
BLOOD FLOW SIMULATION

AT PETASCALE AND

BEYOND
Richard (Rich) Vuduc

Casey Battaglino · Aparna Chandramowlishwaran · Jee Choi · Kent Czechowski
· Chris McClanahan · Logan Moon · David S. Noble, Jr.

· Murat (Efe) Guney [Intel] · Aashay Shringarpure [Google]

A. Rahimian · G. Biros · J. Vetter [ORNL+GT] · K. Madduri [LBNL]

CS 267 Guest Lecture @ UC Berkeley
April 21, 2011

Friday, April 22, 2011

Aparna
Chandramowlishwaran

Lexing Ying

Abtin Rahimian

Aashay Shringarpure

Rahul Sampath

 Denis Zorin

Rich Vuduc

Ilya Lashuk

George Biros Jeffrey Vetter

Shravan Veerapaneni

Logan Moon

Team
MoBo

Friday, April 22, 2011

MARBLE OR GNOCCHI?

http://www.eatingwithangela.com/EATINGWITHANGELA/assets/Image/EatingWell/WholeWheatGnocchiUncooked.jpg

http://www.faqs.org/photo-dict/photofiles/list/2862/3795glass_marbles.jpg

Friday, April 22, 2011

http://www.eatingwithangela.com/EATINGWITHANGELA/assets/Image/EatingWell/WholeWheatGnocchiUncooked.jpg
http://www.eatingwithangela.com/EATINGWITHANGELA/assets/Image/EatingWell/WholeWheatGnocchiUncooked.jpg
http://www.eatingwithangela.com/EATINGWITHANGELA/assets/Image/EatingWell/WholeWheatGnocchiUncooked.jpg
http://www.eatingwithangela.com/EATINGWITHANGELA/assets/Image/EatingWell/WholeWheatGnocchiUncooked.jpg

CONTEXT: MOBO
(“MOVING BOUNDARIES”)

Citation: A. Rahimian, I. Lashuk, A. Chandramowlishwaran, D. Malhotra,
L. Moon, R. Sampath, A. Shringarpure, S. Veerapaneni, J. Vetter, R.
Vuduc, D. Zorin, and G. Biros. “Petascale direct numerical simulation of
blood flow on 200k cores and heterogeneous architectures.” In
Proc.!ACM/IEEE Conf. Supercomputing (SC), Nov. 2010.
Winner, Gordon Bell Prize. http://dx.doi.org/10.1109/SC.2010.42

Friday, April 22, 2011

http://dx.doi.org/10.1109/SC.2010.42
http://dx.doi.org/10.1109/SC.2010.42

CONTEXT: MOBO
(“MOVING BOUNDARIES”)

Citation: A. Rahimian, I. Lashuk, A. Chandramowlishwaran, D. Malhotra,
L. Moon, R. Sampath, A. Shringarpure, S. Veerapaneni, J. Vetter, R.
Vuduc, D. Zorin, and G. Biros. “Petascale direct numerical simulation of
blood flow on 200k cores and heterogeneous architectures.” In
Proc.!ACM/IEEE Conf. Supercomputing (SC), Nov. 2010.
Winner, Gordon Bell Prize. http://dx.doi.org/10.1109/SC.2010.42

Friday, April 22, 2011

http://dx.doi.org/10.1109/SC.2010.42

DEFORMABLE RED BLOOD CELLS

๏ Prior work with same physical fidelity

๏ 1,200 cells: Sequential + integral equations
Zinchenko et al. (2003)

๏ 14,000 cells: IBM BG/P + Lattice Boltzmann
O(10k) unknowns/cell
Clausen et al. (2010)

๏ MoBo: 260 million cells on 200k cores (Jaguar @ ORNL)

๏ CPU, GPU + integral equations + implicit AMR
O(100) unknowns / cell

๏ Key to scaling: Optimal n-body methods based on the
fast multipole method (FMM) on highly non-uniform domains

Friday, April 22, 2011

๏ Problem formulation and algorithms

Friday, April 22, 2011

Vesicle flow: Model a red blood cell (RBCs) as fluid-filled
deformable and inextensible sac in viscous solution

Friday, April 22, 2011

The fluid flow model is a
Stokes (“creeping”) flow —
slow-moving and viscous fluid, in
our case also assumed to be
Newtonian.

