
3/31/2011

© Kurt Keutzer 1

Engineering Parallel Software
with

Our Pattern LanguageOur Pattern Language

Professor Kurt Keutzer and Tim Mattson
and

(Jike Chong), Ekaterina Gonina, Bor-Yiing Su
and

1/77

and
Michael Anderson, Bryan Catanzaro,

Chao-Yue Lai, Mark Murphy, David Sheffield,
Naryanan Sundaram,

Main Points of Previous Lecture

Many approaches to parallelizing software are not working
Profile and improve
Swap in a new parallel programming language
Rely on a super parallelizing compiler y p p g p

My own experience has shown that a sound software architecture is the greatest single
indicator of a software project’s success.
Software must be architected to achieve productivity, efficiency, and correctness
SW architecture >> programming environments

>> programming languages
>> compilers and debuggers
(>>hardware architecture)

If we had understood how to architect sequential software, then parallelizing software
would not have been such a challenge
Key to architecture (software or otherwise) is design patterns and a pattern language

2/77

Key to architecture (software or otherwise) is design patterns and a pattern language
At the highest level our pattern language has:

Eight structural patterns
Thirteen computational patterns

Yes, we really believe arbitrarily complex parallel software can built just from these!

3/31/2011

© Kurt Keutzer 2

Outline

Our Pattern Language for parallel programming
Detailed example using Our Pattern Language

3/77

Alexander’s Pattern Language

Christopher Alexander’s approach to
(civil) architecture:

"Each pattern describes a problem
which occurs over and over again in
our environment and then describesour environment, and then describes
the core of the solution to that
problem, in such a way that you can
use this solution a million times over,
without ever doing it the same way
twice.“ Page x, A Pattern Language,
Christopher Alexander

Alexander’s 253 (civil) architectural
patterns range from the creation of cities
(2. distribution of towns) to particular
building problems (232 roof cap)

4/77
4

building problems (232. roof cap)
A pattern language is an organized way
of tackling an architectural problem using
patterns
Main limitation:

It’s about civil not software
architecture!!!

3/31/2011

© Kurt Keutzer 3

A Pattern Language

Patterns embody generalizable solutions to recurrent problems
Collections of individual patterns (e.g. Design Patterns, Gamma,
Helm, Johnson, Vlissides) are great, but we need more help in the
software development enterprisesoftware development enterprise
We would like a comprehensive pattern language which covers the
entire process of parallel software development and implementation
Keutzer, Mattson, the PALLAS group, and others have developed
just such a pattern language

http://parlab.eecs.berkeley.edu/wiki/patterns
Pattern language is overviewed in:

5/77

http://parlab.eecs.berkeley.edu/wiki/_media/patterns/opl-
new_with_appendix-20091014.pdf

Today we don’t have time to go through all the patterns, but we will
briefly describe the structure of OPL and show how it can be used

Our Pattern Language: At a High Level

Applications

Structural
Patterns

Computational
Patterns

Parallel Algorithm Strategy Patterns

Implementation Patterns

6/77

Execution Patterns

3/31/2011

© Kurt Keutzer 4

Application

Architecting Parallel Software

Identify the Software
Structure

Identify the Key
Computations

•Pipe-and-Filter
•Agent-and-Repository
•Event-based
•Bulk Synchronous
•MapReduce

• Graph Algorithms

• Dynamic programming

• Dense/Spare Linear Algebra
• Un/Structured Grids
• Graphical Models

Structure p

7/77

p
•Layered Systems
•Model-view controller
•Arbitrary Task Graphs
•Puppeteer
•Model-view-controller

• Finite State Machines
• Backtrack Branch-and-Bound
• N-Body Methods
• Circuits
• Spectral Methods
•Monte-Carlo

