
  
Performance Debugging 

Techniques For   
HPC Applications 

 

David Skinner 
deskinner@lbl.gov  
CS267 Feb 19 2013 



Today’s Topics 

•  Principles 
–  Topics in performance scalability 
–  Examples of areas where tools can help 

•  Practice 
–  Where to find tools  
–  Specifics to NERSC and Hopper/Franklin 

•  Scope & Audience 
–  Budding simulation scientist app dev 
–  Compiler/middleware dev, YMMV 

 2 



Overview  

•  Serving all of 
DOE Office of 
Science 
domain breadth 
range of scales 
   

•  Lots of users 
~4.5K active 
~500 logged in 
~300 projects  

•  Science driven 
sustained 
performance on 
real apps  

•  Architecture 
aware 
procurements driven 
by workload needs 
  



Big Picture of  
Performance and Scalability 

4 



5 

Formulate 
Research 
Problem  

Coding 

Debug Perf 
Debug 

jobs jobs 
jobs jobs  

Queue 
Wait 

Data? 

UQ 
VV 

Understand 
& Publish! 

Performance, more than a single number 

• Plan where to put effort 

• Optimization in one area 
can de-optimize another 

• Timings come from 
timers and also from your 
calendar, time spent 
coding 

• Sometimes a slower 
algorithm is simpler to 
verify correctness 
 
 
 
 
  
 



•  To your goals 
–  Time to solution, Tq+Twall … 

–  Your research agenda 
–  Efficient use of allocation 

  
•  To the  

–  application code 
–  input deck 
–  machine type/state 

Performance is Relative 

Suggestion:  
Focus on specific use cases 

as opposed to making  
everything  

perform well.  
Bottlenecks can shift. 

 



7 

•  Serial 
–  Leverage ILP on the processor 
–  Feed the pipelines 
–  Reuse data in cache 
–  Exploit data locality 

•  Parallel 
–  Expose task level concurrency  
–  Minimizing latency effects 
–  Maximizing work vs. communication 

Specific Facets of Performance 



Registers 

Caches 

Local Memory 

Remote Memory 

Disk / Filesystem  

8 

Performance is Hierarchical 

instructions  & operands 

lines 

pages 

messages 

blocks, files 



…on to specifics about HPC tools 

Mostly at NERSC but fairly general 

9 



Registers 

Caches 

Local Memory 

Remote Memory 

Disk / Filesystem  

10 

Tools are Hierarchical 

PAPI 

valgrind 
Craypat 

IPM 
Tau 

SAR 

PMPI 



11 

•  Sampling 
–  Regularly interrupt the program and record 
where it is 
–  Build up a statistical profile 

•  Tracing / Instrumenting 
–  Insert hooks into program to record and time 
events 

•  Use Hardware Event Counters 
–  Special registers count events on processor 
–  E.g. floating point instructions 
–  Many possible events 
–  Only a few (~4 counters) 

HPC Perf Tool Mechanisms  



Things HPC tools may ask you to do  

•  (Sometimes) Modify your code with 
macros, API calls, timers 
•  Re-compile your code 
•  Transform your binary for profiling/
tracing with a tool 
•  Run the transformed binary 

–  A data file is produced 
•  Interpret the results with another 
tool 

12 



Performance Tools @ NERSC 

•  Vendor Tools: 
–  CrayPat 

•  Community Tools : 
–  TAU (U. Oregon via ACTS) 
–  PAPI (Performance Application 
Programming Interface) 
–  gprof 

•  IPM: Integrated Performance 
Monitoring 

13 



What can HPC tools tell us? 

•  CPU and memory usage 
–  FLOP rate 
–  Memory high water mark 

•  OpenMP 
–  OMP overhead 
–  OMP scalability (finding right # threads)  

•  MPI 
–  % wall time in communication 
–  Detecting load imbalance 
–  Analyzing message sizes 

14 



Tools can add overhead to code execution 
•  What level can you tolerate? 
 
Tools can add overhead to scientists  
•  What level can you tolerate? 

