularity o> | ;'D' : o\ _ Seauerta Cae 0
. SR i 60% .5
Addressing 3 i I : s \\ 50% &
State-based State-based St?te'base/d 0 ?_'M[_) = | s s i o >
. . All out-going tihzation ! 2 - 20% =
Propagation Aggregation : . oo é I 1 1 o @
Approach Approach n-coming ares - Efficiency T Tme SnRIE Inlnli 0%
at a state 1 g a s e
SIMD Width

Propagate Aggregation
Traversal Traversal
organized organized at

at source state destination state

Graph Traversal Techniques
Addressing Core-level

Efficient graph traversal

Reduce task management overhead
Enable speedup with more cores

Synchronization Efficiency

(d) Propagation with atomic
memory ops causing contention s

leading to access serializatio,n 7
a

~
Wi -

~

Efficient transition evaluation
Enable speedup with SIMD width

Efficient data placement

Locality, alignment, coalescence
Software vs hardware management

Total Time for Synchronization

of states/arcs handled

IMPLEMENTATION DETAILS

Propagation Aggregation Propagation Aggregation
Assign tasks to task queue Assign tasks to task queue Populate active states/arcs ‘ Populate active statesfarcs
v y v '
Collect unique labels Collect unique labels Obsewatfon Collect unique labels Collect unique labels
, probability . .
: computation phase :
Compute Gaussian score Compute Gaussian score F}Phase 1'; Compute Gaussian score Compute Gaussian score
_____ -——————_—_—_—_—_ —_ — — ——————— e e = ===
Assign tasks to task queue Assign tasks to task queue
v
For each active state/arc: - Collect destination states
» Compute non-epsilon arc transition , _ ;
For each active state/arc: probability forgach atctwe state(la\rc. cansit For each active state/arc
+ Compute non-epsilon arc transition + Set flags for destination states Orgpg]e hon-gpsilon arc transkion . Combule nonensilon arc transiion
probability ' v probability pute non-epsi it
: o : : o Update min probability by atomic probability
. Updatg min probability by atomic Collect unique destination states Non-epsilon arc operations ¥
. zzﬁfgtlgr;stm ation state _ v traversal phase For each destination state:
o Setflags for inout labels to be For each destination state: (Phase 2) + Find local min probability by reduction
gs foring e Find local min probability by l v
computed reduction
uct , Copy results back to CPU Copy results back to CPU
» Setflags for input labels to be
computed Y Y
Collect next active states Collect next active states
_____ * — Lo L — *— . S — L i T N S SN — —— — h — . SN . S — L 4 . SN . S S— -
Assign tasks to task queue Assign tasks to task queue Populate active states/arcs Populate active statesfarcs
| v Y v
v
. For each active state/arc: Collect destination states
For each active state/arc: « Compute epsilon arc transition For each active state/arc: v
. - probability . Compu_te_e epsilon arc transition For each active state/arc:
* Compute epsilon arc transition + Set flags for destination states probability « Compute epsilon arc transition
probability - . v _ + Update min probability by atomic probability
* Update min probabilty by atomic Collect unique destination states and add Epsilon arc operations v
zpzsrat;on; nation stat newly activated states/arcs into active set || 1raversal phase For each destination state:
¢ Activale gestinalion state ¥ (Phase 3) « Find local min probability by reduction
* Setflags forinput labels to be For each destination state: Y
computed . . " v
e Recursive call for following epsilon ' 223;33? min probability by Copy results back to CPU Copy results back to CPU
arcs of the destination state e Set flags for input labels to be v ¥
computed Collect next active states Collect next active states

HARDWARE DESIGN SPACE EXPLORATION

e ENC
Large Vocabulary Continuous Speech Recognition

o

RESULTS

Communication vs. Computation

0.0 05

.
mutticore [T

Manycore I:l

Sequential
RTF:3.17; 1x

H2.623
D0.474|.
0.073

1.0

15 20

25 3.0 35

Decoding
Time per

Second of
Speech

Multicore

e
e

¢

82.7% Compute Intensive
17.3% Communication Intensive

79.1% Compute Intensive
20.9% Communication Intensive

49.1% Compute Intensive
50.9% Communication Intensive

B Phasel
] Phase 2
[Phase 3
B Seq.Overhead

RTF: Real Time Factor
3.4x: Speedup vs Seq

Arc-based Propagation
RTF:0.302; 10.5x

Arc-based Aggregation
REE: D925y

Arc-based Propagation
RTF:1.006; 3.2x

mO0./37
[10.242

0.026
w 0.001

State-based Propagation State-based Aggregation

RTF: 0.925; 3.4x

m0.732
[10.157

0.035
w 0.001

RTF:2.593;1.2x

mO0.754
[11.356

0.482
w 0.001

Manycore

Synchronization Cost in
Inference Engine Graph Traversal

50

100

Number of Arcs Synchronized [Millions of Arcs]

Software management

IS most effective for
phases with streaming
memory accesses,
but Is less effective

for phases with

fine-grained random

access patterns

M0.148 m0.148 o 3.5
[J0.103 [J0.469 L2 3
0
0.043 0.281 S 25
w 0.008 w0.014 c
o
State-based Propagation State-based Aggregation = 15
RTF:0.776; 4.1x RTF:1.203; 2.6x g '

o 1
m0.148 m0.147 >
[00.512 00.77 3 0.5 |

0.108 0.272 =0
w 0.008 w0.014 0
5.00E+10
4.00E+10
M original
code with
3.00E+10 1 full cache
2.00E+10 -
SW -
managed
1.00E+10 - code with
VLS
0.00E+00 | . | N
1 2 3
phase

Cache

n
I\/I u Itl CO re Unified Cache L1 Private Unified .
DA L1 Private
] -2 Control Data Cache CPU L2 Engine Local Store CPU
ler Cache

Intel Nehalem 920 A B. "
. Cache L1 Private o L1 Private
Manycore: e [o || o o st 2] S || e cen
L2 CPU L2 and . Virtual CPU
Cache DMA L1 Private Cache DMA Local
NVIDIA G280 o = EA = o, =S

FUTURE WORK

COLLABORATORS: JIKE CHONG, KISUN YOU, YOUNGMIN Y,
CHRISTOPHER HUGHES, WONYONG SUNG, KURT KEUTZER

» Evaluate scaling on future platforms with wider SIMD or
more cores
« Optimizations of private storage management for task
gueue model