Graph-Algorithms

Dynamic-Programming

Model-View-Controller

Iterative-Refinement

Map-Reduce

Pipe-and-Filter

Agent-and-Repository

Graphical-Models
Finite-State-Machines
Backtrack-Branch-and-
Bound

Structural Patterns Computational Patterns

Our Pattern Language 2010: Details

Dense-Linear-Algebra

Sparse-Linear-Algebra

Unstructured-Grids

Structured-Grids

Layered-Systems

Arbitrary-Static-Task-Graph

Process-Control

Event-Based/Implicit-
Invocation

Puppeteer

N-Body-Methods
Circuits
Spectral-Methods
Monte-Carlo

Task-Parallelism
Divide and Conquer

Data-Parallelism
Pipeline

Discrete-Event
Geometric-Decomposition
Speculation

SPMD F k/J i Distributed ArrayShared-Queue

Parallel Algorithm Strategy Patterns

Implementation Strategy Patterns
Loop Par

8/77

SPMD
Data-Par/index-space

Fork/Join
Actors

Distributed-Array
Shared-DataShared-map

Partitioned Graph

MIMD
SIMD

Parallel Execution Patterns
Thread-Pool
Task-Graph

Data structureProgram structure

Loop-Par.
Task-Queue

Transactions

3/31/2011

© Kurt Keutzer 5

Our Pattern Language: At a High Level

Applications

Structural
Patterns

Computational
Patterns

Parallel Algorithm Strategy Patterns

Implementation Patterns

9/77

Execution Patterns

The Algorithm Strategy Design Space

Start

Organize By Data

Geometric
Decomposition

Linear? Recursive?

Task
Parallelism

Divide and
Conquer

???

Linear? Recursive?

Organize By Flow of Data

Regular? Irregular?

Pipeline Discrete
Event

Organize By Tasks

10/77

Speculation

Task-Parallelism
Divide and Conquer

Data-Parallelism
Pipeline

Discrete-Event
Geometric-Decomposition
Speculation

Parallel Algorithm Strategy Patterns

3/31/2011

© Kurt Keutzer 6

Our Pattern Language: At a High Level

Applications

Structural
Patterns

Computational
Patterns

Parallel Algorithm Strategy Patterns

Implementation Patterns

11/77

Execution Patterns

SPMD
Data-Par/index-space

Fork/Join
Actors

Distributed-Array
Shared-Data

Shared-Queue
Shared-map
Partitioned Graph

Implementation Strategy Patterns

Data structureProgram structure

Loop-Par.
Task-Queue

Our Pattern Language: At a High Level

Applications

Structural ComputationalStructural
Patterns

Computational
Patterns

Parallel Algorithm Strategy Patterns

Implementation Patterns

Execution Patterns

12/77

Execution Patterns

MIMD
SIMD

Parallel Execution Patterns
Thread-Pool
Task-Graph

Transactions

3/31/2011

© Kurt Keutzer 7

Outline

Our Pattern Language for parallel programming
Detailed example using Our Pattern Language

13/77

Outline

Speech Recognition Application
Software Architecture using Patterns

Identify Structural Patterns
Identify Computational Patterns

Parallelization: (for each module)
Algorithm strategy pattern
Implementation strategy pattern
Execution patterns

Conclusion

14/77

3/31/2011

© Kurt Keutzer 8

Automatic Speech Recognition

Key technology for enabling rich human-computer interaction
Increasingly important for intelligent devices without keyboards

Interaction requires low latency responses
Only one of many components in exciting new real-time applications

Main contributions:
A detailed analysis of the concurrency in large
vocabulary continuous speech recognition (LVCSR)
summarized in the pattern language
An implementation on GPU with 11x speedup over
optimized C++ version

15/77

optimized C++ version
Achieving 3x better than real time performance
with 50,000 word vocabulary

Continuous Speech Recognition

16/77

Challenges:
Recognizing words from a large vocabulary arranged in
exponentially many possible permutations
Inferring word boundaries from the context of neighboring words

Hidden Markov Model (HMM) is the most successful approach

3/31/2011

© Kurt Keutzer 9

CSR System Structure

17/77

Inference engine based system
Used in Sphinx (CMU, USA), HTK (Cambridge, UK), and Julius (CSRC, Japan)

Modular and flexible setup
Shown to be effective for Arabic, English, Japanese, and Mandarin

Recognition Process

Considers a sequence of features
one at a time, for each feature:

Start with most-likely-sequences y q
ending with previous feature

• Corresponding to a set of
active states

Consider the likelihood of current
feature in its context
Compute most-likely-sequences
ending with current feature

18/77

• Corresponding to the next set of
active states

Recognition Network
Recognition is a process of

graph traversal
Recognition is a process of

graph traversal

3/31/2011

© Kurt Keutzer 10

Recognition Network

...