Scenarios: 
•  Debugging a code that is “slow” 
•  Detailed performance debugging 
•  Performance monitoring in production 

15 

Using the right tool 



Introduction to CrayPat 

•  Suite of tools to provide a wide range of 
performance-related information 
 

•  Can be used for both sampling and tracing 
user codes 
–  with or without hardware or network performance 

counters 
–  Built on PAPI 

•  Supports Fortran, C, C++, UPC, MPI, Coarray 
Fortran, OpenMP, Pthreads, SHMEM 

•  Man pages 
–  intro_craypat(1), intro_app2(1), intro_papi(1) 

16 



Using CrayPat @ Hopper 

1.  Access the tools 
–  module load perftools!

2.  Build your application; keep .o files 
–  make clean!
–  make!

3.  Instrument application 
–  pat_build ... a.out!
–  Result is a new file, a.out+pat!

4.  Run instrumented application to get top time consuming 
routines 

–  aprun ... a.out+pat!
–  Result is a new file XXXXX.xf (or a directory containing .xf files) 

5.  Run pat_report on that new file; view results 
–  pat_report  XXXXX.xf  > my_profile!
–  vi my_profile!
–  Result is also a new file: XXXXX.ap2 

17 



Guidelines for Optimization 

18 

* Suggested by Cray 

Derived metric Optimization needed when* PAT_RT_HWP
C 

Computational intensity < 0.5 ops/ref 0, 1 
L1 cache hit ratio < 90% 0, 1, 2 
L1 cache utilization (misses) < 1 avg hit 0, 1, 2 
L1+L2 cache hit ratio < 92% 2 
L1+L2 cache utilization 
(misses) < 1 avg hit 2 

TLB utilization < 0.9 avg use 1 
(FP Multiply / FP Ops) or 
(FP Add / FP Ops) < 25% 5 

Vectorization < 1.5 for dp; 3 for sp 12 (13, 14) 



Perf Debug and Production Tools 

•  Integrated Performance Monitoring 
•  MPI profiling, hardware counter 

metrics, POSIX IO profiling 
•  IPM requires no code modification & 

no instrumented binary 
–  Only a “module load ipm” before running 

your program on systems that support 
dynamic libraries 

–  Else link with the IPM library 
•  IPM uses hooks already in the MPI 

library to intercept your MPI calls and 
wrap them with timers and counters 

19 



IPM: Let’s See 

1) Do “module load ipm”, link with 
$IPM, then run normally 

2) Upon completion you get  
 
 
 
 
 

Maybe that’s enough. If so you’re done.  
Have a nice day   

##IPM2v0.xx################################################## 
# 
# command   : ./fish -n 10000            
# start     : Tue Feb 08 11:05:21 2011   host      : nid06027         
# stop      : Tue Feb 08 11:08:19 2011   wallclock : 177.71 
# mpi_tasks : 25 on 2 nodes              %comm     : 1.62 
# mem [GB]  : 0.24                       gflop/sec : 5.06 
… 
 



IPM : IPM_PROFILE=full 

21 

!
# host   : s05601/006035314C00_AIX        mpi_tasks : 32 on 2 nodes!
# start  : 11/30/04/14:35:34              wallclock : 29.975184 sec!
# stop   : 11/30/04/14:36:00              %comm     : 27.72!
# gbytes : 6.65863e-01 total              gflop/sec : 2.33478e+00 total!
#                         [total]         <avg>           min           max!
# wallclock                  953.272       29.7897       29.6092       29.9752!
# user                        837.25       26.1641         25.71         26.92!
# system                        60.6       1.89375          1.52          2.59!
# mpi                        264.267       8.25834       7.73025       8.70985!
# %comm                                    27.7234       25.8873       29.3705!
# gflop/sec                  2.33478     0.0729619      0.072204     0.0745817!
# gbytes                    0.665863     0.0208082     0.0195503     0.0237541!
# PM_FPU0_CMPL           2.28827e+10   7.15084e+08   7.07373e+08   7.30171e+08!
# PM_FPU1_CMPL           1.70657e+10   5.33304e+08   5.28487e+08   5.42882e+08!
# PM_FPU_FMA             3.00371e+10    9.3866e+08   9.27762e+08   9.62547e+08!
# PM_INST_CMPL           2.78819e+11   8.71309e+09   8.20981e+09   9.21761e+09!
# PM_LD_CMPL             1.25478e+11   3.92118e+09   3.74541e+09   4.11658e+09!
# PM_ST_CMPL             7.45961e+10   2.33113e+09   2.21164e+09   2.46327e+09!
# PM_TLB_MISS            2.45894e+08   7.68418e+06   6.98733e+06   2.05724e+07!
# PM_CYC                  3.0575e+11   9.55467e+09   9.36585e+09   9.62227e+09!
#                           [time]       [calls]        <%mpi>      <%wall>!
# MPI_Send                   188.386        639616         71.29        19.76!
# MPI_Wait                   69.5032        639616         26.30         7.29!
# MPI_Irecv                  6.34936        639616          2.40         0.67!
# MPI_Barrier              0.0177442            32          0.01         0.00!
# MPI_Reduce              0.00540609            32          0.00         0.00!
# MPI_Comm_rank           0.00465156            32          0.00         0.00!
# MPI_Comm_size          0.000145341            32          0.00         0.00!