Vesicle flow: Model a red blood cell (RBCs) as fluid-filled
deformable and inextensible sac in viscous solution

Friday, April 22, 2011

The numerical method is based
on a boundary integral
formulation, in which the fluid is
represented implicitly and we
need only discretize the cell
boundary.1

1 In contrast to Lattice Boltzman or finite-
element methods, in which we discretize the
entire domain.

Vesicle flow: Model a red blood cell (RBCs) as fluid-filled
deformable and inextensible sac in viscous solution

Friday, April 22, 2011

Challenges in implementing
boundary integral methods:

! Stiffness, due to high-order
derivatives required to accurately
capture RBC deformations

! Efficient evaluation of long-range
interactions

Vesicle flow: Model a red blood cell (RBCs) as fluid-filled
deformable and inextensible sac in viscous solution

Friday, April 22, 2011

Features of our approach:

! Represent RBC in a spherical
harmonics basis, which permits
accurate high-order derivative
computations

! Efficient evaluation of long-range
interactions via FMM

! Time-stepping with a multistep,
semi-implicit method that is, at
least empirically, unconditionally
stable

Vesicle flow: Model a red blood cell (RBCs) as fluid-filled
deformable and inextensible sac in viscous solution

Friday, April 22, 2011

dx

dt
= vbackground(x) + vinteraction(x)

x

Friday, April 22, 2011

vbackground

dx

dt
= vbackground(x) + vinteraction(x)

x

Friday, April 22, 2011

vinteraction(x) = vlocal(x) + vglobal(x)

x

Friday, April 22, 2011

vinteraction(x) = vlocal(x) + vglobal(x)

x

vlocal

Friday, April 22, 2011

vinteraction(x) = vlocal(x) + vglobal(x)

x

vglobalvlocal

Friday, April 22, 2011

Friday, April 22, 2011

Friday, April 22, 2011

vinteraction(x) = vlocal(x) + vglobal(x)

vlocal

Friday, April 22, 2011

Intra-cell forces computation:
! Spherical harmonics

(Legendre & Fourier transforms)
! Singular quadratures
! Derivatives
! Surface remeshing
! Semi-implicit solver (BiCGStab)

Pleasingly parallel over RBCs.

Time dominated by ~ many
small matrix multiplies.

vinteraction(x) = vlocal(x) + vglobal(x)

vlocal

Friday, April 22, 2011

Friday, April 22, 2011

Given a sequence of
“small” independent
kernel invocations, we
use the CUDA Streams
interface to fill capacity.

Friday, April 22, 2011

Kent Czechowski <kentcz@gatech.edu>

Friday, April 22, 2011

mailto:kentcz@gatech.edu
mailto:kentcz@gatech.edu

Streams
~ 1.5x

Peng Wang & Steve Parker @ NVIDIA

Friday, April 22, 2011

vinteraction(x) = vlocal(x) + vglobal(x)

x

vglobalvlocal

Friday, April 22, 2011

vinteraction(x) = vlocal(x) + vglobal(x)

x

vglobalvlocal

Use fast multipole method (FMM)

Friday, April 22, 2011

FMM

" Need to evaluate all-
pairwise interactions
among green points:
O(n2)

" FMM instead computes
in O(n) time, with an
approximation
guarantee, using a tree
(n log n to build)

Friday, April 22, 2011

DISTRIBUTED MEMORY ALGORITHM

" We use a kernel-
independent variant, but
the structure and
parallelization are same
as classical case
[Warren & Salmon (1993)]

" “Control” adaptivity
using 2:1 balancing
[Sampath et al. (2008)]

Friday, April 22, 2011

SUMMARY: BASIC ALGORITHM

๏ Given: n RBCs, where the k-th RBC is represented by the
set !k of its surface points

๏ Loop over time steps (multistep):

๏ Parallel-for k ← 1:n, compute vlocal(x) for all x in !k

๏ Compute vglobal(x) using the FMM

๏ Evaluate vbackground(x) analytically

๏ Update positions (semi-implicit)

๏ Periodically load re-balance (repartition)

