

Utilizing Multiple Virtual Machines in
Legacy Desktop Applications

Matt Piotrowski
UC Berkeley
CS 267
Parallel Computing

The Problem

● Personal computers will soon have many cores.

[1] Rose Liu, Kevin Klues, Sarah Bird, Steven Hofmeyr, Krste Asanovic,
John Kubiatowicz. Tessellation: Space-Time Partitioning in a Manycore
Client OS. In Proceedings of HotPAR '09.

● One of the ways to utilize these many cores is to run
many virtual machines on them, as discussed in [1],
among others.

● However, legacy desktop applications haven't been
written to take advantage of virtual machines.

Our Solution
● We create a new operating system primitive that
allows an application to run legacy desktop code in
virtual machines.
● The graphical output from these virtual machines is
transparently mapped into the windows of the
application.

● In this example, an application has created two
VM's (called inferior VM's) and screen-granted their
output to the lower portion of its windows.

Web Browser
● We created a web browser where each tab is
rendered in its own VM.
● Each VM is running WebKit, a large legacy codebase
for rendering web pages.

● In this example, there are 4 tabs open. The current
tab receives the current screen-grant.
● Additional benefits of per-tab VM rendering include
increased reliability and security.

PDF Viewer
● We created a PDF viewer where each document is
rendered in its own VM.
● Each VM is running evince, a large legacy codebase
for rendering PDF documents.

● In this example, two documents are being displayed
and everything below the menu bar has been screen-
granted to VM's.
● Enhanced reliability and security is also obtained.

Other Apps
● The screen-grant mechanism lends itself well to
many desktop applications. An email client, office
suite, and movie player can easily be adapted to use
screen-grants.

● Below is the design of an email client using inferior
VM's and screen grants.

OS as Primitive User
● The OS itself can use our new primitive to run every
application in its own VM and screen-grant parts of
the desktop to them.

Overhead

● Ran 40 instances of WebKit displaying the Alexa Top
40 websites, with WebKit running in a VM and WebKit
running in a process. Overhead of 48MB per instance
for the VM case.

● Worth noting that we share the zero page within
and across VM's but we could potentially greatly
reduce the memory overhead with a copy-on-write
VM fork, as discussed in [2]

● Startup time of VM: we pre-execute the VM to point
of code launch; takes about 800 milliseconds.

[2] Carl Waldspurger. Memory Resource Management in VMWare ESX
Server. In 5th Symposium on Operating Systems Design and
Implementation.

Limitations/Future Work

● Applications that rely on 3D hardware acceleration
won't work in a VM since access to this hardware is
not provided. However, if 3D developers return to
software-based rendering utilizing multicore, these
applications would work

● Implement the designs of the email client, movie
player, and office suite.

● Explore hints an application may be able to provide
to indicate the nature of an inferior VM it is creating.

