
Architecting Parallel Software
Keutzer and Mattson

1

Architecting Parallel Software
with

PatternsPatterns
Kurt Keutzer, EECS, Berkeley

Tim Mattson, Intel
and the PALLAS team:

Michael Anderson, Bryan Catanzaro, (Jike Chong), Chao-Yue Lai,
Ekaterina Gonina, (Dorothea Kolossa), Mark Murphy,
David Sheffield, Bor-Yiing Su, Naryanan Sundaram,

The Challenge of Parallelism
Intel: Larrabee Nvidia: Fermi

2

32 processors
each 16-wide vector unit

16 processors
each 32-wide vector unit

Programming highly parallel processors is the software challenge of our era

Architecting Parallel Software
Keutzer and Mattson

2

Outline
What doesn’t work
Pieces of the problem … and solution
General approach to architecting parallel swGeneral approach to architecting parallel sw
Detail on Structural Patterns
Detail on Computational Patterns
High-level examples of architecting applications

3

Assumption #1:
How not to develop parallel code

Initial Code

Profiler

Performance
profile

Re-code with
more threads

Not fast
enough

4
4

p

Fast enough

Ship it
Lots of failuresLots of failures

N PE’s slower than 1N PE’s slower than 1

Architecting Parallel Software
Keutzer and Mattson

3

Steiner Tree Construction Time By
Routing Each Net in Parallel

Benchmark Serial 2 Threads 3 Threads 4 Threads 5 Threads 6 Threads

adaptec1 1.68 1.68 1.70 1.69 1.69 1.69

newblue1 1.80 1.80 1.81 1.81 1.81 1.82

newblue2 2.60 2.60 2.62 2.62 2.62 2.61

adaptec2 1.87 1.86 1.87 1.88 1.88 1.88

adaptec3 3 32 3 33 3 34 3 34 3 34 3 34

5

adaptec3 3.32 3.33 3.34 3.34 3.34 3.34

adaptec4 3.20 3.20 3.21 3.21 3.21 3.21

adaptec5 4.91 4.90 4.92 4.92 4.92 4.92

newblue3 2.54 2.55 2.55 2.55 2.55 2.55

average 1.00 1.0011 1.0044 1.0049 1.0046 1.0046

Hint: What is this person thinking of?

Re-code with
more threads

6

Edward Lee,
“The Problem
with Threads”

Threads, locks, Threads, locks, semaphores, data racessemaphores, data races

Architecting Parallel Software
Keutzer and Mattson

4

Outline
What doesn’t work
Pieces of the problem … and solution
General approach to architecting parallel swGeneral approach to architecting parallel sw
Detail on Structural Patterns
Detail on Computational Patterns
High-level examples of architecting applications

7

Building software: where we begin

Can be built by one person
Requires

Minimal modeling
Simple process

Grady Booch
OO Guru

8

Simple process
Simple tools

Architecting Parallel Software
Keutzer and Mattson

5

The progress of Object Oriented Programming

9

Built most efficiently and timely by a team
Requires

Modeling
Well-defined process
Power tools

Grady Booch
OO Guru

Goal – Future sw architecture

Grady Booch
OO Guru

10

Progress
- Advances in materials
- Advances in analysis

Scale
- 5 times the span of the Pantheon
- 3 times the height of Cheops

Architecting Parallel Software
Keutzer and Mattson

6

But … is a program like a building?

11

How is software like a building? How is software NOT like a building?

Modularity is important …. But
…

a) A building b) A factory

Pop quiz: Is software more like?