Friday, April 22, 2011

COMPLEXITY ESTIMATES

vlocal : O

�
η

3
2 ·

n

p

�

η = points / cell, n = total points

vglobal, build tree : O

�
n

p
log

n

p
+
√
p

�
n

p

� 2
3

+ p log2 p

�

vglobal, evaluation : O

�
n

p
+
√
p

�
n

p

� 2
3

�

Friday, April 22, 2011

STRONG SCALING: JAGUAR

.96 = parallel efficiency

.84

.36

300k RBCs
84 pts / RBC

160x / 512x
5s / time step

Friday, April 22, 2011

WEAK SCALING: JAGUAR

.88 = efficiency

.75 780 Tflop/s
260M RBCs

312 pts / RBC

22 levels between
leaves & load

balancing at each
step

Friday, April 22, 2011

Keeneland (ORNL)
150M pts in 0.4s

.91

.60

.55

Phil Roth @ ORNL

Friday, April 22, 2011

LIMITATIONS

๏ Physics

๏ Free boundaries*

๏ Low volume fraction*

๏ Newtonian fluid model

๏ Low Reynolds numbers

๏ Algorithms

๏ Large memory
requirement for vlocal : ~ "3

๏ No shared memory
parallelization in the tree
construction*

๏ Need scalable data
analysis*

* Mathematical fix but no parallel implementation or fix in progress

Friday, April 22, 2011

๏ Intra-node tuning of the FMM
A. Chandramowlishwaran, K. Madduri, R. Vuduc. “Diagnosis, tuning, and redesign for
multicore performance: A case study of the FMM.” (SC’10)
http://dx.doi.org/10.1109/SC.2010.19

Friday, April 22, 2011

http://dx.doi.org/10.1109/SC.2010.19
http://dx.doi.org/10.1109/SC.2010.19

How to find and fix bottlenecks?

Kernel 1

Kernel 3

Kernel 4

Kernel 5

Kernel 2

In

Out

Kernel 1

Kernel 3

Kernel 4

Kernel 5

Kernel 2

In

Out

~~~~~
~~~
~~~~~

In

Out

~~~~~
~~~
~~~~~

~~~~~
~~~
~~~~~

~~~~~
~~~
~~~~~

~~~~~
~~~
~~~~~

Friday, April 22, 2011



A NOTIONAL TUNING 
PROCESS

Achieved performance increases as we increase 
our knowledge of the details of the application, 
from “black box” to “full knowledge.”

P
er

fo
rm

an
ce

Knowledge of application

Kernel 1

Kernel 3

Kernel 4

Kernel 5

Kernel 2

In

Out

Kernel 1

Kernel 3

Kernel 4

Kernel 5

Kernel 2

In

Out

~~~~~
~~~
~~~~~

In

Out

~~~~~
~~~
~~~~~

~~~~~
~~~
~~~~~

~~~~~
~~~
~~~~~

~~~~~
~~~
~~~~~

Friday, April 22, 2011

STAGE 1: BLACK BOX Assume simple profiling and no code changes.

Kernel 1

Kernel 3

Kernel 4

Kernel 5

Kernel 2

In

Out

Flat or
decreasing

is better

Friday, April 22, 2011

STAGE 1: BLACK BOX Assume simple profiling and no code changes.

Flat or
decreasing

is better

๏ Observe: K4 scales poorly

๏ Measure intensity
๏ K3 = compute-bound
๏ K4 = memory-bound

๏ Hypotheses:
๏ Load imbalance?
๏ Memory contention?

Cache or bandwidth?

Friday, April 22, 2011

Intel Harpertown

OpenMP scatter

threads = 8

1

L2

Memory

5 3

L2

7 2

L2

6 4

L2

8

Friday, April 22, 2011

Intel Harpertown

OpenMP compact

threads = 8

1

L2

Memory

2 3

L2

4 5

L2

6 7

L2

8

Friday, April 22, 2011

VARYING THREAD

BINDING STRATEGY
Assume simple profiling and no code changes.

Number of threads

P
ar

al
le

l C
os

t
(p

*T
p
, t

hr
ea

d
-s

ec
on

d
s)1

L2

Memory

5 3

L2

7 2

L2

6 4

L2

8

1

L2

Memory

2 3

L2

4 5

L2

6 7

L2

8

Compact

Scatter

Friday, April 22, 2011

VARYING THREAD

BINDING STRATEGY
Assume simple profiling and no code changes.

