
Why Do We Care?
  Achieving good performance on today’s platforms is

really hard
  Must be an expert in the architecture and the

application
  Many cases still require exhaustive search of

optimization parameters
  Obtaining good performance is going to get

increasingly difficult for manycore architectures
  Greater diversity of platforms: cell phones, laptops,

etc.
  Complex interactions between threads
  Unknown mix of applications space sharing the

machine
  Current optimization techniques aren’t going to be

enough
  Search space is too large for purely exhaustive
  Machine state varies from run to run

  We are exploring performance counters as an
approach to get insight into an application’s
performance and adapt during runtime
  Hints to OS scheduling
  Hints to Online Autotuning

Architecture Overview

Interesting Results

Future Work Application Overview

  Dual Socket
  Quad x86 Cores
  2.5 – 3.5 GHz
  Hyperthreaded- 2 Thread Context Per Core
  Private L1 (32K) and L2 (256K) per Core
  Inclusive Shared L3 (8 MB)
  Up to 6 instructions issued per cycle
  10 outstanding data cache misses at a time

  635 Events available for Performance
Counters

0

100000000

200000000

300000000

400000000

500000000

600000000

700000000

800000000

900000000

1E+09

1 Core 2 Cores 4 Cores

CPU_L2REQ

CPU_L2MISS

CPU_L2MISSALL

0
20000000
40000000
60000000
80000000

100000000
120000000
140000000

1 Core

  Single Socket
  6 MIPS Cores
  500-700 MHz
  Single Threaded
  Private L1 (32K) per Core
  Inclusive Shared Partitioned L2 (256K/Core)
  Up to 2 instructions issued per cycle
  1 outstanding data cache miss at a time

  3993 Events available for Performance
Counters

  Cache requests greatly increase with more
cores

  Cache misses go from 65% to 97%
  Cache misses going to DRAM remains constant
  Data is just moving from L2 to L2 for 8 Cores

Parsec L2 Cache Behavior on SiCortex

Application Overview
  Parsec Fluidanimate (Intel)

  Benchmark Fluid Dynamics Solver
  Simulates the underlying physics of fluid motion for

realtime animation purposes with the SPH algorithm
(Smoothed Particle Hydrodynamics)

  Algorithm similar to the one from the ‘Parallellize Particle
Simulation’ assignment from class

  Exhibits coarse-granular parallelism, static load balancing
  Contains large working sets, some communication

  Chombo Finite Elements Solver
  Used in the ParLAB Health Application to simulate

bloodflow in arteries as an incompressible fluid

  Uses finite differences to discretize partial differential
equations on block-structured, adaptively refined grids
using published algorithms

  This specific application uses the Poisson Solver for Oct-
Tree Adaptive Meshes introduced by Martin & Cartwright

Future Work

Conclusions
  Too Many Counters, not enough useful ones
  Semantics of counters between different machines

never quite exactly the same
  Need a movement towards standardization

  Keep counters useful for hardware debugging
  Standardize on ones most useful for predicting

application performance and energy usage
  Most useful counters are:

  Total Cycle Counts
  Instructions Committed
  Last level cache misses

  Missing counters
  Energy metering
  Cache sharing statistics (present on SiCortex)

Short Term
  Get the rest of the Chombo data gathered
  Continue scaling analysis and perform better

pipeline analysis of data
  Analyze data to see if combinations of counters

provide more useful insight

LongTerm
  Propose a standard set of useful counters for

profiling performance and energy usage at runtime
  Apply machine learning algorithms to find trends

Scaling Behavior of Applications (Cycles)

  Max shared scales worse on Nehalem due to
interferance (TLB, Cache Misses, etc)

  SiCortex doesn’t scale because of cache lines
moving around between cores

0

20000

40000

60000

80000

100000

120000

140000

1 Core 2 Cores 4 Cores 8 Cores

L2_WRITE:LOCK_E_STATE

L2_WRITE:LOCK_HIT

L2_WRITE:LOCK_I_STATE

L2_WRITE:LOCK_M_STATE

L2_WRITE:LOCK_MESI

L2_WRITE:LOCK_S_STATE

Lock Behavior of Parsec on Nehalem

  Max Shared Configuration
  Number of writes to lock greatly increases with

increasing number of cores

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 Core 2 Cores 4 Cores 8 Cores

Nehalem- Parsec: Max
Shared
Nehalem- Parsec: Max
Private
SiCortex- Parsec

Nehalem- Chombo: Max
Shared
Nehalem- Chombo: Max
Private