Architecting Parallel Software
Keutzer and Mattson

7

Object-Oriented Programming
Focused on:
• Program modularity

D t l lit

Neglected:
• Application

concurrency• Data locality
• Architectural styles
• Design patterns

concurrency
• Computational details
• Parallel

implementations

13

Modularity and locality have proved to be essential concepts for:
• Design
•Implementation
•Verification/test

What computations we do is as
important than how we do them
….Apps

Dwarves E
m

be
d

S
P

E
C

D
B

G
am

es
M

L
H

P
C

C
A

D

Health Image Speech Music Browser

Structured Grid

Dynamic Prog.
Unstructured Grid

Finite State Mach.
Circuits

Dwarves E S D G M H C Health Image Speech Music Browser
Graph Algorithms
Graphical Models
Backtrack / B&B

St uctu ed G d
Dense Matrix
Sparse Matrix
Spectral (FFT)
Monte Carlo
N-Body

Architecting Parallel Software
Keutzer and Mattson

8

High performance computing
HPC knows a lot about application concurrency, efficient
programming, and parallel implementation

15

HPC approach to sw architecture
Technically this is known as a monolithic architecture

16

Architecting Parallel Software
Keutzer and Mattson

9

What’s a better metaphor for sw
development?

© Kurt Keutzer 17

What we need
Need to integrate the insights into computation provided
by HPC with the insights into program structure provided
by software architectural styles

Software
architecture

18

structural patternsstructural patternscomputational patternscomputational patterns

Architecting Parallel Software
Keutzer and Mattson

10

Alexander’s Pattern Language
Christopher Alexander’s approach to

(civil) architecture:
"Each pattern describes a problem
which occurs over and over again
in our environment and thenin our environment, and then
describes the core of the solution
to that problem, in such a way that
you can use this solution a million
times over, without ever doing it
the same way twice.“ Page x, A
Pattern Language, Christopher
Alexander

Alexander’s 253 (civil) architectural
patterns range from the creation of
cities (2. distribution of towns) to

19

cities (2. distribution of towns) to
particular building problems (232. roof
cap)

A pattern language is an organized way
of tackling an architectural problem
using patterns

Main limitation:
It’s about civil not software
architecture!!!

Decompose Tasks/Data
Order tasks Identify Data Sharing and Access

Architecting Parallel Software with Patterns

Identify the Software
Structure

Identify the Key
Computations

•Pipe-and-Filter
•Agent-and-Repository
•Event-based
•Process Control
•Layered Systems

• Graph Algorithms
• Dynamic programming
• Dense/Spare Linear Algebra
• (Un)Structured Grids
• Graphical Models

Structure Computations

20

y y
• Model-view controller
•Iterator
•MapReduce
•Arbitrary Task Graphs
•Puppeteer

• Finite State Machines
• Backtrack Branch-and-Bound
• N-Body Methods
• Circuits
• Spectral Methods

Architecting Parallel Software
Keutzer and Mattson

11

Outline
What doesn’t work
Pieces of the problem … and solution
General approach to architecting parallel swGeneral approach to architecting parallel sw
Detail on Structural Patterns
Detail on Computational Patterns
High-level examples of architecting applications

21

Decompose Tasks
•Group tasks
O d T k

Architecting Parallel Software
Decompose Data

•Identify data sharing
Id tif d t•Order Tasks

Identify the Software
Structure

Identify the Key
Computations

•Identify data access

22

p

Architecting Parallel Software
Keutzer and Mattson

12

Identify the SW Structure

Structural Patterns

•Pipe-and-Filter
•Agent-and-Repository
•Event-based coordination
•Iterator
•MapReduce

23

•Process Control
•Layered Systems

These define the structure of our software but they do not
describe what is computed

Analogy: Layout of Factory Plant

24

Architecting Parallel Software
Keutzer and Mattson

13

Identify Key Computations Computational
Patterns

25

Computational patterns describe the key computations but not how
they are implemented

Analogy: Machinery of the Factory

26

Architecting Parallel Software
Keutzer and Mattson

14

Analogy: Architected Factory

27

Raises appropriate issues like scheduling, latency, throughput,
workflow, resource management, capacity etc.