22 

•  There is a tradeoff between vendor-
specific and vendor neutral tools 

–  Each have their roles, vendor tools can 
often dive deeper 

•  Portable approaches allow apples-to-
apples comparisons 

–  Events, counters, metrics may be 
incomparable across vendors 

•  You can find printf most places 
–  Put a few timers in your code? 

Advice: Develop (some) portable 
approaches to performance  

printf? really? 
 Yes really.  



Examples of HPC tool usage 
 

23 



Scaling: definitions 

•  Scaling studies involve changing the 
degree of parallelism. Will we be change 
the problem also? 

•  Strong scaling 
–  Fixed problem size 

•  Weak scaling 
–   Problem size grows with additional 

resources 
•  Speed up = Ts/Tp(n) 
•  Efficiency = Ts/(n*Tp(n)) 

Be aware there are 
multiple  
definitions for these 
terms 



Conducting a scaling study 

With a particular goal in mind, we systematically 
vary concurrency and/or problem size 

25 

Example: 
 

How large a  3D (n^3)  
FFT can I efficiently  
run on 1024 cpus? 

 
Looks good? 



Let’s look a little deeper…. 
 
 



The scalability landscape 

–  Algorithm 
complexity  or 
switching 

–  Communication 
protocol 
switching 

–  Inter-job 
contention 

–  ~bugs in vendor 
software 

 

!
 W

hoa! 

Why so bumpy? 

 



28 

Not always so tricky 

Main loop in jacobi_omp.f90; ngrid=6144 and maxiter=20  



Load Imbalance : Pitfall 101 

MPI ranks sorted by total communication time  

Communication Time: 64 tasks show 200s, 960 tasks show 230s 



Load Balance : cartoon 

 
 
 

 
 

 

 

Universal App    Unbalanced: 

Balanced: 

Time saved by load balance 



31 

Too much communication 



Simple Stuff: 
What’s wrong here? 



Not so simple: Comm. topology 

MILC 

PARATEC IMPACT-T CAM 

MAESTRO GTC 

33 



Performance in Batch Queue Space 

34 



Consider your 
schedule 

•  Charge factor 
•  regular vs. low 

•  Scavenger 
queues 

•  Xfer queues 
•  Downshift 

concurrency  

 

Consider the queue 
constraints 

•  Run limit  
•  Queue limit  
•  Wall limit  

•  Soft (can you 
checkpoint?)  

35 

A few notes on queue 
optimization 

Jobs can submit other jobs 



Marshalling your own workflow  

•  Lots of choices in general 
–  Hadoop, CondorG, MySGE 

•  On hopper it’s easy 

36 

#PBS -l mppwidth=4096 
aprun –n 512 ./cmd & 
aprun –n 512 ./cmd & 
… 
aprun –n 512 ./cmd & 
 
wait 
 

#PBS -l mppwidth=4096 
while(work_left) { 
 if(nodes_avail) { 
 aprun –n X next_job & 
 } 
wait 
} 
 



Contacts: 
help@nersc.gov 
deskinner@lbl.gov  
 
 37 

Thanks! 
 

Formulate 
Research 
Problem  

Coding 

Debug Perf 
Debug 

jobs jobs 
jobs jobs  

Queue 
Wait 

Data? 

UQ 
VV 

Understand 
& Publish! 


