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Simulation Overview

Initialize system

Calculate forces
- Solve linearized Poisson Boltzmann Equation (LPBE)

=V |e(r)VO(r)] + K*P(r) = p ;.. (T)

Propagate Molecules
- Brownian Dynamics using forces from (2)

Repeat 2-3 until criteria is met




Solving LPBE with Multipole Method

Each molecule is represented as a collection of spheres.

For each sphere ki:
1. Calculate surface charge multipole S,
(1) Express @, and @, in terms of multipoles
(i1) Setting up boundary equations.
(111) Solve for S_
Update contribution from S, to other spheres
Repeat for all spheres until convergence criteria is reached




(i) Potential Equations (in terms of multipoles)

Inside sphere Ki:
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Goal: Solve for unknown S
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(ii)) Boundary conditions

On sphere ki’s surface (a,0,¢):
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(iii) Solving Boundary Equation (*) for S,

Represent (*) as linear system of equations, solve S__ up to p poles:

Method 1: Linear east Square (LLS) solvers

(), S RHS g

Requires LLS solver
(6,0) — -> Inefficient!
For p=60: ~ 10min per solution

v

Method 2: Analytical, iterative method using orthonormality property of SH

s )
_L_L-y X’ S Matrix-Vector Multiply
-> Fast
n,m I =
(n,m) mat For p=60:

Initial matrix prep ~ 14min per sphere
Subsequent solution ~ 0.4s




Simulation Algorithm (Serial)

For each sphere:
- Calculate Surface Integrals
- Compute polarization matrix (Imat)

_____________________________________________________i_ _______________________________________________________________

For each sphere
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Parallization Strategy

Parallelization at sphere level

- solve Snm for each sphere separately and share updated values with
other spheres

- Jacobi iteration vs. Gauss-Seidel iterations

1) Shared Memory Only Model

- adequate for small systems (< 10 spheres)

e  Using OpenMP

e  Easy implementation within c++ object-oriented code

2) Hybrid Model

- required for larger scale systems (> 10 spheres)

. Intra-node: shared memory using OpenMP

. Inter-node: distributed memory using MPI

. C++ objects need to be packed/unpacked for MPI communications




Simulation Algorithm (Shared Memory)

For each sphere (OMP):
- Calculate Surface Integrals
- Compute polarization matrix (Imat)

For each sphere (OMP) R —
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Simulation Algorithm (Hybrid)

o For each node (MPI):
Initialization For each assigned sphere (OMP):

- Calculate Surface Integrals
- Compute polarization matrix (Imat)
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Update contributions from other
spheres

For each sphere ((iMP) <

Solve till all Snm converges
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Test cases for Timing

- Different no. of poles used (p =35, 10, 30, 60)
- Different no. of threads used (t =1, 2, 4, 8)




Preliminary Timing Results (Shared Memory

Time Per polarization cycle ( 8 spheres )

Number of Threads

—&— p=5 —l—p=10 —+— p=30 == p=60