Number of threads

P
ar

al
le

l C
os

t
(p

*T
p
, t

hr
ea

d
-s

ec
on

d
s)1

L2

Memory

5 3

L2

7 2

L2

6 4

L2

8

1

L2

Memory

2 3

L2

4 5

L2

6 7

L2

8

Compact

Scatter

Friday, April 22, 2011

VARYING THREAD

BINDING STRATEGY
Assume simple profiling and no code changes.

Number of threads

P
ar

al
le

l C
os

t
(p

*T
p
, t

hr
ea

d
-s

ec
on

d
s)1

L2

Memory

5 3

L2

7 2

L2

6 4

L2

8

1

L2

Memory

2 3

L2

4 5

L2

6 7

L2

8

Compact

Scatter

Bandwidth
contention

Friday, April 22, 2011

VARYING THREAD

BINDING STRATEGY
Assume simple profiling and no code changes.

Number of threads

P
ar

al
le

l C
os

t
(p

*T
p
, t

hr
ea

d
-s

ec
on

d
s)1

L2

Memory

5 3

L2

7 2

L2

6 4

L2

8

1

L2

Memory

2 3

L2

4 5

L2

6 7

L2

8

Compact

Scatter

Bandwidth
contention

Cache
contention

Friday, April 22, 2011

STAGE 1: BLACK BOX Assume simple profiling and no code changes.

๏ On a 4 x 4-core NUMA
system, observe load
imbalance in K4 where
previously there had not
been one

๏ Observe identical flop
instruction counts,
suggesting memory cost
imbalance

๏ Possible quick fixes
๏ Guided scheduling
๏ NUMA-aware allocation

2x

min

max

Friday, April 22, 2011

STAGE 1: BLACK BOX Assume simple profiling and no code changes.

๏ On a 4 x 4-core NUMA
system, observe load
imbalance in K4 where
previously there had not
been one

๏ Observe identical flop
instruction counts,
suggesting memory cost
imbalance

๏ Possible quick fixes
๏ Guided scheduling
๏ NUMA-aware allocation

Friday, April 22, 2011

STAGE 1: BLACK BOX Assume simple profiling and no code changes.

๏ On a 4 x 4-core NUMA
system, observe load
imbalance where previously
we had not seen one

๏ Observe identical flop
instruction counts,
suggesting memory cost
imbalance

๏ Possible quick fixes
๏ Guided scheduling
๏ NUMA-aware allocation

3.2x
1.4x

1.7x

Friday, April 22, 2011

STAGE 1: BLACK BOX Assume simple profiling and no code changes.

Friday, April 22, 2011

STAGE 2: DEPENDENCE
Assume additional knowledge of the task
dependency structure

Flat or
decreasing

is better

Kernel 1

Kernel 3

Kernel 4

Kernel 5

Kernel 2

In

Out

Friday, April 22, 2011

STAGE 2: DEPENDENCE
K3 and K4 are independent. Running them
concurrently → up to 2x improvement.

Flat or
decreasing

is better

Kernel 1

Kernel 3

Kernel 4

Kernel 5

Kernel 2

In

Out

Friday, April 22, 2011

STAGE 2: DEPENDENCE
K3 and K4 are independent. Running them
concurrently → up to 2x improvement.

๏ Idea 1: Try simultaneous
multithreading (SMT)
execution

๏ Intuition: K3 is compute
bound while K4 is
memory bound, so there
will be no contention for
the same processor
functional units

๏ Only works on Nehalem
class systems, which
implement SMT

Flat or
decreasing

is better

Friday, April 22, 2011

STAGE 2: DEPENDENCE
K3 and K4 are independent. Running them
concurrently → up to 2x improvement.

๏ Idea 1: Try simultaneous
multithreading (SMT)
execution

๏ Intuition: K3 is compute
bound while K4 is
memory bound, so there
will be no contention for
the same processor
functional units

๏ Only works on Nehalem
class systems, which
implement SMT

Friday, April 22, 2011

STAGE 2: DEPENDENCE
K3 and K4 are independent. Running them
concurrently → up to 2x improvement.

Flat or
decreasing

is better
๏ Idea 2: Mixed phase

execution
๏ That is, run K4 up to its

scalability limit, and use
remaining cores for K3

Friday, April 22, 2011

STAGE 2: DEPENDENCE
1.2—1.7x improvements possible, regardless of
SMT availability

๏ Idea 2: Mixed phase
execution

๏ That is, run K4 up to its
scalability limit, and use
remaining cores for K3

Friday, April 22, 2011

STAGE 2: DEPENDENCE
More extensive code changes but still no “deep”
knowledge of code required.

