
Parallel Implementation of
multipole-based

Poisson-Boltzmann solver

Eng Hui Yap
CS 267 Project
May 11, 2009

Simulation Overview

 Implicit Solvent
εs = 78, κ > 0

Protein(s):
εp = 4, κ=0

-

+

+

- +

+
+
-

--
+

-

-

-

-
+

�

!" # r()"$ r()[] + % 2$ r() = & fixed r()

1. Initialize system
2. Calculate forces

- Solve linearized Poisson Boltzmann Equation (LPBE)

3. Propagate Molecules
- Brownian Dynamics using forces from (2)

4. Repeat 2-3 until criteria is met

Each molecule is represented as a collection of spheres.

For each sphere ki:
1. Calculate surface charge multipole Snm

(i) Express Φin and Φout in terms of multipoles
(ii) Setting up boundary equations.
(iii) Solve for Snm

2. Update contribution from Snm to other spheres
3. Repeat for all spheres until convergence criteria is reached

Solving LPBE with Multipole Method

+ -
-

+ +

+ -
-

+ +

ki
+ -

-
+ +

+ -
-

+ +

(i) Potential Equations (in terms of multipoles)

�

!
in

(ki)
(r) =

E
Fixed nm

(ki)

r
n+1

+ r
n
B
nm

(ki)
"

$

%

&

' Ynm ((,))
m=*n

n

+
n= 0

,

+
+ -

-
+ +

�

E

�

B

�

!
out

(ki)
(r) =

E
Fixed

+ S()
nm

(ki)

r
n+1

+ L
s

+ L
E

+ L
Ext()

nm

(ki)
r
n

"

$ $

%

&

' '
Y
nm
((,))

m=*n

n

+
n= 0

,

+

E+S

Molecule i

LE+LS

Molecule j
LExt

Inside sphere ki:

Outside sphere ki:

Goal: Solve for unknown S

(ii) Boundary conditions

�

n!p + n +1()!out (",#)[]Snm
(ki)
Ynm (",#)

m=$n

n

%
n= 0

&

%

= !out (",#) $!p() $ n +1()Enm

(ki)
+ an Ls + LE+ LExt()

nm

(ki)

{ }Ynm (",#)
m=$n

n

%
n= 0

&

%

On sphere ki’s surface (a,θ,φ):

�

X
nm

(*)

�

! in r()
Surfaceki

= !out r()
Surfaceki

�

! in
d" in r()

dn
Surface,ki

= !out (#,$)
d"out r()

dn
Surface,ki

Method 1: Linear Least Square (LLS) solvers

(iii) Solving Boundary Equation (*) for Snm

Method 2: Analytical, iterative method using orthonormality property of SH

=(θ,φ)

(n,m) Snm RHS(θ,φ)

=

(l,s) X’ls

Imat(n,m)

Snm

Requires LLS solver
-> Inefficient!
For p=60: ~ 10min per solution

Matrix-Vector Multiply
-> Fast
For p=60:
Initial matrix prep ~ 14min per sphere
Subsequent solution ~ 0.4s

Represent (*) as linear system of equations, solve Snm up to p poles:

For each sphere

Simulation Algorithm (Serial)

For each sphere:
- Calculate Surface Integrals
- Compute polarization matrix (Imat)

Update contributions from
other spheres

Solve till all Snm converges

Calculate desired quantities
(potential, forces, etc)

Move proteins

Initialization

Production
Run

Docked? END

No

Yes

Parallization Strategy
Parallelization at sphere level
- solve Snm for each sphere separately and share updated values with

other spheres
- Jacobi iteration vs. Gauss-Seidel iterations

1) Shared Memory Only Model
- adequate for small systems (< 10 spheres)
• Using OpenMP
• Easy implementation within c++ object-oriented code

2) Hybrid Model
- required for larger scale systems (> 10 spheres)
• Intra-node: shared memory using OpenMP
• Inter-node: distributed memory using MPI
• C++ objects need to be packed/unpacked for MPI communications

For each sphere (OMP)

Simulation Algorithm (Shared Memory)

For each sphere (OMP):
- Calculate Surface Integrals
- Compute polarization matrix (Imat)

Update contributions from
other spheres

Solve till all Snm converges

Calculate desired quantities
(potential, forces, etc)

Move proteins

Initialization

Production
Run

Docked? END

No

Yes

For each node (MPI):

 For each sphere (OMP)

Simulation Algorithm (Hybrid)

For each node (MPI):
 For each assigned sphere (OMP):

- Calculate Surface Integrals
- Compute polarization matrix (Imat)

Update contributions from other
spheres

Solve till all Snm converges

Calculate desired quantities
(potential, forces, etc)

Move proteins

Initialization

Production
Run

Docked? END

No

Yes

Test cases for Timing

- Different no. of poles used (p = 5, 10, 30, 60)
- Different no. of threads used (t = 1, 2, 4, 8)

X

(0,0,0)

X

(0,0,0)

X

(0,0,0)

A) 8 overlapping spheres

B) 16 overlapping spheres

C) 32 overlapping spheres

Preliminary Timing Results (Shared Memory)