HMM Acoustic
Phone Model Pronunciation Model

Features
from one
frame

Gaussian Mixture Model
for One Phone State

Mixture Components

C ti
HOP hh aa p
...
ON aa n
...
POP p aa p
...

aa

hh

n

T T P P E

Bigram
Language Model

… … …… … …

…

…Computing
distance to
each mixture
components

Computing
weighted sum
of all components

19/77

HOP

ON
POP

CAT

HAT

IN

THE

...

...

...

...

...

CA
T

H
A
T

... ... H
O

IN ... O
N

PO ... TH
E

...

Compiled HMM Recognition Network

Graph Traversal Characteristics

Operations on a graph is driven by the graph structure

Compiled HMM Recognition Network
Linear Lexical Network WFST Recognition Network

20/77

p g p y g p
Irregular graph structures – challenging to statically load balancing
Irregular state access pattern – challenging to dynamically load balancing
Multiple states may share the same next state – write contentions in arc
evaluation
Traversal produces memory accesses that spans the entire graph – poor spatial
locality
Inner loops have high data access to computation ratio – limited by memory
bandwidth

3/31/2011

© Kurt Keutzer 11

Parallel Platform Characteristics

Multicore/manycore design philosophy
Multicore: Devote significant transistor
resources to single thread performance

CoreCoreCoreCore

g p

Manycore: Maximizing computation
throughput at the expense of single thread
performance

Architecture Trend:
Increasing vector unit width
Increasing numbers of cores per die

Application Implications:
M t i d t l itCore

C
ac

h
e

C
ac

h
e Core

C
ace

C
ace

21/77

Must increase data access regularity
Must optimize synchronization cost

Core

Core

CC
C

ac
h

e
C

ac
h

e
C

ac
h

e
C

ac
h

e

Core

Core

chch
C

ach
e

C
ach
e

C
ach
e

C
ach
e

Outline

Speech Recognition Application
Software Architecture using Patterns

Identify Structural Patterns
Identify Computational Patterns

Parallelization: (for each module)
Algorithm strategy pattern
Implementation strategy pattern
Execution patterns

Conclusion

22/77

3/31/2011

© Kurt Keutzer 12

Graph-Algorithms

Dynamic-Programming

Dense-Linear-Algebra

Model-View-Controller

Iterative-Refinement

Map-Reduce

Layered-Systems

Pipe-and-Filter

Agent-and-Repository

Process-Control

Graphical-Models
Finite-State-Machines
Backtrack-Branch-and-
Bound
N-Body-Methods

Applications

Structural Patterns Computational Patterns

OPL 2010OPL 2010

Sparse-Linear-Algebra

Unstructured-Grids

Structured-Grids

Arbitrary-Static-Task-GraphEvent-Based/Implicit-
Invocation

Puppeteer

y
Circuits
Spectral-Methods
Monte-Carlo

Task-Parallelism
Divide and Conquer

Data-Parallelism
Pipeline

Discrete-Event
Geometric-Decomposition
Speculation

SPMD
Data-Par/index-space

Fork/Join
Actors

Distributed-Array
Shared-Data

Shared-Queue
Shared-map

Parallel Algorithm Strategy Patterns

Implementation Strategy Patterns
Loop-Par.
Task-Queue

23/77
23

Data Par/index space Actors Shared Data
Partitioned Graph

MIMD
SIMD

Parallel Execution Patterns

Message-Passing
Collective-Comm.
Transactional memory

Thread-Pool
Task-Graph

Data structureProgram structure

Point-To-Point-Sync. (mutual exclusion)
collective sync. (barrier)
Memory sync/fence

Task Queue

Transactions

Thread creation/destruction
Process creation/destruction

Concurrency Foundation constructs (not expressed as patterns)

Decompose Tasks
•Group tasks

Architecting Parallel Software

Group tasks
•Order Tasks

Decompose Data
• Data sharing
• Data access

Id tif th S ft Id tif th K

24/77

Identify the Software
Structure

Identify the Key
Computations

3/31/2011

© Kurt Keutzer 13

Intro

Recognition is a process of graph traversal
Each time-step we need to identify the likely states in the recognition
network given the observation acoustic signal

Inference Engine Architecture

From a the of active states we want to compute the next set of active
states using probabilities of acoustic symbols and state transitions
What Structural pattern is this?

