An Introduction to CUDA/OpenCL
and Graphics Processors
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Overview

‘erminology

"he CUDA and OpenCL programming models
Understanding how CUDA maps to NVIDIA GPUs
Thrust
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Heterogeneous Parallel Computing
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Throughput

Latency
Cores optimized for aggregate throughput, deemphasizing

individual performance

Each core optimized for executing a single thread
(apologies to Seymour Cray)

Latency: yoke of oxen
Throughput: flock of chickens



Latency vs. Throughput, cont.

Processing Elements

Resident Strands/
Threads (max)

SP GFLOP/s

Memory Bandwidth
Register File

Local Store/L1 Cache
L2 Cache

L3 Cache

8 cores, 2 issue,
8 way SIMD
@3.1 GHz

8 cores, 2 threads, 8
way SIMD:

96 strands
396
51 GB/s
128 kB (?)

256 kB
2 MB

20 MB

14 SMs, 6 issue, 32
way SIMD
@730 MHz

14 SMs, 64 SIMD
vectors, 32 way
SIMD:
28672 threads

3924
250 GB/s
3.5MB

896 kB
1.5 MB

T (I | e el o e

)
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Why Heterogeneity?

Different goals produce different designs

Manycore assumes work load is highly
Multicore must be good at everything,

Ddla

Ddld

or not

Multicore: minimize latency experienced by 1 thread

lots of big on-chip caches
extremely sophisticated control

Manycore: maximize throughput of all threads

lots of big ALUs

multithreading can hide latency ... so skip the big caches

simpler control, cost amortized over ALUs via SIMD
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cI1SD SIMD
; é width=2
C GG

Single Instruction Multiple Data architectures make use
of data parallelism

We care about SIMD because of area and power
efficiency concerns

Amortize control overhead over SIMD width
Parallelism exposed to programmer & compiler
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SIMD: Neglected Parallelism

OpenMP [ Pthreads [ MPI all neglect SIMD parallelism
Because it is difficult for a compiler to exploit SIMD
How do you deal with sparse data & branches?

Many languages (like C) are difficult to vectorize

Most common solution:
Either forget about SIMD

* Pray the autovectorizer likes you
Or instantiate intrinsics (assembly language)
Requires a new code version for every SIMD extension
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A Brief History of x86 SIMD Extensions

g*gbitint  MVIV)Y SSEy.2
4*32 bit FP SSE N, @ 8*32 bit FP
2%64 bit FP  JSie) =) AD &SV 3 operand
. 256 bit Int ops,
Horizontal ops SSE3 AVX2 Cather
SSSE3 3aNow!
c12 bit SSEL.A

SSE4.1

U

U
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What to do with SIMD?

4, way SIMD (SSE) 16 way SIMD (LRB)

Neglecting SIMD is becoming more expensive

AVX: 8 way SIMD, MIC: 16 way SIMD,
Nvidia: 32 way SIMD, AMD: 64 way SIMD

This problem composes with thread level parallelism
We need a programming model which addresses both
problems

10/74



The CUDA Programming Model

CUDA is a programming model designed for:
Heterogeneous architectures
Wide SIMD parallelism

Scalability

CUDA provides:
A thread abstraction to deal with SIMD
Synchronization & data sharing between small thread groups

CUDA programs are written in C++ with minimal extensions

OpenCL is inspired by CUDA, but HW & SW vendor neutral
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Hierarchy of Concurrent Threads

Parallel composed of many threads
all threads execute the same sequential program §
Threads are grouped into e
threads in the same block can cooperate §

Threads/blocks have unique IDs
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What is a CUDA Thread?

Independent thread of execution

nas its own program counter, variables (registers),
Drocessor state, etc.

no implication about how threads are scheduled

CUDA threads might be threads
as mapped onto NVIDIA GPUs

CUDA threads might be threads
might pick 1 block = 1 physical thread on multicore CPU
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What is a CUDA Thread Block?

Thread block = a (data)
all blocks in kernel have the same entry point

but may execute any code they want

Thread blocks of kernel must be tasks
program valid for any interleaving of block executions
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CUDA Supports:

Thread parallelism

each thread is an independent thread of execution

Data parallelism
across threads in a block
across blocks in a kernel

Task parallelism

different blocks are independent

independent kernels executing in separate streams
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Synchronization

Threads within a block may synchronize with

. Step 1 ..