Decompose Tasks/Data
Order tasks Identify Data Sharing and Access

Architecting Parallel Software with Patterns

Identify the Software
Structure

Identify the Key
Computations

•Pipe-and-Filter
•Agent-and-Repository
•Event-based
•Bulk Synchronous
M R d

• Graph Algorithms
• Dynamic programming
• Dense/Spare Linear Algebra
• (Un)Structured Grids
• Graphical Models

Structure Computations

28

•MapReduce
•Layered Systems
•Arbitrary Task Graphs

• Finite State Machines
• Backtrack Branch-and-Bound
• N-Body Methods
• Circuits
• Spectral Methods

Architecting Parallel Software
Keutzer and Mattson

15

Outline
What doesn’t work
Pieces of the problem … and solution
General approach to architecting parallel swGeneral approach to architecting parallel sw
Detail on Structural Patterns
Detail on Computational Patterns
High-level examples of architecting applications

29

Inventory of Structural Patterns

1. pipe and filter
it t2. iterator

3. MapReduce
4. blackboard/agent and repository
5. process control
6. Model view controller6. Model view controller
7. layered
8. event-based coordination
9. puppeteer

30

Architecting Parallel Software
Keutzer and Mattson

16

Elements of a structural pattern

Components are where the computation
happens

A configuration is
a graph of
components
(vertices) and
connectors
(edges)
A structural

31

Connectors are where the communication happens

patterns may be
described as a
familiy of graphs.

Filter 1

Pattern 1: Pipe and Filter
•Filters embody computation
•Only see inputs and produce
outputs

•Pipes embody

Filter 5

Filter 4

Filter 2Filter 3

Pipes embody
communication

May have feedback

32

Filter 6 Filter 7

Examples?Examples?

Architecting Parallel Software
Keutzer and Mattson

17

Examples of pipe and filter
Almost every large software program has a pipe and filter structure at
the highest level

33

Logic optimizerImage Retrieval SystemCompiler

Pattern 2: Iterator Pattern
Initialization condition

Variety of

iterate

Variety of
functions
performed
asynchronously

34

Exit condition met?

Synchronize
results of iteration

Yes

No

Examples?Examples?

Architecting Parallel Software
Keutzer and Mattson

18

Example of Iterator Pattern:
Training a Classifier: SVM Training

Update
surface

iterate

Iterator Structural Pattern

353535

Identify
Outlier

All points within
acceptable error? Yes

No

Pattern 3: MapReduce
To us, it means

A map stage, where data is mapped onto independent
computations
A d t h th lt f th tA reduce stage, where the results of the map stage are
summarized (i.e. reduced)

Map

Map

36

Reduce
Reduce

Examples?Examples?

Architecting Parallel Software
Keutzer and Mattson

19

Examples of Map Reduce
General structure:
Map a computation across distributed data sets
R d th lt t fi d th b t/(t)Reduce the results to find the best/(worst),
maxima/(minima)

37

Speech recognitionSpeech recognition
•• Map HMM computation Map HMM computation
to evaluate word matchto evaluate word match
•• Reduce to find the mostReduce to find the most--
likely word sequenceslikely word sequences

SupportSupport--vector machines (ML)vector machines (ML)
•• Map to evaluate distance from Map to evaluate distance from
the frontier the frontier
•• Reduce to find the greatest Reduce to find the greatest
outlier from the frontieroutlier from the frontier

Pattern 4: Agent and Repository

Repository/

Agent 2Agent 1

Examples?Examples?Repository/
Blackboard

(i.e. database)
Agent 4

Agent and repository : Blackboard structural pattern
Agents cooperate on a shared medium to produce a result
K l t

Agent 3

Examples?Examples?

