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DEFORMABLE RED BLOOD CELLS

๏ Prior work with same physical fidelity

๏ 1,200 cells: Sequential + integral equations
Zinchenko et al. (2003)

๏ 14,000 cells: IBM BG/P + Lattice Boltzmann
O(10k) unknowns/cell
Clausen et al. (2010)

๏ MoBo: 260 million cells on 200k cores (Jaguar @ ORNL)

๏ CPU, GPU + integral equations + implicit AMR
O(100) unknowns / cell

๏ Key to scaling: Optimal n-body methods based on the
fast multipole method (FMM) on highly non-uniform domains
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๏ Problem formulation and algorithms
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Vesicle flow: Model a red blood cell (RBCs) as fluid-filled 
deformable and inextensible sac in viscous solution
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The fluid flow model is a
Stokes (“creeping”) flow —
slow-moving and viscous fluid, in 
our case also assumed to be 
Newtonian.

Vesicle flow: Model a red blood cell (RBCs) as fluid-filled 
deformable and inextensible sac in viscous solution
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The numerical method is based 
on a boundary integral 
formulation, in which the fluid is 
represented implicitly and we 
need only discretize the cell 
boundary.1

1  In contrast to Lattice Boltzman or finite-
element methods, in which we discretize the 
entire domain.

Vesicle flow: Model a red blood cell (RBCs) as fluid-filled 
deformable and inextensible sac in viscous solution
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Challenges in implementing 
boundary integral methods:

! Stiffness, due to high-order 
derivatives required to accurately 
capture RBC deformations

! Efficient evaluation of long-range 
interactions

Vesicle flow: Model a red blood cell (RBCs) as fluid-filled 
deformable and inextensible sac in viscous solution
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Features of our approach:

! Represent RBC in a spherical 
harmonics basis, which permits 
accurate high-order derivative 
computations

! Efficient evaluation of long-range 
interactions via FMM

! Time-stepping with a multistep, 
semi-implicit method that is, at 
least empirically, unconditionally 
stable

Vesicle flow: Model a red blood cell (RBCs) as fluid-filled 
deformable and inextensible sac in viscous solution
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dx

dt
= vbackground(x) + vinteraction(x)

x
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vbackground

dx

dt
= vbackground(x) + vinteraction(x)

x
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vinteraction(x) = vlocal(x) + vglobal(x)

x
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vinteraction(x) = vlocal(x) + vglobal(x)

x

vlocal
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vinteraction(x) = vlocal(x) + vglobal(x)

x

vglobalvlocal
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vinteraction(x) = vlocal(x) + vglobal(x)

vlocal
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Intra-cell forces computation:
! Spherical harmonics

(Legendre & Fourier transforms)
! Singular quadratures
! Derivatives
! Surface remeshing
! Semi-implicit solver (BiCGStab)

Pleasingly parallel over RBCs.

Time dominated by ~ many 
small matrix multiplies.

vinteraction(x) = vlocal(x) + vglobal(x)

vlocal
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Given a sequence of 
“small” independent 
kernel invocations, we 
use the CUDA Streams 
interface to fill capacity.
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Kent Czechowski <kentcz@gatech.edu>
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Streams
~ 1.5x

Peng Wang & Steve Parker @ NVIDIA
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vinteraction(x) = vlocal(x) + vglobal(x)

x

vglobalvlocal
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vinteraction(x) = vlocal(x) + vglobal(x)

x

vglobalvlocal

Use fast multipole method (FMM)
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FMM

" Need to evaluate all-
pairwise interactions 
among green points:
O(n2)

" FMM instead computes 
in O(n) time, with an 
approximation 
guarantee, using a tree 
(n log n to build)
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DISTRIBUTED MEMORY ALGORITHM

" We use a kernel-
independent variant, but 
the structure and 
parallelization are same 
as classical case
[Warren & Salmon (1993)]

" “Control” adaptivity 
using 2:1 balancing 
[Sampath et al. (2008)]
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SUMMARY: BASIC ALGORITHM

๏ Given: n RBCs, where the k-th RBC is represented by the 
set !k of its surface points

๏ Loop over time steps (multistep):

๏ Parallel-for k ← 1:n, compute vlocal(x) for all x in !k

๏ Compute vglobal(x) using the FMM

๏ Evaluate vbackground(x) analytically

๏ Update positions (semi-implicit)

๏ Periodically load re-balance (repartition)
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COMPLEXITY ESTIMATES
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STRONG SCALING: JAGUAR

.96 = parallel efficiency

.84

.36

300k RBCs
84 pts / RBC

160x / 512x
5s / time step
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WEAK SCALING: JAGUAR

.88 = efficiency

.75 780 Tflop/s
260M RBCs

312 pts / RBC

22 levels between 
leaves & load 

balancing at each 
step
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Keeneland (ORNL)
150M pts in 0.4s

.91

.60

.55

Phil Roth @ ORNL
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LIMITATIONS