25/77

Key computation: HMM Inference Algorithm

Finds the most-likely sequence of states that produced the
observation

An instance of: Graphical Models Implemented with: Dynamic Programming

ss

x An Observations A State

P(xt|st) s m [t-1][st-1]

Legends:

s ss sState 1

Obs 1 Obs 2 Obs 3 Obs 4
x x x x

t

Viterbi Algorithm

26/77

P(st|st-1) s m [t][st]

Markov Condition:

s ss s

s ss s

s ss s

State 2

State 3

State 4

J. Chong, Y. Yi, A. Faria, N.R. Satish and K. Keutzer, “Data-Parallel Large Vocabulary Continuous Speech
Recognition on Graphics Processors”, Emerging Applications and Manycore Arch. 2008, pp. 23-35, June 2008

3/31/2011

© Kurt Keutzer 14

Iterative Refinement Structural
Pattern

One iteration per time step
Identify the set of probableIdentify the set of probable
states in the network given
acoustic signal given
current active state set
Prune unlikely states
Repeat

27/77

In each iteration we need to:
Compute observation probabilities of transitions from current states
Traverse the likely non-epsilon arcs to reach the set of next active
t t

Digging Deeper – Active Set Computation
Architecture

states
Traverse the likely epsilon arcs to reach the set of next active states

What Structural pattern is this?

28/77

3/31/2011

© Kurt Keutzer 15

Digging Deeper – Active Set Computation
Architecture

Phase 1
Observation
probability
computation

In each iteration we need to:
Compute observation probabilities of transitions from current states
Traverse the likely non-epsilon arcs to reach the set of next active
states
Traverse the likely epsilon arcs to reach the set of next active states

Phase 2
Graph‐
traversal

29/77

What Structural pattern is this?

Observation probabilities are computed from Gaussian Mixture
Models

Each Gaussian probability in each mixture is independent
Probability for one phone state is the sum of all Gaussians times
the mixture probability for that state

Phase 1: Observation Probability
computation Architecture

the mixture probability for that state
What Structural pattern is this?

30/77Dan Klein’s CS288, Lecture 9

3/31/2011

© Kurt Keutzer 16

Map-Reduce Structural Pattern

Map each mixture
probability computationprobability computation
Reduce the result –
accumulate the total
probability for that state

Gaussian Mixture Model for One Phone State

Mixture Components

31/77

… … … … … … … …… … … ……

…

…

Now that we know the transition probabilities from current set of
states, we need to compute the next set of active states (follow the
likely transitions)
Each transition is independent

Phase 2: Graph Traversal

p
Multiple transitions might end in the same state
The end result needs to be a set of most probable states from all
transitions
What Structural pattern is this?

32/77

3/31/2011

© Kurt Keutzer 17

Map-Reduce Structural Pattern- again

Map each mixture
probability computationprobability computation
Reduce the result –
accumulate the total
probability for that state

33/77

High Level Structure of Engine

Inference Engine

Active Set Computation

Inference
Engine
Inference
Engine

Active Set
Computation
Active Set
Computation

Phase 1: Observation
Probability Computation

Phase 2: Graph Traversal

34/77

ComputationComputation

Phase 1
Phase 2
Phase 1
Phase 2

3/31/2011

© Kurt Keutzer 18

Outline

Speech Recognition Application
Software Architecture using Patterns

Identify Structural Patterns
Identify Computational Patterns

Parallelization: (for each module)
Algorithm strategy pattern
Implementation strategy pattern
Execution patterns

Conclusion

35/77

What about Computation?

Active Set Computation:
Phase 1: Compute observation probability of transitions given
current set of states

fPhase 2: Traverse arcs to determine next set of most likely
active states

What Computational Patterns are these?

Graph-Algorithms

Graphical-Models
Finite-State-Machines

Computational Patterns

36/77

Graph-Algorithms

Dynamic-Programming

Dense-Linear-Algebra

Sparse-Linear-Algebra

Unstructured-Grids

Structured-Grids

Finite State Machines
Backtrack-Branch-and-
Bound
N-Body-Methods
Circuits
Spectral-Methods
Monte-Carlo

3/31/2011

© Kurt Keutzer 19

Outline

Speech Recognition Application
Software Architecture using Patterns

Identify Structural Patterns
Identify Computational Patterns

Parallelization: (for each module)
Algorithm strategy pattern
Implementation strategy pattern
Execution patterns

Conclusion

37/77

Now to Parallelism – Inference Engine

Structural Patterns: Iterative
Refinement
Computational Patterns: Dynamic p y
Programming
Inference engine and Active Set
computation is sequential

Let’s look at Phase 1 and Phase 2

What Parallel Algorithm Strategy can
we use?