38

Key elements:
Blackboard: repository of the resulting creation that is
shared by all agents (circuit database)
Agents: intelligent agents that will act on blackboard
(optimizations)
Manager: orchestrates agents access to the blackboard and
creation of the aggregate results (scheduler)

Architecting Parallel Software
Keutzer and Mattson

20

Example: Compiler Optimization

Constant
folding

Common-sub-expression
elimination

loop
fusion

Software
pipelining

Strength-reduction

Dead-code elimination

Optimization of a software program
Intermediate representation of program is stored in the

Internal
Program

representation

39

p p g
repository
Individual agents have heuristics to optimize the program
Manager orchestrates the access of the optimization agents to
the program in the repository
Resulting program is left in the repository

Example: Logic Optimization
timing

opt agent 1
timing

opt agent 2
timing

opt agent 3
timing

opt agent N……..……..

Optimization of integrated circuits
I t t d i it i t d i th it

Circuit Circuit
DatabaseDatabase

40

Integrated circuit is stored in the repository
Individual agents have heuristics to optimize the circuitry of an
integrated circuit
Manager orchestrates the access of the optimization agents to the
circuit repository
Resulting optimized circuit is left in the repository

Architecting Parallel Software
Keutzer and Mattson

21

Pattern 5: Process Control

processcontroller

input variables
control

parameters
manipulated

variables

Process control:
Process: underlying phenomena to be controlled/computed

process

controlled
variables

Source: Adapted from Shaw & Garlan 1996, p27-31.

41

Process: underlying phenomena to be controlled/computed
Actuator: task(s) affecting the process
Sensor: task(s) which analyze the state of the process
Controller: task which determines what actuators should be
effected

Examples?Examples?

Examples of Process Control

user
timing

Timing
constraints

42

Circuitcontroller

timing
constraints

Process control
structural pattern

Architecting Parallel Software
Keutzer and Mattson

22

Pattern 9: Puppeteer
• Need an efficient way to manage and control the interaction of

multiple simulators/computational agents
• Puppeteer Pattern – guides the interaction between the

tasks/puppets to guarantee correctness of the overall tasktasks/puppets to guarantee correctness of the overall task
• Puppeteer: 1) schedules puppets 2) manages exchange of data

between puppets
• Difference with agent and repository?

• No central repository
• Data transfer between tasks/puppets

Framework

43/17

Puppet1 Puppet2
1

Puppet3 Puppetn

Change Control Manager

Interfaces

Examples?Examples?

Video Game

Input Physics Graphics AI

Framework

Change Control Manager

Interfaces

44/17

Architecting Parallel Software
Keutzer and Mattson

23

Model of circulation
•Modeling of blood moving in blood vessels
•The computation is structured as a controlled interaction
between solid (blood vessel) and fluid (blood) simulation codes
• The two simulations use different data structures and the
number of iterations for each simulation code varies
• Need an efficient way to manage and control the interaction of
the two codes
•

45

Outline
What doesn’t work
Pieces of the problem … and solution
General approach to architecting parallel swGeneral approach to architecting parallel sw
Detail on Structural Patterns
Detail on Computational Patterns
High-level examples of architecting applications

46

Architecting Parallel Software
Keutzer and Mattson

24

Logic Optimization

47

Decompose Tasks

Architecting Parallel Software

•Group tasks
•Order Tasks

Decompose Data
• Data sharing
• Data access

48

Identify the Software Structure Identify the Key Computations

Architecting Parallel Software
Keutzer and Mattson

25

Structure of Logic Optimization
netlist

Scan
Netlist

Build
Data

model

Netlist

Optimize
circuit

Highest level structure is theHighest level structure is the
pipepipe--andand--filter patternfilter pattern

••(just because it’s obvious doesn’t (just because it’s obvious doesn’t
mean it’s not worth stating!)mean it’s not worth stating!)

