CS267
Lecture 2
Single Processor Machines:
Memory Hierarchies
and Processor Features

Case Study: Tuning Matrix Multiply

James Demmel
http://www.cs.berkeley.edu/~demmel/cs267_Spr15/

1

Rough List of Topics

« Basics of computer architecture, memory hierarchies, performance
« Parallel Programming Models and Machines

« Shared Memory and Multithreading

+ Distributed Memory and Message Passing

« Data parallelism, GPUs

« Cloud computing
« Parallel languages and libraries

« Shared memory threads and OpenMP

* MPI

« Other Languages , frameworks (UPC, CUDA, PETSC, “Pattern Language”, ...)
« “Seven Dwarfs” of Scientific Computing

« Dense & Sparse Linear Algebra

« Structured and Unstructured Grids

« Spectral methods (FFTs) and Particle Methods
* 6 additional motifs

+ Graph algorithms, Graphical models, Dynamic Programming, Branch & Bound, FSM, Logic
« General techniques

+ Autotuning, Load balancing, performance tools

« Applications: climate modeling, materials science, astrophysics ... (guest lecturers)

01/22/2015 CS267 - Lecture 2

Motivation

« Most applications run at < 10% of the “peak” performance
of a system
» Peak is the maximum the hardware can physically execute
» Much of this performance is lost on a single processor, i.e.,
the code running on one processor often runs at only
10-20% of the processor peak
» Most of the single processor performance loss is in the
memory system
» Moving data takes much longer than arithmetic and logic

» To understand this, we need to look under the hood of
modern processors
« For today, we will look at only a single “core” processor
» These issues will exist on processors within any parallel computer

01/22/2015 CS267 - Lecture 2 3

CS267 Lecture 2

Possible conclusions to draw from today’s lecture

« “Computer architectures are fascinating, and | really
want to understand why apparently simple programs can
behave in such complex ways!”

* “l want to learn how to design algorithms that run really
fast no matter how complicated the underlying computer
architecture.”

* “I hope that most of the time | can use fast software that
someone else has written and hidden all these details
from me so | don’t have to worry about them!”

« All of the above, at different points in time

01/22/2015 CS267 - Lecture 2 4

Outline

* |dealized and actual costs in modern processors
* Memory hierarchies

* Use of microbenchmarks to characterized performance
* Parallelism within single processors

+ Case study: Matrix Multiplication
*» Use of performance models to understand performance
« Attainable lower bounds on communication

01/22/2015 CS267 - Lecture 2 5

Outline

* |dealized and actual costs in modern processors

01/22/2015 CS267 - Lecture 2 6

Idealized Uniprocessor Model

« Processor names bytes, words, etc. in its address space
» These represent integers, floats, pointers, arrays, etc.
* Operations include
* Read and write into very fast memory called registers
 Arithmetic and other logical operations on registers
« Order specified by program
* Read returns the most recently written data
» Compiler and architecture translate high level expressions into
“obvious” lower level instructions

Read address(B) to R1

_ Read address(C) to R2
A=B+C= R3=Rr1+R2

Write R3 to Address(A)

» Hardware executes instructions in order specified by compiler
« Idealized Cost
» Each operation has roughly the same cost

(read, write, add, multiply, etc.)
01/22/2015 CS267 - Lecture 2 7

CS267 Lecture 2

Uniprocessors in the Real World

* Real processors have
« registers and caches
« small amounts of fast memory
« store values of recently used or nearby data
- different memory ops can have very different costs
* parallelism
» multiple “functional units” that can run in parallel
« different orders, instruction mixes have different costs
* pipelining
« aform of parallelism, like an assembly line in a factory
* Why is this your problem?
* In theory, compilers and hardware “understand” all this
and can optimize your program; in practice they don’t.
« They won’t know about a different algorithm that might
be a much better “match” to the processor
In theory there is no difference between theory and practice.

But in practice there is. - Yogi Berra
01/22/2015 CS267 - Lecture 2 8

Outline

* Memory hierarchies
» Temporal and spatial locality
« Basics of caches
» Use of microbenchmarks to characterized performance

01/22/2015 CS267 - Lecture 2 9

Memory Hierarchy

» Most programs have a high degree of locality in their accesses
« spatial locality: accessing things nearby previous accesses
« temporal locality: reusing an item that was previously accessed
* Memory hierarchy tries to exploit locality to improve average

processor
Second Main Secondary Tertiary
level memory| | Storage storage
cache (Disk)
: on-chip (SRAM) (DRAM) (Disk/Tape)
cache (“Cloud”)
Speed 1ns 10ns 100ns 10ms 10sec
Size KB MB GB B PB
011222015 CS267 - Lecture 2 10

Performance

Processor-DRAM Gap (latency)

« Memory hierarchies are getting deeper
» Processors get faster more quickly than memory

1000 Gy pProc
“ 60%/yr.
100 o 2 | Processor-Memory
Performance Gap:
10 | (grows 50% / year)
»— DRAM
R 7%l
1= — o
0000 VRNV PVOVOVOVANDADAIDDAIADNN OO
RRIRRASACRERIRRORRAEY
Time
01/22/2015 CS267 - Lecture 2 1

