

Profiling Chombo Finite Methods Solver and Parsec Fluids Codes on the Nehalem and SiCortex

Why Do We Care?

- □ Achieving good performance on today's platforms is really hard
 - Must be an expert in the architecture and the application
 - Many cases still require exhaustive search of optimization parameters
- Obtaining good performance is going to get increasingly difficult for manycore architectures
 - □ Greater diversity of platforms: cell phones, laptops, etc
 - Complex interactions between threads
 - Unknown mix of applications space sharing the machine
- Current optimization techniques aren't going to be enough
 - Search space is too large for purely exhaustive
 - □ Machine state varies from run to run
- □ We are exploring performance counters as an approach to get insight into an application's performance and adapt during runtime □ Hints to OS scheduling
 - □ Hints to Online Autotuning

Application Overview

- Parsec Fluidanimate (Intel)
 - Benchmark Fluid Dynamics Solver
 - Simulates the underlying physics of fluid motion for realtime animation purposes with the SPH algorithm (Smoothed Particle Hydrodynamics)
 - □ Algorithm similar to the one from the 'Parallellize Particle Simulation' assignment from class
 - Exhibits coarse-granular parallelism, static load balancing
 - Contains large working sets, some communication

- □ Chombo Finite Elements Solver
 - □ Used in the ParLAB Health Application to simulate bloodflow in arteries as an incompressible fluid

- Uses *finite differences* to discretize partial differential equations on block-structured, adaptively refined grids using published algorithms
- □ This specific application uses the Poisson Solver for Oct-Tree Adaptive Meshes introduced by Martin & Cartwright

Dua
Qua
2.5
Нур
Priv
Inclu
Up t
10 c
635

HOW USEFUL ÅRE PERFORMANCE COUNTERS, REALLY?

Par Lab, CS Division, University of California at Berkeley

Scaling Behavior of Applications (Cycles)

□ Max shared scales worse on Nehalem due to interferance (TLB, Cache Misses, etc) □ SiCortex doesn't scale because of cache lines moving around between cores

Architecture Overview

al Socket

- ad x86 Cores
- 3.5 GHz
- perthreaded- 2 Thread Context Per Core vate L1 (32K) and L2 (256K) per Core
- usive Shared L3 (8 MB)
- to 6 instructions issued per cycle
- outstanding data cache misses at a time
- Events available for Performance Counters

Sarah Bird

Kevin Klues