38/77

we use?

Task-Parallelism
Divide and Conquer

Data-Parallelism
Pipeline

Discrete-Event
Geometric-Decomposition
Speculation

Parallel Algorithm Strategy Patterns

3/31/2011

© Kurt Keutzer 20

Now to Parallelism – Inference Engine

Phase 1: Observation Probability
Computation

Structural: MapReducep
Computational: Graphical Models

Compute cluster Gaussian Mixture
Probabilities for each transition label
Hint:

Look at data dependencies (or lack
there-of)

39/77

Task-Parallelism
Divide and Conquer

Data-Parallelism
Pipeline

Discrete-Event
Geometric-Decomposition
Speculation

Parallel Algorithm Strategy Patterns

Now to Parallelism – Inference Engine

Phase 1: Observation Probability
Computation

Structural: MapReducep
Computational: Graphical Models

Compute cluster Gaussian Mixture
Probabilities for each transition label
Map reduce necessarily implies data-
parallelism

40/77

Task-Parallelism
Divide and Conquer

Data-Parallelism
Pipeline

Discrete-Event
Geometric-Decomposition
Speculation

Parallel Algorithm Strategy Patterns

3/31/2011

© Kurt Keutzer 21

Graph-Algorithms

Dynamic-Programming

Model-View-Controller

Iterative-Refinement

Map-Reduce

Pipe-and-Filter

Agent-and-Repository

Graphical-Models
Finite-State-Machines
Backtrack-Branch-and-
Bound

Structural Patterns Computational Patterns

Observation Probability Pattern
Computation

Dense-Linear-Algebra

Sparse-Linear-Algebra

Unstructured-Grids

Structured-Grids

Layered-Systems

Arbitrary-Static-Task-Graph

Process-Control

Event-Based/Implicit-
Invocation

Puppeteer

N-Body-Methods
Circuits
Spectral-Methods
Monte-Carlo

Task-Parallelism
Divide and Conquer

Data-Parallelism
Pipeline

Discrete-Event
Geometric-Decomposition
Speculation

SPMD F k/J i Distributed ArrayShared-Queue

Parallel Algorithm Strategy Patterns

Implementation Strategy Patterns
Loop Par

41/77

SPMD
Data-Par/index-space

Fork/Join
Actors

Distributed-Array
Shared-DataShared-map

Partitioned Graph

MIMD
SIMD

Parallel Execution Patterns
Thread-Pool
Task-Graph

Data structureProgram structure

Loop-Par.
Task-Queue

Transactions

Implementation strategy: Data structure?