.. Step 2 ..

Blocks via atomic memory operations
e.g., increment shared queue pointer with

Implicit barrier between

vec_minus<<<nblocks, blksize>»>>(a, b, c);

vec_dot<<<nblocks, blksize>>>(c, c);
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Blocks must be iIndependent

Any possible interleaving of blocks should be valid

presumed to run to completion without pre-emption
canrunin any order
can run concurrently OR sequentially

Blocks may coordinate but not synchronize

shared queue pointer:

shared lock: BAD ... can easily deadlock

Independence requirement gives

17/74



Scalability

Manycore chips exist in a diverse set of configurations

Number of SMs

35
30
25
20
15
10

j m .

8300GS 9400M 8800GTX GTX28g

CUDA allows one binary to target all these chips
Thread blocks bring scalability!
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Hello World: Vector Addition

//Compute vector sum C=A+B

//Each thread performs one pairwise addition

~ global  void vecAdd(float* a, float* b, float* c) {
int 1 = blockIdx.x * blockDim.x + threadIdx.Xx;
c[i] al[i] + b[i];

}

int main() A
//Run N/256 blocks of 256 threads each
vecAdd<<<N/256, 256>>>(d a, d b, d c);

}
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Memory model

Per-thread
Local Memory
—

=

Per-block

Shared Memory
S —
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Memory model

Kernel o

Sequential
Kernels

-

-

Kernel 1

-

-

-
-

>

Per Device
Global

«—— Memory
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Memory model

Host
Memory

Device O
Memory

Device 1
Memory
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Hello World: Managing Data

int main() {
int N = 256 * 1024;
float* h_a = malloc(sizeof(float) * N);
//Similarly for h_b, h _c. Initialize h_a, h_ b

float *d _a, *d b, *d c;
cudaMalloc(&d a, sizeof(float) * N);
//Similarly for d b, d c

cudaMemcpy(d_a, h_a, sizeof(float) * N, cudaMemcpyHostToDevice);
//Similarly for d b

//Run N/256 blocks of 256 threads each
vecAdd<<<N/256, 256>>>(d a, d b, d c);

cudaMemcpy(h_c, d_c, sizeof(float) * N, cudaMemcpyDeviceToHost);

23/74



CUDA: Minimal extensions to C/C++

Declaration specifiers to indicate where things live
void KernelFunc(...); // kernelcallablefrom host
void DeviceFunc(...); // functioncallable ondevice
int GlobalVvar; // variable in device memory
int SharedVar; // in per-block shared memory

Extend function invocation syntax for parallel kernel launch
KernelFunc (...); // 500 blocks, 128 threads each

Special variables for thread identification in kernels
dim3 ; dim3 ;  dim3 ;

Intrinsics that expose specific operations in kernel code
; // barrier synchronization
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Using per-block shared memory

Variables shared across block Block 7
int *begin, *end; Q:JT
Scratchpad memory | KKK ®
int scratch[BLOCKSIZE]; =
scratch] ] = begin[ ;
begin] ] = scratch] 15
Communicating values between threads
scratch] ] = begin] I
int left = scra%ch[ - 1];

Per-block shared memory is faster than L1 cache, slower
than register file

It is relatively small: register file is 2-4x larger
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CUDA: Features available on GPU

Double and single precision (IEEE compliant)

Standard mathematical functions
, etc.

I/ I/ I/ / /

Atomic memory operations
/ I/ I/ I/ etC

These work on both global and shared memory
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CUDA: Runtime support

Explicit memory allocation returns pointers to GPU memory

I

Explicit memory copy for host © device, device © device

I I [

Texture management

I I [ ]

OpenGL & DirectX interoperability

/ J "o
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OpenCL is supported by AMD {CPUs, GPUs} and Nvidia

Intel, Imagination Technologies (purveyor of GPUs for
iPhone/etc.) are also on board

OpenCL's data parallel execution model mirrors CUDA,

but with different terminology Write A| [Write B

OpenCL has rich N N\

: Write C Kernel A| [Kernel C
task parallelism model ~L
Runtime walks a dependence DAG of Kernel B /\ReadA
kernels/memory transfers ~
Kernel D

Read B

28/74



CUDA and OpenCL correspondence

Thread Work-item
Thread-block Work-group

Global memory Global memory
Constant memory Constant memory
Shared memory Local memory

Local memory Private memory
__global__ function __kernel function
__device function no qualification needed
__constant__ variable __constant variable
__device_ variable __global variable

~_shared variable __local variable
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OpenCL and SIMD

SIMD issues are handled separately by each runtime
AMD GPU Runtime

Vectorize over 64-way SIMD, but not over 4/5-way VLIW

= Use floaty vectors in your code

AMD CPU Runtime

No vectorization

= Use float4 vectors in your code (float8 when AVX appears?)