Friday, April 22, 2011

STAGE 3: ORACLE
Assume full knowledge of data access patterns,
algorithms, and code

Flat or
decreasing

is better

~~~~~
~~~
~~~~~

In

Out

~~~~~
~~~
~~~~~

~~~~~
~~~
~~~~~

~~~~~
~~~
~~~~~

~~~~~
~~~
~~~~~

Friday, April 22, 2011



STAGE 3: ORACLE
Assume full knowledge of data access patterns, 
algorithms, and code

๏ Example: Full 
knowledge of data 
access pattern of K4

๏ Three data arrays, A, B, 
and C

๏ Axes (incl. color axis) = 
array elements

๏ Each dot = computation 
on some A(i), B(j), C(k)

๏ Optimization: Some 
blocking/tiling/
scheduling of this space

A

B

C

Friday, April 22, 2011



STAGE 3: ORACLE
Assume full knowledge of data access patterns, 
algorithms, and code

๏ Example: Full 
knowledge of data 
access pattern of K4

๏ Three data arrays, A, B, 
and C

๏ Axes (incl. color axis) = 
array elements

๏ Each dot = computation 
on some A(i), B(j), C(k)

๏ Optimization: Some 
blocking/tiling/
scheduling of this space

Friday, April 22, 2011



BEFORE & AFTER (NEHALEM-EX)

Number of threads
Pa

ra
lle

l C
os

t (
Th

re
ad
−s

ec
on

ds
)

0

20

40

60

80

100

120

124 8 16 32 64
Number of threads

Pa
ra

lle
l C

os
t (

Th
re

ad
−s

ec
on

ds
)

0

20

40

60

80

100

120

124 8 16 32 64

After Stage 1 After Stage 3

Friday, April 22, 2011



๏ Looking to exascale: Two cautionary predictions

Friday, April 22, 2011



Keeneland (ORNL)
150M pts in 0.4s

.91

.60

.55

Phil Roth @ ORNL

Friday, April 22, 2011



N

G
flo
p/
s

0
100
200
300
400
500
600
700

0
100
200
300
400
500
600
700

p=32

!

!
! !

!

!
! !

256256256256 512512512512 1024102410241024 2048204820482048256256256256 512512512512 1024102410241024 2048204820482048

p=64

!

!

!
!

!

!

!
!

256256256256 512512512512 1024102410241024 2048204820482048256256256256 512512512512 1024102410241024 2048204820482048

q=2
q=3

Processor
! CPU

GPU

3D FFT, N * N * N — P3DFFT, CUFFT vs. FFTW / MKL

Friday, April 22, 2011



Core0 Core1

Core2 Core3

CPU 1
DR

AM
1

Infiniband

0 1

2 3

CPU 2

DR
AM

QPI

DDR3 QPI I/O 
hub

I/O 
hub

QPI

integrated

PCIe x16

PCIe x16

PCIe x16

GPU 1

GPU 2

GPU 3

Node

$

$
$

$

$

Friday, April 22, 2011



Year

G
B/
s

0.01

0.1

1

10

100

1000

10000

!

!
!

!

!

!

!

!

!

!

!

!
!

!

! !

!

!

!

!

!
!

!

!

!

!

!

!

1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

Network routers
Doubling-time: 2.25x

Friday, April 22, 2011



Year

G
B/
s

0.001

0.01

0.1

1

10

100

!

!

!
!

!

!

! !

!

!

!!

! !

! !

!

!

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

PC I/O Bus (e.g., PCIe)
Doubling-time: 2.39x

Friday, April 22, 2011



Year

G
B/
s

1

10

100

1000

10000

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

STREAM
Doubling-time: 3x

Friday, April 22, 2011



Ti
m

e

0.0

0.1

0.2

0.3

0.4

0.032

0.089

0.239

0.246

Many−Core (CPU) Many−Thread (GPU)

Type
Inter−node
Intra−node

3D FFT Swim Lanes:
A prediction for 2020

4.87 Pflop/s

1.23 Pflop/s

Friday, April 22, 2011


