
Parallel RI-MP2

Matt Goldey

Møller–Plesset perturbation
theory

Common correction for energies obtained
by the Hartree-Fock Self-Consistent
Field method

Computational costs are significant for
large systems, involving polynomial
scaling, depending on approximations
used

Merit

Inclusion of electron correlation

Images from Wikipedia
<http://en.wikipedia.org/wiki/M%C3%B8ller%E2%80%93Plesset_perturbation_theory>

Contributions represented as (ia|jb)
Formed via integral transformations from

SCF calculations

RI approximation

Instead of directly forming (ia|jb), (ia|X) is
formed for the auxiliary basis X (also
denoted P,Q)

(P|Q)-1/2 used to form Bia=(ia|P)(P|Q)-1/2

Largest costing step is multiplying
(ia|jb)=Bia*Bjb for all a,b, auxiliary
functions

Workload
Need to span virtual space for each occupied pair (through all

occupied space)
Simplest implementation:

Loop i
Read Bia ∀a,Q
Loop j

Read Bjb ∀b,Q
Form (ia|jb)=Bia*(Bjb)T

Calculate Energy contributions
Nocc*Nocc matrix multiplications performed
Nocc + Nocc*Nocc B matrices read from hard drive -- ~Nocc

2*Nvirt*X in
hard drive reads

Need to span virtual space for each occupied pair (through all
occupied space)

Simplest implementation:
Loop i

Read Bia ∀a,Q
Loop j

Read Bjb ∀b,Q
Form (ia|jb)=Bia*(Bjb)T

Calculate Energy contributions
Nocc*Nocc matrix multiplications performed
Nocc + Nocc*Nocc B matrices read from hard drive -- ~Nocc

2*Nvirt*X in
hard drive reads

Algorithm Optimization
Current description of serial algorithm not complete -- only need to

span unique pairs of i,j --the upper or lower triangular portion of
the occupied space

Loop i
Read Bia ∀a,Q
Loop j≥i

Read Bjb ∀b,Q
Form (ia|jb)=Bia*(Bjb)T

Calculate weighted energy contributions
Nocc*(Nocc+1)/2 matrix multiplications performed -- computation cut

by 1/2
Nocc + Nocc*(Nocc+1)/2 B matrices read from hard drive --

~Nocc(Nocc+1)/2*Nvirt*X in hard drive reads
Even this is not optimized since reading in Bjb is unnecessary for

j==i
Further, given that these matrix multiplications are relatively small,

want to distribute work among processors

Memory Considerations
Bia & Bjb are (Nvirt * X) long and are read in from hard drive as

needed
Serially, 2*(Nvirt*X)+Nvirt*Nvirt stored in memory
Memory delimited by earlier step to 3*X2

Given Nvirt~N, X~4*N,
Memory considerations for largest possible systems are
3*4*4*N2=48*N2

Memory occupied using this serial implementation for n
processor shared memory system is
nproc*(2*(Nvirt*X)+Nvirt*Nvirt)~nproc*(9*n2)
For 8 processors, this amounts to 72*N2 in memory at a time,
limiting system size unnecessarily -- need a different algorithm
for parallel computation for a work-distributed system

Memory-guided Work
Distribution

Need to minimize memory usage as well
as minimize number of reads from the
hard drive -- which is expected to
become dominant in the large system
limit

Have to satisfy both criteria in work
distribution scheme

Memory-guided Work
Distribution

Solutions:
Hard drive read batching -- using the space available
Pivoting -- using what is in memory to direct the next batch

Loop over batches (determined by memory)
Read Bia ∀ i ∈(first batch-1 elements of batch)
Loop over Nocc∉batch (Nocc>batch)

Form all possible (ia|jb), including i==j (ia|ib)
This provides a solution to the serial bottleneck of hard drive reads
Reduces the number of matrices read from ~Nocc

2 (initial
implementation)
New hard drive I/O costs:
Nreads=Nocc+(Nocc-(batchsize-1)-1)+(Nocc-2*(batchsize-1)-1)+…
Nreads=Nocc(Nbatches+1)-Nbatches-(batchsize-1)(Nbatches(Nbatches+1)/2)
Nreads~Nocc*Nbatches-(batchsize-1)Nbatches

2/2
Nreads~Nocc

2/(batchsize-1)-Nocc
2/(2*(batchsize-1))

~=Nocc
2/(2*(batchsize-1))

This solves the hard drive read problem in serial, but does it work for
parallel?

X X X X X X X X X X

X X X X X X X X X

X X X X X X X X

X

X

X

X

X

X

X

X X X X X X X X X X

X X X X X X X X X

X X X X X X X X

X X X X X X X

X X X X X X

X X X X X

X

X

X

X

X X X X X X X X X X

X X X X X X X X X

X X X X X X X X

X X X X X X X

X X X X X X

X X X X X

X X X X

X X

X

Batch size limitations

Typical system sizes constrain the batch size to
a maximum of ~9-11 B matrices in memory at
once

Using 9 B matrices, ignoring edge cases, 8
computations must be performed at each
step, with each computation of equivalent
cost

However, this method requires synchronization
after each matrix multiplication -- a potential
bottleneck for anisotropic systems

Distributed Memory, the
Future

Further modeling is needed for extending
this method to distributed memory
systems since batches will not have
equivalent workloads -- the occupied
space needing to be spanned is
diminished by each step