Intel CPU Runtime

Vectorization optional, using float4/float8 vectors still good idea
Nvidia GPU Runtime

Full vectorization, like CUDA
= Prefers scalar code per work-item
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Imperatives for Efficient CUDA Code

Expose abundant fine-grained parallelism
need 1000’s of threads for full utilization

Maximize on-chip work
on-chip memory orders of magnitude faster

Minimize execution divergence
SIMT execution of threads in 32-thread warps

Minimize memory divergence
warp loads and consumes complete 128-byte cache line
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Mapping CUDA to Nvidia GPUs

CUDA is designed to be functionally forgiving
First priority: make things work. Second: get performance.

However, to get good performance, one must understand how
CUDA is mapped to Nvidia GPUs

Threads: each threadis a SIMD vector lane

Warps: ASIMD instruction acts on a “warp”
Warp width is 32 elements: LOGICAL SIMD width

Thread blocks: Each thread block is scheduled onto an SM
Peak efficiency requires multiple thread blocks per SM
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Mapping CUDA to a GPU, continued

The GPU is very deeply pipelined to maximize throughput

This means that performance depends on the number of
thread blocks which can be allocated on a processor

Therefore, resource usage costs performance:
More registers => Fewer thread blocks
More shared memory usage => Fewer thread blocks

It is often worth trying to reduce register count in order to
get more thread blocks to fit on the chip

For Kepler, target 32 registers or less per thread for full
occupancy 33174



Occupancy (Constants for Kepler)

The Runtime tries to fit as many thread blocks
simultaneously as possible on to an SM

The number of simultaneous thread blocks (B) is < 8
he number of warps per thread block (T) <32
Each SM has scheduler space for 64 warps (W)
B*T <W=64
The number of threads per warp (V) is 32
B *T *V * Registers per thread < 65536
B * Shared memory (bytes) per block < 49152/16384

Depending on Shared memory/L1 cache configuration
Occupancy isreportedasB*T /W
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Profiling

File View Run Help

=7 il .. 'Il‘) -y "VV +\ = t\ uK- .5'
§ *diverge.vp & = B || £ Properties £2 [ Detail Graphs =8
0.05s 0.055s 0.06 s 0.065 s 0./| Vec32of32(int*, int*, int*, int)
—| Process: 25290 Name Value
~| Thread: -1813960928
o o T Start 70.642 ms
Runtime API = ~DYASYNC
Driver API End 72.064 ms
=/ [0] GeForce GTX 480 Duration 1.422 ms
—| Context 1 (CUDA) Grid Size [256,1,1]
" MemCpy (HtoD) Block Size [256,1,1]
" MemCpy (DtoH) Registers/Thread 11
= Cnpiita _ Shared Memory/Block 0 bytes
I’ 56.3% [4] Veclof32x(in... P s
T 10.6% [4] Veclof32(int... | 1 | paney
%
7 13.3% [4] Vec50(int*, i... | Vecs0(in... Theoretical 100%
7 12.5% [4] VecThen(int=..| | | | VecThe... | — L1 Cache Configuration
T 7.3% [41 Vec320f32(int... | | Shared Memory Requested 48 KB
' 0.0% [4] VecEmpty(void) | | | | Shared Memory Executed 48 KB
- Streams
Stream 1 VecThe... Vec50(in...
Cm Analysis |[g) Details | B Console | Settings 82 a0
Session diverge.vp
Executable fjle. bin/diverge Browse...
Working directory: Browse...
Arguments:
v
Fnvirnnment: Aama \/alua

nvvp (nvidia visual profiler) useful for interactive profiling
export CUDA PROFILE=1 inshell for simple profiler