49

netlist

circuit

Structure of optimization
timing

optimizationarea
optimization

Circuit
representation

power
optimization

Agent and repository : Blackboard structural pattern
Key elements:

Blackboard: repository of the resulting creation that is shared by all agents

50

Blackboard: repository of the resulting creation that is shared by all agents
(circuit database)
Agents: intelligent agents that will act on blackboard (optimizations)
Controller: orchestrates agents access to the blackboard and creation of the
aggregate results (scheduler)

Architecting Parallel Software
Keutzer and Mattson

26

Timing Optimization
While (! user_timing_constraint_met &&

power_in_budget){
restructure circuit(netlist);restructure_circuit(netlist);
remap_gates(netlist);
resize_gates(netlist);
retime_gates(netlist);
….
more optimizations …

51

….

}

Structure of Timing Optimization

user
timing

Local
netlist

52

Timing
transformati

ons
controller

timing
constraints

Process control
structural pattern

Architecting Parallel Software
Keutzer and Mattson

27

Architecture of Logic Optimization
Group, order tasksGroup, order tasks

Group, order tasksGroup, order tasks DecomposeDecompose
DataData

53

Graph algorithm patternGraph algorithm pattern Graph algorithm patternGraph algorithm pattern

Group, order tasksGroup, order tasks

Parallelism in Logic Synthesis
Logic synthesis offers lots of easy coarse-grain parallelism:

Run n scripts/recipes and choose the best
For per-instance parallelism: General program structure offersFor per instance parallelism: General program structure offers

modest amounts amount of parallelism:
We can pipeline (pipe-and-filter) scanning, parsing,
database/datamodel building
We can decouple agents (e.g. power and timing) acting on the
repository
We can decouple sensor (e.g. timing analysis) and actuator (e.g.
timing optimization)

54

timing optimization)
We can use programming patterns like graph traversal and
branch-and-bound
But how do we keep 128 processors busy?

Architecting Parallel Software
Keutzer and Mattson

28

Here’s a hint …

55

Key to Parallelizing Logic Optimization?
We must exploit the data parallelism inherent in a graph/netlist

with >2,000,000 cells
Partition graphs/netlists into highly/completely independent

modules
Even modest amount of synchronization (e.g. stitching together

overlapped regions) will devastate performance due to
Amdahl’s law

56

Architecting Parallel Software
Keutzer and Mattson

29

Data Parallelism in Respository

timing
Optimization 1

timing
Optimization 2

timing
Optimization 3

timing
optimization 128……..……..

Circuit Circuit
DatabaseDatabase

57

Repository manager must partition underlying circuit to allow
many agents (timing, power, area optimizers) to operation on
different partitions simultaneously
Chips with >2M cells easily enable opportunities for manycore
parallelism

Moral of the story
• Architecting an application doesn’t automatically make it

parallel
• Architecting an application brings to light where the parallelism g pp g g p

most likely resides
• Humans must still analyze the architecture to identify

opportunities for parallelism
• However, significantly more parallelism is identified in this way

than if we worked bottom-up to identify local parallelism

58

Architecting Parallel Software
Keutzer and Mattson

30

Speedups
Application Speedups

MRI 100x
SVM t i 20SVM-train 20x

SVM-classify 109x
Contour 130x

Object Recognition 80x
Poselet 20x

Optical Flow 32x
Speech 11x

59

Speech 11x
Value-at-risk 60x

Option Pricing 25x

Today’s take away
Many approaches to parallelizing software are not working

Profile and improve
Swap in a new parallel programming language
Rely on a super parallelizing compiler y p p g p

My own experience has shown that a sound software architecture is the greatest
single indicator of a software project’s success.

Software must be architected to achieve productivity, efficiency, and correctness
SW architecture >> programming environments

>> programming languages
>> compilers and debuggers
(>>hardware architecture)

If we had understood how to architect sequential software, then parallelizing
software would not have been such a challenge

Key to architecture (software or otherwise) is design patterns and a pattern

60

Key to architecture (software or otherwise) is design patterns and a pattern
language

At the highest level our pattern language has:
Eight structural patterns
Thirteen computational patterns

Yes, we really believe arbitrarily complex parallel software can built just from these!