Graph-Algorithms

Dynamic-Programming

Model-View-Controller

Iterative-Refinement

Map-Reduce

Pipe-and-Filter

Agent-and-Repository

Graphical-Models
Finite-State-Machines
Backtrack-Branch-and-
Bound

Structural Patterns Computational Patterns

Observation Probability Pattern
Decomposition

Dense-Linear-Algebra

Sparse-Linear-Algebra

Unstructured-Grids

Structured-Grids

Layered-Systems

Arbitrary-Static-Task-Graph

Process-Control

Event-Based/Implicit-
Invocation

Puppeteer

N-Body-Methods
Circuits
Spectral-Methods
Monte-Carlo

Task-Parallelism
Divide and Conquer

Data-Parallelism
Pipeline

Discrete-Event
Geometric-Decomposition
Speculation

SPMD F k/J i Distributed ArrayShared-Queue

Parallel Algorithm Strategy Patterns

Implementation Strategy Patterns
Loop Par

42/77

SPMD
Data-Par/index-space

Fork/Join
Actors

Distributed-Array
Shared-DataShared-map

Partitioned Graph

MIMD
SIMD

Parallel Execution Patterns
Thread-Pool
Task-Graph

Data structureProgram structure

Loop-Par.
Task-Queue

Transactions

Gaussian Mixture Model is shared among all computations – read only

3/31/2011

© Kurt Keutzer 22

Graph-Algorithms

Dynamic-Programming

Model-View-Controller

Iterative-Refinement

Map-Reduce

Pipe-and-Filter

Agent-and-Repository

Graphical-Models
Finite-State-Machines
Backtrack-Branch-and-
Bound

Structural Patterns Computational Patterns

Observation Probability Pattern
Decomposition

Dense-Linear-Algebra

Sparse-Linear-Algebra

Unstructured-Grids

Structured-Grids

Layered-Systems

Arbitrary-Static-Task-Graph

Process-Control

Event-Based/Implicit-
Invocation

Puppeteer

N-Body-Methods
Circuits
Spectral-Methods
Monte-Carlo

Task-Parallelism
Divide and Conquer

Data-Parallelism
Pipeline

Discrete-Event
Geometric-Decomposition
Speculation

SPMD F k/J i Distributed ArrayShared-Queue

Parallel Algorithm Strategy Patterns

Implementation Strategy Patterns
Loop Par

43/77

SPMD
Data-Par/index-space

Fork/Join
Actors

Distributed-Array
Shared-DataShared-map

Partitioned Graph

MIMD
SIMD

Parallel Execution Patterns
Thread-Pool
Task-Graph

Data structureProgram structure

Loop-Par.
Task-Queue

Transactions

Program structure?

