Parallel Implementation of
multipole-based
Poisson-Boltzmann solver

Eng Hui Yap
CS 267 Project
May 11, 2009

o ..
. UCSF & UCB joint graduate group in
@ BIOENGINEERING

Simulation Overview

Initialize system

Calculate forces
- Solve linearized Poisson Boltzmann Equation (LPBE)

=V |e(r)VO(r)] + K*P(r) = p ;.. (T)

Propagate Molecules
- Brownian Dynamics using forces from (2)

Repeat 2-3 until criteria is met

Solving LPBE with Multipole Method

Each molecule is represented as a collection of spheres.

For each sphere ki:
1. Calculate surface charge multipole S,
(1) Express @, and @, in terms of multipoles
(i1) Setting up boundary equations.
(111) Solve for S_
Update contribution from S, to other spheres
Repeat for all spheres until convergence criteria is reached

(i) Potential Equations (in terms of multipoles)

Inside sphere Ki:

7 ~
V4 \
Il o \\
; + +
. !
. B/
~ - P

) (r) = 22[

n=0m=

(ki)
leednm + rnB(kl)

}’nm (6,0)

Outside sphere Kki:

—— -y,

) >
I ! \‘E"'S
I
\ LE+k‘ /
\ — / S~S_ - 7
Molecule i

| 1

\ : /
LExt\—’_’

Goal: Solve for unknown S

o6y =Y Z

n=0m=

Moleculej/

+ S o i

(ii)) Boundary conditions

On sphere ki’s surface (a,0,¢):

d®. (r) do, (r)
(I) . = (I) . i — 9, ___out\ J
. (r) Surfacey; out (r) Surfacey 8m dn Surface ki gout((p) dn Surface ki
D D |ne, + (n+1e,, (6.0)]S%Y,, (6.9)
n=0m=—n
= (€,,0.0)-¢,) >, D -(n+1)ES +an(L,+ L+ Ly, 1Y,,(6.0) | (9
n:0m=—\K /
y
Xnm

(iii) Solving Boundary Equation (*) for S,

Represent (*) as linear system of equations, solve S__ up to p poles:

Method 1: Linear east Square (LLS) solvers

(), S RHS g

Requires LLS solver
(6,0) — -> Inefficient!
For p=60: ~ 10min per solution

v

Method 2: Analytical, iterative method using orthonormality property of SH

s)
_L_L-y X’ S Matrix-Vector Multiply
-> Fast
n,m I =
(n,m) mat For p=60:

Initial matrix prep ~ 14min per sphere
Subsequent solution ~ 0.4s

Simulation Algorithm (Serial)

For each sphere:
- Calculate Surface Integrals
- Compute polarization matrix (Imat)

___i_ ___

For each sphere

Initialization

Update contributions from
other spheres

v

Solve till all Snm converges

|
v No
Calculate desired quantities

(potential, forces, etc)

Production
Run

‘ Yes
Move proteins Docked? END

Parallization Strategy

Parallelization at sphere level

- solve Snm for each sphere separately and share updated values with
other spheres

- Jacobi iteration vs. Gauss-Seidel iterations

1) Shared Memory Only Model

- adequate for small systems (< 10 spheres)

e Using OpenMP

e Easy implementation within c++ object-oriented code

2) Hybrid Model

- required for larger scale systems (> 10 spheres)

. Intra-node: shared memory using OpenMP

. Inter-node: distributed memory using MPI

. C++ objects need to be packed/unpacked for MPI communications

Simulation Algorithm (Shared Memory)

For each sphere (OMP):
- Calculate Surface Integrals
- Compute polarization matrix (Imat)

For each sphere (OMP) R —

Update contributions from
other spheres

v

Solve till all Snm converges

|
v No
Calculate desired quantities

(potential, forces, etc)

Initialization

Production
Run

‘ Yes
Move proteins Docked? END

Simulation Algorithm (Hybrid)

o For each node (MPI):
Initialization For each assigned sphere (OMP):

- Calculate Surface Integrals
- Compute polarization matrix (Imat)

\ 4
For each node (MPI): e ——

Update contributions from other
spheres

For each sphere ((iMP) <

Solve till all Snm converges

>

Production
Run

No

Calculate desired quantities
(potential, forces, etc)

‘ Yes
Move proteins Docked? END

Test cases for Timing

- Different no. of poles used (p =35, 10, 30, 60)
- Different no. of threads used (t =1, 2, 4, 8)

Preliminary Timing Results (Shared Memory

Time Per polarization cycle (8 spheres)

Number of Threads

—&— p=5 —l—p=10 —+— p=30 == p=60

