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PROBLEM STATEMENT

Our goal Is to create algorithms for speech recognition
Inference that scale with increasing vector unit widths,
Increasing number of cores per die, and increasing
complexity of the memory hierarchy. To do this we
optimize SIMD efficiency, synchronization costs, and
data locality and placement. We evaluate which
algorithmic technigues are applicable across a diverse
set of architectures including multicore processors,
manycore GPUs, and virtual local stores.
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* The inference process takes the form of a parallel graph
traversal through an irregular network of states and arcs.

* Traversal is guided by a sequence of input audio vectors.

* The algorithm has multiple phases, each of which express fine-
grained parallelism. As the algorithm runs, it computes on a
continuously changing data set corresponding to the currently
active states in the underlying Hidden Markov Model.

* Fine-grained parallelism and changing work set size are the
primary features that our algorithms must address to achieve
scalabillity.
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ALGORITHM DESIGN SPACE EXPLORATION
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Efficient transition evaluation
Enable speedup with SIMD width

Efficient data placement
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Software vs hardware management
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Communication vs. Computation

0.0 05

.
mutticore [T

Manycore I:l

Sequential
RTF:3.17; 1x

H2.623
D0.474|.
0.073

1.0

15 20

25 3.0 35

Decoding
Time per

Second of
Speech

Multicore

e
e

¢

82.7% Compute Intensive
17.3% Communication Intensive

79.1% Compute Intensive
20.9% Communication Intensive

49.1% Compute Intensive
50.9% Communication Intensive

B Phasel
] Phase 2
[ Phase 3
B Seq.Overhead

RTF: Real Time Factor
3.4x: Speedup vs Seq

Arc-based Propagation
RTF:0.302; 10.5x

Arc-based Aggregation
REE: D925y

Arc-based Propagation
RTF:1.006; 3.2x

mO0./37
[10.242

0.026
w 0.001

State-based Propagation State-based Aggregation

RTF: 0.925; 3.4x

m0.732
[10.157

0.035
w 0.001

RTF:2.593;1.2x

mO0.754
[11.356

0.482
w 0.001

Manycore

Synchronization Cost in
Inference Engine Graph Traversal

50

100

Number of Arcs Synchronized [Millions of Arcs]

Software management

IS most effective for
phases with streaming
memory accesses,
but Is less effective

for phases with

fine-grained random

access patterns

M0.148 m0.148 o 3.5
[J0.103 [J0.469 L2 3
0
0.043 0.281 S 25
w 0.008 w0.014 c
o
State-based Propagation State-based Aggregation = 15
RTF:0.776; 4.1x RTF:1.203; 2.6x g '

o 1
m0.148 m0.147 >
[00.512 00.77 3 0.5 |

0.108 0.272 =0
w 0.008 w0.014 0
5.00E+10
4.00E+10
M original
code with
3.00E+10 1 full cache
2.00E+10 -
SW -
managed
1.00E+10 - code with
VLS
0.00E+00 | . | N
1 2 3
phase

Cache

n
I\/I u Itl CO re Unified Cache L1 Private Unified .
DA L1 Private
] -2 Control Data Cache CPU L2 Engine Local Store CPU
ler Cache

Intel Nehalem 920 A B. "
. Cache L1 Private o L1 Private
Manycore: e [ o || o o st 2] S || e cen
L2 CPU L2 and . Virtual CPU
Cache DMA L1 Private Cache DMA Local
NVIDIA G280 o = EA = o, =S

FUTURE WORK

COLLABORATORS: JIKE CHONG, KISUN YOU, YOUNGMIN Y,
CHRISTOPHER HUGHES, WONYONG SUNG, KURT KEUTZER

» Evaluate scaling on future platforms with wider SIMD or
more cores
« Optimizations of private storage management for task
gueue model