Graph-Algorithms

Dynamic-Programming

Model-View-Controller

Iterative-Refinement

Map-Reduce

Pipe-and-Filter

Agent-and-Repository

Graphical-Models
Finite-State-Machines
Backtrack-Branch-and-
Bound

Structural Patterns Computational Patterns

Observation Probability Pattern
Decomposition

Dense-Linear-Algebra

Sparse-Linear-Algebra

Unstructured-Grids

Structured-Grids

Layered-Systems

Arbitrary-Static-Task-Graph

Process-Control

Event-Based/Implicit-
Invocation

Puppeteer

N-Body-Methods
Circuits
Spectral-Methods
Monte-Carlo

Task-Parallelism
Divide and Conquer

Data-Parallelism
Pipeline

Discrete-Event
Geometric-Decomposition
Speculation

SPMD F k/J i Distributed ArrayShared-Queue

Parallel Algorithm Strategy Patterns

Implementation Strategy Patterns
Loop Par

44/77

SPMD
Data-Par/index-space

Fork/Join
Actors

Distributed-Array
Shared-DataShared-map

Partitioned Graph

MIMD
SIMD

Parallel Execution Patterns
Thread-Pool
Task-Graph

Data structureProgram structure

Loop-Par.
Task-Queue

Transactions

Data parallel – a single instruction stream is applied to multiple data elements

3/31/2011

© Kurt Keutzer 23

Graph-Algorithms

Dynamic-Programming

Model-View-Controller

Iterative-Refinement

Map-Reduce

Pipe-and-Filter

Agent-and-Repository

Graphical-Models
Finite-State-Machines
Backtrack-Branch-and-
Bound

Structural Patterns Computational Patterns

Observation Probability Pattern
Decomposition

Dense-Linear-Algebra

Sparse-Linear-Algebra

Unstructured-Grids

Structured-Grids

Layered-Systems

Arbitrary-Static-Task-Graph

Process-Control

Event-Based/Implicit-
Invocation

Puppeteer

N-Body-Methods
Circuits
Spectral-Methods
Monte-Carlo

Task-Parallelism
Divide and Conquer

Data-Parallelism
Pipeline

Discrete-Event
Geometric-Decomposition
Speculation

SPMD F k/J i Distributed ArrayShared-Queue

Parallel Algorithm Strategy Patterns

Implementation Strategy Patterns
Loop Par

45/77

SPMD
Data-Par/index-space

Fork/Join
Actors

Distributed-Array
Shared-DataShared-map

Partitioned Graph

MIMD
SIMD

Parallel Execution Patterns
Thread-Pool
Task-Graph

Data structureProgram structure

Loop-Par.
Task-Queue

Transactions

Execution? – a single instruction stream is applied to multiple data elements

Graph-Algorithms

Dynamic-Programming

Model-View-Controller

Iterative-Refinement

Map-Reduce

Pipe-and-Filter

Agent-and-Repository

Graphical-Models
Finite-State-Machines
Backtrack-Branch-and-
Bound

Structural Patterns Computational Patterns

Observation Probability Pattern
Decomposition

Dense-Linear-Algebra

Sparse-Linear-Algebra

Unstructured-Grids

Structured-Grids

Layered-Systems

Arbitrary-Static-Task-Graph

Process-Control

Event-Based/Implicit-
Invocation

Puppeteer

N-Body-Methods
Circuits
Spectral-Methods
Monte-Carlo

Task-Parallelism
Divide and Conquer

Data-Parallelism
Pipeline

Discrete-Event
Geometric-Decomposition
Speculation

SPMD F k/J i Distributed ArrayShared-Queue

Parallel Algorithm Strategy Patterns

Implementation Strategy Patterns
Loop Par

46/77

SPMD
Data-Par/index-space

Fork/Join
Actors

Distributed-Array
Shared-DataShared-map

Partitioned Graph

MIMD
SIMD

Parallel Execution Patterns
Thread-Pool
Task-Graph

Data structureProgram structure

Loop-Par.
Task-Queue

Transactions

SIMD

3/31/2011

© Kurt Keutzer 24

Now to Parallelism Pt2 – Inference Engine

Phase 2: Graph Traversal
Structural: MapReduce
Computational: GraphComputational: Graph
algorithms/graph traversal

The recognition network is a finite
state transducer, represented as a
weighted and labeled graph
Decoding on this graph is Breadth-
First Traversal
What Parallel Algorithmic Strategy

Hint:
What are the

d ?

47/77

What Parallel Algorithmic Strategy
can we use?

Task-Parallelism
Divide and Conquer

Data-Parallelism
Pipeline

Discrete-Event
Geometric-Decomposition
Speculation

Parallel Algorithm Strategy Patterns

operands?
What are the
dependences?

Now to Parallelism – Inference Engine

Phase 2: Graph Traversal
Structural: MapReduce
Computational: Graph Traversal

The recognition network is a finiteThe recognition network is a finite
state transducer, represented as a
weighted and labeled graph
Decoding on this graph is Breadth-
First Traversal

Data Parallelism!

48/77

Task-Parallelism
Divide and Conquer

Data-Parallelism
Pipeline

Discrete-Event
Geometric-Decomposition
Speculation

Parallel Algorithm Strategy Patterns

Data Parallelism!
Each next state computation can be computed
independently.

3/31/2011

© Kurt Keutzer 25

Graph-Algorithms

Dynamic-Programming

Model-View-Controller

Iterative-Refinement

Map-Reduce

Pipe-and-Filter

Agent-and-Repository

Graphical-Models
Finite-State-Machines
Backtrack-Branch-and-
Bound

Structural Patterns Computational Patterns

Active Set Computation

Dense-Linear-Algebra

Sparse-Linear-Algebra

Unstructured-Grids

Structured-Grids

Layered-Systems

Arbitrary-Static-Task-Graph

Process-Control

Event-Based/Implicit-
Invocation

Puppeteer

N-Body-Methods
Circuits
Spectral-Methods
Monte-Carlo

Task-Parallelism
Divide and Conquer

Data-Parallelism
Pipeline

Discrete-Event
Geometric-Decomposition
Speculation

SPMD F k/J i Distributed ArrayShared-Queue

Parallel Algorithm Strategy Patterns

Implementation Strategy Patterns
Loop Par

49/77

SPMD
Data-Par/index-space

Fork/Join
Actors

Distributed-Array
Shared-DataShared-map

Partitioned Graph

MIMD
SIMD

Parallel Execution Patterns
Thread-Pool
Task-Graph

Data structureProgram structure

Loop-Par.
Task-Queue

Transactions

SIMD

Shared Queue Implementation

In each iteration:
Arc transitions from the current set of states are traversed to
construct a set of next active states
Each thread enqueues one or more next active states to a
global queue of next active states

This approach causes significant contention a the queue head
pointer

In our application - thousands of threads are accessing one
memory location
Causes serialization of thread memory accesses

50/77

Limits scalability

3/31/2011

© Kurt Keutzer 26

Shared Queue Implementation

Solution to the queue head pointer contention -> distributed queue
1. Each thread in a thread block writes to a local queue of next active
states
2. Local queues are merged into a global queue