Architecting Parallel Software
Keutzer and Mattson

31

More examples

61

Architecting Speech Recognition
Recognition
Network

Pipe‐and‐filter

Inference Engine

Voice
Input

Most

Pipe‐and‐filter

MapReduce

Beam
Search
Iterations

Active State
Computation Steps

Dynamic
Programming

Graphical
Model

6262

Signal
Processing

Likely
Word

Sequence

Iterator

Iterations

Large Vocabulary Continuous Speech Recognition Poster: Chong, YiLarge Vocabulary Continuous Speech Recognition Poster: Chong, Yi
Work also to appear at Emerging Applications for Manycore ArchitectureWork also to appear at Emerging Applications for Manycore Architecture

Architecting Parallel Software
Keutzer and Mattson

32

CBIR Application Framework

Train Classifier

Feature ExtractionChoose Examples

New Images

6363

Results

Exercise Classifier

User Feedback

??

??

Catanzaro, Sundaram, Keutzer, “Fast SVM Training and Classification on
Graphics Processors”, ICML 2008

Feature Extraction

Image histograms are common to many feature extraction procedures,
and are an important feature in their own right

• Agent and Repository: Each agent
computes a local transform of the
image, plus a local histogram.

R lt bi d i th

646464

• Results are combined in the
repository, which contains the global
histogram

The data dependent access patterns found when constructing
histograms make them a natural fit for the agent and repository
pattern

Architecting Parallel Software
Keutzer and Mattson

33

Train Classifier:
SVM Training

Update Update
Optimality Optimality
ConditionsConditions

Select Select

Train Classifier iterate

MapReduce

656565

Working Working
Set, Set,

Solve QPSolve QP

Iterator

Gap not small Gap not small
enough?enough?

Exercise Classifier : SVM
Classification

Test DataTest Data

Compute
dot

products

SVSV

Exercise Classifier
Dense Linear
Algebra

6666

Compute
Kernel values,
sum & scale

OutputOutput
MapReduce

Architecting Parallel Software
Keutzer and Mattson

34

Key Elements of Kurt’s SW Education
AT&T Bell Laboratories: CAD researcher and programmer

Algorithms: D. Johnson, R. Tarjan
Programming Pearls: S C Johnson, K. Thompson, (Jon Bentley)
Developed useful software tools:Developed useful software tools:

Plaid: programmable logic aid: used for developing 100’s of
FPGA-based HW systems
CONES/DAGON: used for designing >30 application-specific
integrated circuits

Synopsys: researcher CTO (25 products, ~15 million lines of code,
$750M annual revenue, top 20 SW companies)

Super programming: J-C Madre, Richard Rudell, Steve Tjiang
Software architecture: Randy Allen, Albert Wang
High-level Invariants: Randy Allen Albert Wang

67

High-level Invariants: Randy Allen, Albert Wang
Berkeley: teaching software engineering and Par Lab

Took the time to reflect on what I had learned:
Architectural styles: Garlan and Shaw

Design patterns: Gamma et al (aka Gang of Four), Mattson’s PLPP
A Pattern Language: Alexander, Mattson
Dwarfs: Par Lab Team

Assumption #2: This won’t help either
Code in new

cool language

Profiler

Performance
profile

Re-code with
cool language

Not fast
enough

68

68

p

Fast enough

Ship it

After 200 parallel After 200 parallel
languages where’s the languages where’s the
light at the end of the light at the end of the

tunnel?tunnel?

