# U.C. Berkeley CS267

## Applications of Parallel Computers

*Spring 2013*

## Tentative Syllabus

##
Abstract

This course teaches both graduate and advanced undergraduate students from diverse departments how use parallel computers both efficiently
and productively, i.e. how to write programs that run fast while minimizing
programming effort. The latter is increasingly important since essentially all computers are (becoming) parallel, from supercomputers to laptops.
So beyond teaching the basics about parallel computer architectures and programming languages, we emphasize commonly used patterns that appear in essentially all programs that need to run fast. These patterns include both common computations (eg linear algebra, graph algorithms, structured grids,..)
and ways to easily compose these into larger programs.
We show how to recognize these patterns in a variety of practical
problems, efficient (sometimes optimal) algorithms for implementing them,
how to find existing efficient implementations of these patterns when available,
and how to compose these patterns into larger applications.
We do this in the context of the most important parallel programming models today:
shared memory (eg PThreads and OpenMP on your multicore laptop),
distributed memory (eg MPI and UPC on a supercomputer), GPUs (eg CUDA and OpenCL, which could be both in your laptop and supercomputer), and cloud computing (eg MapReduce and Hadoop). We also present a variety of useful
tools for debugging correctness and performance of parallel programs.
Finally, we have a variety of guest lectures by a variety of experts,
including parallel climate modeling, astrophysics, and other topics.
##
High-Level Description

This syllabus may be modified during the semester,
depending on feedback from students and the availability
of guest lecturers. Topics that we have covered
before and intend to cover this time too are shown in standard font below,
and possible extra topics (some presented in previous classes, some new)
are in *italics*.

After this high level description, we give
the currently planned schedule of lectures
(**Updated Jan 21**)(subject to change).

##
Detailed Schedule of Lectures (**updated Jan 21**)(subject to change)
(lecturers shown in parentheses)

Jan 22 (Tuesday): Introduction: Why Parallel Computing?
(Jim Demmel)
Jan 24 (Thursday): Single processor machines: Memory hierarchies and processor features
(Jim Demmel)
Jan 29 (Tuesday): Introduction to parallel machines and programming models
(Jim Demmel)
Jan 31 (Thursday): Sources of parallelism and locality in simulation: Part 1
(Jim Demmel)
Feb 5 (Tuesday): Sources of parallelism and locality in simulation: Part 2; Tricks with Trees
(Jim Demmel)
Feb 7 (Thursday): Shared memory machines and programming: OpenMP and Threads
(Jim Demmel)
Feb 12 (Tuesday): Distributed memory machines and programming in MPI (Jim Demmel)
Feb 14 (Thursday): Programming in UPC (Kathy Yelick)
Feb 19 (Tuesday): Performance and Debugging Tools (NERSC staff?)
Feb 21 (Thursday): GPUs, and programming with with CUDA and OpenCL (Bryan Catanzaro)
Feb 26 (Tuesday): Dense Linear Algebra: Part 1 (Jim Demmel)
Feb 28 (Thursday): Dense Linear Algebra: Part 2 (Jim Demmel)
Mar 5 (Tuesday): Graph Partitioning: Part 1 (Jim Demmel)
Mar 7 (Thursday): Graph Partitioning: Part 2, and Sparse-Matrix-Vector-Multiply (Jim Demmel)
Mar 12 (Tuesday): Sparse-Matrix-Vector-Multiply and Autotuning (Jim Demmel)
Mar 14 (Thursday): Particle (N-Body) methods (Jim Demmel)
Mar 19 (Tuesday): TBD
Mar 21 (Thursday): TBD
Mar 25-29: Spring Break
Apr 2 (Tuesday): TBD
Apr 4 (Thursday): TBD
Apr 9 (Tuesday): TBD
Apr 11 (Thursday): TBD
Apr 16 (Tuesday): TBD
Apr 18 (Thursday): TBD
Apr 23 (Tuesday): TBD
Apr 25 (Thursday): TBD
Apr 30 (Tuesday): TBD
May 2 (Thursday): Software and Algorithms for Exascale Computing
(Kathy Yelick)
May 9 (Thursday): Student Poster Session