Contention on global queue
pointer is reduced from #threads
to #blocks

51/77

Significantly improves scalability

Speech Reference Implementation

Read Files

Initialize data

CPUManycore GPU
DataControlData Control Kisun You, Jike

Chong, Youngmin Yi,
Ekaterina Gonina,
Christopher Hughes,
Yen-Kuang Chen,
Wonyong Sung Kurt

structures

Phase 0

Phase 1

Compute Observation
Probability

Phase 2

RW

R

W W

R
W

Prepare ActiveSet

Iteration Control

Wonyong Sung, Kurt
Keutzer, “Parallel
Scalability in Speech
Recognition:
Inference engine in
large vocabulary
continuous speech
recognition”, IEEE
Signal Processing
Magazine, vol. 26, no.
6, pp. 124-135,
November 2009.

Jike Chong,
Ekaterina Gonina,

Jike Chong,
Ekaterina Gonina,
Youngmin Yi, Kurt
Keutzer, “A Fully
Data Parallel
WFST-based Large
Vocabulary
Continuous
Speech
Recognition on a

52/77

Backtrack

Output Results

For each active arc:
• Compute arc transition
probability

Copy results back to
CPU

W

R
W

R

R
W

R

R

Collect Backtrack
Info

,
Kisun You, Kurt
Keutzer, “Scalable
Parallelization of
Automatic Speech
Recognition”, Invited
book chapter in
Scaling Up Machine
Learning, an
upcoming 2010
Cambridge University
Press book.

g
Graphics
Processing Unit”,
Proceeding of the
10th Annual
Conference of the
International
Speech
Communication
Association
(InterSpeech), page
1183 – 1186,
September, 2009.

3/31/2011

© Kurt Keutzer 27

Summary

A good architect needs to understand:
Structural patterns
Computational patterns
Refinement through Our Pattern Language

Graph algorithms and graphical models are critical to many
applications
Graph algorithms are especially difficult to parallelize and library
support is inadequate
There will be at least a decade of hand-crafted solutions
We achieved good results on parallelizing large-vocabulary

53/77

We achieved good results on parallelizing large vocabulary
automatic speech recognition

Extras

54/77

3/31/2011

© Kurt Keutzer 28

Example: Breadth First Search

Breadth first search

Distributed Graph

55/77

VisitorsAlgorithm

Distributed Graph

Distributed Queues

Distributed Visitors

Distributed Property Map

55

Example: Distributed BFS
Distributed Graph

56/77

(a) Distributed Graph (b) Distributed adjacency list representation

56

3/31/2011

© Kurt Keutzer 29

Example: Distributed BFS
Distributed Queues

pop() from local queues

push() sends message to the vertex owner

empty() exhaust local queue and synchronize with other processors to determine termination

condition

Messages are only received after all processors have completed operation at one level

57/77
57

57

(b) Distributed adjacency list representation

Example: Distributed BFS

Distributed Visitors
Owner-compute scheme, so distributed version is the same as sequential visitor

Distributed Property Map
Local Property Map
• Store local properties for local vertices and edges

Ghost Cells
• Store properties for ghost cells

Process Group

58/77
58

• Communication medium

Data Race Resolver
• Decides among various put()

messages sent to the Distributed
Property Map

58

(a) Distributed Graph

(b) Distributed adjacency list representation

3/31/2011

© Kurt Keutzer 30

Performance achieved

128 node, 2GHz AMD Opteron, 4GB RAM each,
connected over Infiniband one core active per nodeconnected over Infiniband, one core active per node

BFS: 100k vertices and ~15M edges

59/77
59

59

BFS: 1M vertices and ~15M edges Dijkstra’s Algorithm: 100k vertices and ~15M edges

(C) Crauser et al
(E) Eager heuristic

Discussion
Graph traversal algorithm characteristic:

1. Input data-driven computation

2. Unstructured problems

3. Poor data locality

4. High data access to computation ratio

High demand for low memory latency and poor data locality makes it
challenging for PEs without fine-grain multiprocessing
Pointer chasing mainly involves integer operations

Ni t l tf it bl f thi li ti d i

60/77
60

Niagara type platforms seems suitable for this application domain
What about GPGPU?

What how well would our scheduling algorithms map to Parallel BGL?

60