Architecting Parallel Software
Keutzer and Mattson

35

Parallel Programming environments in the
90’s

ABCPL
ACE
ACT++
Active messages
Adl
Adsmith
ADDAP

CORRELATE
CPS
CRL
CSP
Cthreads
CUMULVS
DAGGER

GLU
GUARD
HAsL.
Haskell
HPC++
JAVAR.
HORUS

Mentat
Legion
Meta Chaos
Midway
Millipede
CparPar
Mirage

Parafrase2
Paralation
Parallel-C++
Parallaxis
ParC
ParLib++
ParLin

pC++
SCHEDULE
SciTL
POET
SDDA.
SHMEM ADDAP

AFAPI
ALWAN
AM
AMDC
AppLeS
Amoeba
ARTS
Athapascan-0b
Aurora
Automap
bb_threads
Blaze
BSP
BlockComm
C*.
"C* in C

DAGGER
DAPPLE
Data Parallel C
DC++
DCE++
DDD
DICE.
DIPC
DOLIB
DOME
DOSMOS.
DRL
DSM-Threads
Ease .
ECO
Eiffel
Eilean

HORUS
HPC
IMPACT
ISIS.
JAVAR
JADE
Java RMI
javaPG
JavaSpace
JIDL
Joyce
Khoros
Karma
KOAN/Fortran-S
LAM
Lilac
Linda

Mirage
MpC
MOSIX
Modula-P
Modula-2*
Multipol
MPI
MPC++
Munin
Nano-Threads
NESL
NetClasses++
Nexus
Nimrod
NOW
Objective Linda
Occam

ParLin
Parmacs
Parti
pC
pC++
PCN
PCP:
PH
PEACE
PCU
PET
PETSc
PENNY
Phosphorus
POET.
Polaris
POOMA

SIMPLE
Sina
SISAL.
distributed
smalltalk
SMI.
SONiC
Split-C.
SR
Sthreads
Strand.
SUIF.
Synergy
Telegrphos
SuperPascal
TCGMSG.
Threads h++

69

C**
CarlOS
Cashmere
C4
CC++
Chu
Charlotte
Charm
Charm++
Cid
Cilk
CM-Fortran
Converse
Code
COOL

Emerald
EPL
Excalibur
Express
Falcon
Filaments
FM
FLASH
The FORCE
Fork
Fortran-M
FX
GA
GAMMA
Glenda

JADA
WWWinda
ISETL-Linda
ParLin
Eilean
P4-Linda
Glenda
POSYBL
Objective-Linda
LiPS
Locust
Lparx
Lucid
Maisie
Manifold

Omega
OpenMP
Orca
OOF90
P++
P3L
p4-Linda
Pablo
PADE
PADRE
Panda
Papers
AFAPI.
Para++
Paradigm

POOL-T
PRESTO
P-RIO
Prospero
Proteus
QPC++
PVM
PSI
PSDM
Quake
Quark
Quick Threads
Sage++
SCANDAL
SAM

Threads.h++.
TreadMarks
TRAPPER
uC++
UNITY
UC
V
ViC*
Visifold V-NUS
VPE
Win32 threads
WinPar
WWWinda
XENOOPS
XPC
Zounds
ZPL

Assumption #3: Nor this

Initial Code

Super-compiler

Performance
profile

Tune
compiler

Not fast
enough

70

70

p

Fast enough

Ship it
30 years of HPC 30 years of HPC

research don’t offer research don’t offer
much hopemuch hope

Architecting Parallel Software
Keutzer and Mattson

36

Automatic parallelization?

30

Basic speculative multithreading
Software value prediction
Enabling optimizations

Aggressive techniques
such as speculative
multithreading help,
but they are not

h

5

10

15

20

25

Sp
ee

du
p

%

enough.
Ave SPECint speedup of

8% … will climb to
ave. of 15% once
their system is fully
enabled.

There are no indications
auto par. will
radically improve any
time soon.

Hence I do not believe

71

0

bz
ip2

cra
fty ga

p
gc

c
gz

ip mcf

pa
rse

r
tw

olf

vo
rte

x
vp

r

av
era

ge

A Cost-Driven Compilation Framework for Speculative Parallelization of Sequential Programs,
Zhao-Hui Du, Chu-Cheow Lim, Xiao-Feng Li, Chen Yang, Qingyu Zhao, Tin-Fook Ngai (Intel
Corporation) in PLDI 2004

Hence, I do not believe
Auto-par will solve
our problems.