Then examine cuda_profile_*.log for kernel times &
occupancies 3ch74



SIMD & Control Flow

Nvidia GPU hardware handles control flow divergence
and reconvergence

Write scalar SIMD code, the hardware schedules the SIMD
execution

One caveat: can't appearin a divergent
path

= This may cause programs to hang

Good performing code will try to keep the execution
convergent within a warp

= Warp divergence only costs because of a finite instruction
cache
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Memory, Memory, Memory

A many core processor = A device for turning a
compute bound problem into a memory bound problem
Kathy Yelick, Berkeley

Control ALU ALU
ALU ALU

Cache

DRAM DRAM
CPU GPU

Lots of processors, only one socket
Memory concerns dominate performance tuning
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Memory is SIMD too

Virtually all processors have SIMD memory subsystems

0/l 23 45 6 7

—

cache line width

his has two effects:

Sparse access wastes bandwidth
01 2 3 456 7 2 words used, 8 words loaded:

_——_— Y effective bandwidth

Unaligned access wastes bandwidth

4, words used, 8 words loaded:

M 1/ effective bandwidth
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Coalescing

GPUs and CPUs both perform memory transactions at a
larger granularity than the program requests (“cache
line”)

GPUs have a “coalescer”, which examines memory
requests dynamically and coalesces them

To use bandwidth effectively, when threads load, they
should:

Present a set of unit strided loads (dense accesses)
Keep sets of loads aligned to vector boundaries
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Data Structure Padding

i 2 BN e

i (row major)

Multidimensional arrays are usually stored as monolithic

vectors in memory
Care should be taken to assure aligned memory

accesses for the necessary access pattern

i > B Bl '
- o
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SoA, AoS

Different data access patterns may also require
transposing data structures

, : NSRS
— e e
Array of Structs Structure of Arrays

The cost of a transpose on the data structure is often
much less than the cost of uncoalesced memory accesses
Use shared memory to handle block transposes
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Efficiency vs Productivity >

NVIDIA

* Productivity is often in tension with efficiency
® This is often called the “abstraction tax”

Efficiency Language Productivity Language

Low level C B

Less Productive
Fast

High level

More Productive

Slow

© 2011 NVIDIA Corporation 42/76



Efficiency and Productivity >

NVIDIA

)

Parallel programming also gives us a “concrete tax”

How many of you have tried to write ... which is faster than a
vendor supplied library?

a SGEMM Sort Scan

Divergent Parallel Architectures means performance
portability is increasingly elusive

Low-level programming models tie you to a particular
piece of hardware

* And if you're like me, often make your code slow
My SGEMM isn’t as good as NVIDIA's

)

)

© 2011 NVIDIA Corporation 43/76



The Concrete Tax: A Case Study

Wide Parallel Narrow Parallel
Reduction Reduction
(good for GPU) (good for CPU)

® OpenCL experiment on CPU and GPU
* Two optimized reductions, one for CPU, one for GPU

* Running GPU code on CPU:

* 40X performance loss compared to CPU optimized code

#* Running CPU on GPU:

® ~100X performance loss compared to GPU optimized code

# Concrete code led to overspecialization

© 2011 NVIDIA Corporation
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NVIDIA
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Abstraction, cont. rS%A

Reduction is one of the simplest parallel computations

Performance differentials are even starker as complexity
increases

There's a need for abstractions at many levels
Primitive computations (BLAS, Data-parallel primitives)
Domain-specific languages

These abstractions make parallel programming more

efficient and more productive

Use libraries whenever possible!

CUBLAS, CUFFT, Thrust
45/76
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<3

NVIDIA

* A C++ template library for CUDA
® Mimics the C++ STL

® Containers
® On host and device

* Algorithms

# Sorting, reduction, scan, etc.

© 2011 NVIDIA Corporation 46/76



Diving In <3

NVIDIA.




Objectives >

NVIDIA

* Programmer productivity
* Build complex applications quickly

* Encourage generic programming
* Leverage parallel primitives

* High performance
* Efficient mapping to hardware

© 2011 NVIDIA Corporation 48/76



Containers <3

NVIDIA

* Concise and readable code
* Avoids common memory management errors

© 2011 NVIDIA Corporation 49/76



lterators >

NVIDIA

* Pair of iterators defines a range

© 2011 NVIDIA Corporation 50/76



lterators >

NVIDIA

* lterators act like pointers

© 2011 NVIDIA Corporation 51/76



lterators >

NVIDIA

* Encode memory location
* Automatic algorithm selection

© 2011 NVIDIA Corporation 52/76



Algorithms >

NVIDIA

* Elementwise operations

. for each, transform, gather, scatter ...

