
Why Do We Care?

  Achieving good performance on today’s platforms is

really hard

  Must be an expert in the architecture and the

application

  Many cases still require exhaustive search of

optimization parameters

  Obtaining good performance is going to get

increasingly difficult for manycore architectures

  Greater diversity of platforms: cell phones, laptops,

etc.

  Complex interactions between threads

  Unknown mix of applications space sharing the

machine

  Current optimization techniques aren’t going to be

enough

  Search space is too large for purely exhaustive

  Machine state varies from run to run

  We are exploring performance counters as an
approach to get insight into an application’s
performance and adapt during runtime

  Hints to OS scheduling

  Hints to Online Autotuning

Architecture Overview

Interesting Results

Future Work
Application Overview

  Dual Socket

  Quad x86 Cores

  2.5 – 3.5 GHz

  Hyperthreaded- 2 Thread Context Per Core

  Private L1 (32K) and L2 (256K) per Core

  Inclusive Shared L3 (8 MB)

  Up to 6 instructions issued per cycle

  10 outstanding data cache misses at a time

  635 Events available for Performance
Counters

0

100000000

200000000

300000000

400000000

500000000

600000000

700000000

800000000

900000000

1E+09

1 Core 2 Cores 4 Cores

CPU_L2REQ

CPU_L2MISS

CPU_L2MISSALL

0
20000000
40000000
60000000
80000000

100000000
120000000
140000000

1 Core

  Single Socket

  6 MIPS Cores

  500-700 MHz

  Single Threaded

  Private L1 (32K) per Core

  Inclusive Shared Partitioned L2 (256K/Core)

  Up to 2 instructions issued per cycle

  1 outstanding data cache miss at a time

  3993 Events available for Performance
Counters

  Cache requests greatly increase with more
cores

  Cache misses go from 65% to 97%

  Cache misses going to DRAM remains constant

  Data is just moving from L2 to L2 for 8 Cores

Parsec L2 Cache Behavior on SiCortex

Application Overview

  Parsec Fluidanimate (Intel)

  Benchmark Fluid Dynamics Solver

  Simulates the underlying physics of fluid motion for

realtime animation purposes with the SPH algorithm
(Smoothed Particle Hydrodynamics)

  Algorithm similar to the one from the ‘Parallellize Particle
Simulation’ assignment from class

  Exhibits coarse-granular parallelism, static load balancing

  Contains large working sets, some communication

  Chombo Finite Elements Solver

  Used in the ParLAB Health Application to simulate

bloodflow in arteries as an incompressible fluid

  Uses finite differences to discretize partial differential
equations on block-structured, adaptively refined grids
using published algorithms

  This specific application uses the Poisson Solver for Oct-
Tree Adaptive Meshes introduced by Martin & Cartwright

Future Work

Conclusions

  Too Many Counters, not enough useful ones

  Semantics of counters between different machines

never quite exactly the same

  Need a movement towards standardization

  Keep counters useful for hardware debugging

  Standardize on ones most useful for predicting

application performance and energy usage

  Most useful counters are:

  Total Cycle Counts

  Instructions Committed

  Last level cache misses

  Missing counters

  Energy metering

  Cache sharing statistics (present on SiCortex)

Short Term

  Get the rest of the Chombo data gathered

  Continue scaling analysis and perform better

pipeline analysis of data

  Analyze data to see if combinations of counters

provide more useful insight

LongTerm

  Propose a standard set of useful counters for

profiling performance and energy usage at runtime

  Apply machine learning algorithms to find trends

Scaling Behavior of Applications (Cycles)

  Max shared scales worse on Nehalem due to
interferance (TLB, Cache Misses, etc)

  SiCortex doesn’t scale because of cache lines
moving around between cores

0

20000

40000

60000

80000

100000

120000

140000

1 Core 2 Cores 4 Cores 8 Cores

L2_WRITE:LOCK_E_STATE

L2_WRITE:LOCK_HIT

L2_WRITE:LOCK_I_STATE

L2_WRITE:LOCK_M_STATE

L2_WRITE:LOCK_MESI

L2_WRITE:LOCK_S_STATE

Lock Behavior of Parsec on Nehalem

  Max Shared Configuration

  Number of writes to lock greatly increases with

increasing number of cores

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 Core 2 Cores 4 Cores 8 Cores

Nehalem- Parsec: Max
Shared
Nehalem- Parsec: Max
Private
SiCortex- Parsec

Nehalem- Chombo: Max
Shared
Nehalem- Chombo: Max
Private