Results for a simulated dual core platform configured as a main core and a core for
speculative execution.

Reinvention of design?
In 1418 the In 1418 the Santa Maria del FioreSanta Maria del Fiore stood without a dome.stood without a dome.
Brunelleschi won the competition to finish the dome. Brunelleschi won the competition to finish the dome.
Construction of the dome without the support of flying buttresses seemed Construction of the dome without the support of flying buttresses seemed
unthinkable. unthinkable.

72

Architecting Parallel Software
Keutzer and Mattson

37

Innovation in architecture
After studying earlier
Roman and Greek
architecture, Brunelleschi
drew on diverse
architectural styles to arrive
at a dome design that could
stand independently

73http://www.templejc.edu/dept/Art/ASmith/ARTS1304/Joe1/ZoomSlide0010.htmlhttp://www.templejc.edu/dept/Art/ASmith/ARTS1304/Joe1/ZoomSlide0010.html

Innovation in tools
His construction of the dome design required the development of
new tools for construction, as well as an early (the first?) use of
architectural drawings (now lost).

74

Scaffolding for cupola

http://www.artisthttp://www.artist--biography.info/gallery/filippo_brunelleschi/67/biography.info/gallery/filippo_brunelleschi/67/

Mechanism for raising
materials

Architecting Parallel Software
Keutzer and Mattson

38

Innovation in use of building materials
His construction of the dome design also required innovative use of
building materials.

75

Herringbone pattern bricks

http://www.buildingstonemagazine.com/winterhttp://www.buildingstonemagazine.com/winter--06/art/dome8.jpg06/art/dome8.jpg

Resulting Dome

76

Completed dome
http://www.duomofirenze.it/storia/cupola_

eng.htm

Architecting Parallel Software
Keutzer and Mattson

39

The point?
Challenges to design and build the dome of of Santa Maria del Santa Maria del
Fiore Fiore showed underlying weaknesses of architectural
understanding, tools, and use of materials
By analogy, parallelizing code should not have thrown us for
such a loop. Our difficulties in facing the challenge of
developing parallel software are a symptom of underlying
weakness is in our abilities to:

Architect softwareArchitect software
Develop Develop robust tools and frameworksrobust tools and frameworks
ReRe--use implementation approachesuse implementation approaches

77

p ppp pp
Time for a serious rethink of all of software design Time for a serious rethink of all of software design

Executive Summary
1. Our challenge in parallelizing applications really reflects a deeper more

pervasive problem about inability to develop software in general
1. Corollary: Any highly-impactful solution to parallel programming

should have significant impact on programming as a whole
2. Software must be architected to achieve productivity, efficiency, and

correctness
3. SW architecture >> programming environments

1. >> programming languages
2. >> compilers and debuggers
3. (>>hardware architecture)

4. Key to architecture (software or otherwise) is design patterns and a
pattern language

5. The desired pattern language should span the full range of design from p g g p g g
application conceptualization to detailed software implementation

6. Resulting software design then uses a hierarchy of software
frameworks for implementation

1. Application frameworks for application (e.g. CAD) developers
2. Programming frameworks for those who build the application

frameworks

78

Architecting Parallel Software
Keutzer and Mattson

40

What I’ve learned (the hard way)
Software must be architected to achieve productivity, efficiency, and

correctness
SW architecture >> programming environments

>> programming languages>> programming languages
>> compilers and debuggers
(>>hardware architecture)

Discussions with superprogrammers taught me:
Give me the right program structure/architecture I can use any
programming language
Give me the wrong architecture and I’ll never get there

What I’ve learned when I had to teach this stuff at Berkeley:
Key to architecture (software or otherwise) is design patterns and a
pattern language

79

pattern language
Resulting software design then uses a hierarchy of software frameworks

for implementation
Application frameworks for application (e.g. CAD) developers
Programming frameworks for those who build the application
frameworks