๏ Physics

๏ Free boundaries*

๏ Low volume fraction*

๏ Newtonian fluid model

๏ Low Reynolds numbers

๏ Algorithms

๏ Large memory 
requirement for vlocal : ~ "3

๏ No shared memory 
parallelization in the tree 
construction*

๏ Need scalable data 
analysis*

* Mathematical fix but no parallel implementation or fix in progress
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๏ Intra-node tuning of the FMM
A. Chandramowlishwaran, K. Madduri, R. Vuduc. “Diagnosis, tuning, and redesign for 
multicore performance: A case study of the FMM.” (SC’10)
http://dx.doi.org/10.1109/SC.2010.19
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How to find and fix bottlenecks?
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A NOTIONAL TUNING 
PROCESS

Achieved performance increases as we increase 
our knowledge of the details of the application, 
from “black box” to “full knowledge.”
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STAGE 1: BLACK BOX Assume simple profiling and no code changes.

Kernel 1

Kernel 3

Kernel 4

Kernel 5

Kernel 2

In

Out

Flat or 
decreasing 

is better
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STAGE 1: BLACK BOX Assume simple profiling and no code changes.

Flat or 
decreasing 

is better

๏ Observe: K4 scales poorly

๏ Measure intensity
๏ K3 = compute-bound
๏ K4 = memory-bound

๏ Hypotheses:
๏ Load imbalance?
๏ Memory contention?

Cache or bandwidth?
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Intel Harpertown

OpenMP scatter
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Intel Harpertown
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VARYING THREAD 

BINDING STRATEGY
Assume simple profiling and no code changes.
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VARYING THREAD 

BINDING STRATEGY
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VARYING THREAD 

BINDING STRATEGY
Assume simple profiling and no code changes.
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STAGE 1: BLACK BOX Assume simple profiling and no code changes.

๏ On a 4 x 4-core NUMA 
system, observe load 
imbalance in K4 where 
previously there had not 
been one

๏ Observe identical flop 
instruction counts, 
suggesting memory cost 
imbalance

๏ Possible quick fixes
๏ Guided scheduling
๏ NUMA-aware allocation

2x

min

max
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STAGE 1: BLACK BOX Assume simple profiling and no code changes.

๏ On a 4 x 4-core NUMA 
system, observe load 
imbalance where previously 
we had not seen one

๏ Observe identical flop 
instruction counts, 
suggesting memory cost 
imbalance

๏ Possible quick fixes
๏ Guided scheduling
๏ NUMA-aware allocation

3.2x
1.4x

1.7x

Friday, April 22, 2011



STAGE 1: BLACK BOX Assume simple profiling and no code changes.
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STAGE 2: DEPENDENCE
Assume additional knowledge of the task 
dependency structure

Flat or 
decreasing 

is better

Kernel 1

Kernel 3

Kernel 4

Kernel 5

Kernel 2

In

Out

Friday, April 22, 2011



STAGE 2: DEPENDENCE
K3 and K4 are independent. Running them 
concurrently → up to 2x improvement.

Flat or 
decreasing 

is better

Kernel 1

Kernel 3

Kernel 4

Kernel 5

Kernel 2

In

Out
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STAGE 2: DEPENDENCE
K3 and K4 are independent. Running them 
concurrently → up to 2x improvement.

๏ Idea 1: Try simultaneous 
multithreading (SMT) 
execution

๏ Intuition: K3 is compute 
bound while K4 is 
memory bound, so there 
will be no contention for 
the same processor 
functional units

๏ Only works on Nehalem 
class systems, which 
implement SMT

Flat or 
decreasing 

is better
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STAGE 2: DEPENDENCE
K3 and K4 are independent. Running them 
concurrently → up to 2x improvement.

Flat or 
decreasing 

is better
๏ Idea 2: Mixed phase 

execution
๏ That is, run K4 up to its 

scalability limit, and use 
remaining cores for K3
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STAGE 2: DEPENDENCE
1.2—1.7x improvements possible, regardless of 
SMT availability

๏ Idea 2: Mixed phase 
execution

๏ That is, run K4 up to its 
scalability limit, and use 
remaining cores for K3
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STAGE 2: DEPENDENCE
More extensive code changes but still no “deep” 
knowledge of code required.
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STAGE 3: ORACLE
Assume full knowledge of data access patterns, 
algorithms, and code

Flat or 
decreasing 

is better

~~~~~
~~~
~~~~~

In

Out

~~~~~
~~~
~~~~~

~~~~~
~~~
~~~~~

~~~~~
~~~
~~~~~

~~~~~
~~~
~~~~~
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STAGE 3: ORACLE
Assume full knowledge of data access patterns, 
algorithms, and code

๏ Example: Full 
knowledge of data 
access pattern of K4

๏ Three data arrays, A, B, 
and C

๏ Axes (incl. color axis) = 
array elements

๏ Each dot = computation 
on some A(i), B(j), C(k)

๏ Optimization: Some 
blocking/tiling/
scheduling of this space

A

B

C
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BEFORE & AFTER (NEHALEM-EX)
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๏ Looking to exascale: Two cautionary predictions
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Keeneland (ORNL)
150M pts in 0.4s

.91

.60

.55

Phil Roth @ ORNL
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