* Reductions

® reduce, 1nner product, reduce by key ...

® Prefix-Sums

® inclusive scan, inclusive scan by key...

® Sorting

® sort, stable sort, sort by key...

© 2011 NVIDIA Corporation 53/76



Algorithms <3

NVIDIA.

* Standard operators

© 2011 NVIDIA Corporation 54/76



Algorithms <3

NVIDIA

* Standard data types

© 2011 NVIDIA Corporation 55/76



Custom Types & Operators >

NVIDIA.

© 2011 NVIDIA Corporation



Custom Types & Operators >

NVIDIA.

© 2011 NVIDIA Corporation



Interoperability >

NVIDIA

® Convert iterators to raw pointers

© 2011 NVIDIA Corporation 58/76



Recap >

NVIDIA

* Containers manage memory
Help avoid common errors

* lterators define ranges
Know where data lives

* Algorithms act on ranges
Support general types and operators

© 2011 NVIDIA Corporation 59/76



Explicit versus implicit parallelism E%A

* Decompose algorithm into kernels
* Decompose kernels into blocks
* Decompose blocks into threads




Explicit versus implicit parallelism ,%A“

* SAXPY in CUDA

© 2011 NVIDIA Corporation 61/76



Explicit versus implicit parallelism ,%A“

* SAXPY in CUDA

Decomposition

© 2011 NVIDIA Corporation 62/76



Explicit versus implicit parallelism %A“

* SAXPY in Thrust




Implicitly Parallel >

NVIDIA

» Algorithms expose lots of fine-grained parallelism
Generally expose O(N) independent threads of execution
Minimal constraints on implementation details

* Programmer identifies opportunities for parallelism
Thrust determines explicit decomposition onto hardware

* Finding parallelism in sequential code is hard
Mapping parallel computations onto hardware is easier

© 2011 NVIDIA Corporation 64/76



Productivity Implications >

NVIDIA

® Consider a serial reduction

© 2011 NVIDIA Corporation 65/76



Productivity Implications >

NVIDIA

® Consider a serial reduction

© 2011 NVIDIA Corporation 066/76



Productivity Implications >

NVIDIA

® Consider a serial reduction

© 2011 NVIDIA Corporation 67/76



Productivity Implications >

NVIDIA.

® Compare to low-level CUDA

© 2011 NVIDIA Corporation 68/76



Leveraging Parallel Primitives =

NVIDIA

* Use sort liberally

\ J

Y
Intel Core i7 950 NVIDIA GeForce 480
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Input-Sensitive Optimizations rf,%A
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Leveraging Parallel Primitives

®* Combine sort with reduce by key
¢ Keyed reduction
* Bring like items together, collapse
* Poor man’s MapReduce

# Can often be faster than custom solutions
* | wrote an image histogram routine in CUDA
* Bit-level optimizations and shared memory atomics

* Was 2x slower than thrust: :sort +
thrust::reduce by key

© 2011 NVIDIA Corporation
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Thrust on github

* Quick Start Guide
* Examples
* Documentation

* Mailing list (thrust-users)

© 2011 NVIDIA Corporation

Thrust

then tr.

lude

CPUs. Interoperability

lude <t

lude
lude

lude <t

lude
#include

int main(void)

generate

thrust

ms

nanc:

n win S

M random number:

Get Started Documentation Community Get Thrust

host_vector<int> B_»
std: :generate(bh_vec .begin

fer

n

dat

the

2 back to

Y

3 : 54 per
soxt(d_wvec.begin(), d_wvec.end(]));

high-performance 3

S
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Summary

optimized processors

Throughput optimized processors complement latency

Programming models like CUDA and OpenCL enable
heterogeneous parallel programming
They abstract SIMD, making it easy to use wide SIMD

vectors
CUDA and OpenCL encourages S
scalable algorithm design and im

Thrust is a productive C++ library
development

MD friendly, highly

blementation
for CUDA
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Questions?

Bryan Catanzaro

bcatanzaro@nvidia.com

http://research.nvidia.com
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