Approaches to Handling Memory Latency

« Eliminate memory operations by saving values in small, fast
memory (cache) and reusing them
« need temporal locality in program
» Take advantage of better bandwidth by getting a chunk of memory
and saving it in small fast memory (cache) and using whole chunk
« bandwidth improving faster than latency: 23% vs 7% per year
* need spatial locality in program
» Take advantage of better bandwidth by allowing processor to issue
multiple reads to the memory system at once
= concurrency in the instruction stream, e.g. load whole array, as in
vector processors; or prefetching
» Overlap computation & memory operations
« prefetching

01/22/2015 CS267 - Lecture 2 12

CS267 Lecture 2

Cache Basics

« Cache is fast (expensive) memory which keeps copy of data
in main memory; it is hidden from software
» Simplest example: data at memory address xxxxx1101 is
stored at cache location 1101
» Cache hit: in-cache memory access—cheap
» Cache miss: non-cached memory access—expensive
* Need to access next, slower level of cache
» Cache line length: # of bytes loaded together in one entry
« Ex: If either xxxxx1100 or xxxxx1101 is loaded, both are
« Associativity
« direct-mapped: only 1 address (line) in a given range in cache
» Data stored at address xxxxx1101 stored at cache location
1101, in 16 word cache
* n-way: n = 2 lines with different addresses can be stored
* Up to n < 16 words with addresses xxxxx1101 can be
stored at cache location 1101 (so cache can store 16n
words)

0112212015 CS267 - Lecture 2 13

Why Have Multiple Levels of Cache?

» On-chip vs. off-chip
* On-chip caches are faster, but limited in size
* A large cache has delays
« Hardware to check longer addresses in cache takes more time

« Associativity, which gives a more general set of data in cache,
also takes more time

» Some examples:

» Cray T3E eliminated one cache to speed up misses

- IBM uses a level of cache as a “victim cache” which is cheaper
* There are other levels of the memory hierarchy

* Register, pages (TLB, virtual memory), ...

« And it isn’t always a hierarchy

011222015 CS267 - Lecture 2 14

Experimental Study of Memory (Membench)

» Microbenchmark for memory system performance

(TTTTTTTITITITITITTIT
O O O B O O B I I 3
| || || || WP
| | P

s

. for array A of length L from 4KB to 8MB by 2x
for stride s from 4 Bytes (1 word) to L/2 by 2x
time the following loop
(repeat many times and average) 1 experiment
forifrom0toL-1bys
load A[i] from memory (4 Bytes)

01/22/2015 CS267 - Lecture 2 15

CS267 Lecture 2

Membench: What to Expect

(I ey e Coct Peracesss
NN NMED ™

| I B BN BN B

. . l]) size > L1

s = stride

» Consider the average cost per load
« Plot one line for each array length, time vs. stride
« Small stride is best: if cache line holds 4 words, at most ¥4 miss

« If array is smaller than a given cache, all those accesses will hit
(after the first run, which is negligible for large enough runs)

* Picture assumes only one level of cache

« Values have gotten more difficult to measure on modern procs
01/2212015 CS267 - Lecture 2 16

Memory Hierarchy on a Sun Ultra-2i

Sun Ultra-2i, 333 MHz

Array length
450
400 |
Mem: 396 ns
350 - - (132 cycles)
300 4
S oes0f 1
£
2
£ 200 |- 4
150 4
100
) L2:2 MB,
50 4 12cycles (36 ns)
ot ¥ ¥ ¥ T T T e e e s
4 1 4 256 1K 4K | 16K 64K 256K 1M 2M 4M 8M1eMazm L1
Strids (bytes) 16 KB
L1:16Bline L2: 64 byte line 2 cycles (6ns)
8 K pages,

See www.cs.berkeley.edu/~yelick/arvindk/t3d-isca95.ps for deta
01/22/2015

32 TLB entries

CS267 - Lecture 2

ils
17

Memory Hierarchy on a Power3 (Seaborg)
Power3, 375 MH}Z

Saavedra-Barrera Benchmark: Tims

to execute 1 Ioad [Power3] Array size
T W [pu—ryreY
X : — - 6KB
Mem: 396 ns — - 16KB
(132 cycles) 32KB
—— B4KB
128KE
g —— 256KB
i —&- 512K
. —— 1MB
8|~ 2mB
j +- 4MB
*- 8MB
f 16MB
Pl = 32MB
b w4l e B4MB
ES
o
L2: 8 MB
128 B line
9 cycles
L1: 32 KB
128B line 10° J
.5-2 cycles
88 328 1268 512B 2KB GKB 32fB 128KB 512KB 2MB oMB 32MB
Stride
01/22,

Time Per lteration(ns)

Memory Hierarchy on an Intel Core 2 Duo

T

Intel Core 2 Duo (Merom, 65nm, 2.
T T T

33 Ghz, 32KB L1-D, 4MB L2)
T

Iterations: 56710886:

4

Azt

\
! \
! \

2 . \

FEeEITIILO0

/

N2

P \
\ \

" L

el e Il el e
N

— A > — e —e— S — =
= —tm - e =T m e — —0— e — =

T T T

Auray Size (KB)
= 32768.0
16384.0]
w— 8192.0
w— 4096.0
w— 2048.0
— 1024.0
— 5120
m— 256.0
128.0
—64.0
w—32.0
w—16.0
— 8.0
— 4.0

t
\
\
\]
\
-
N

————— e — s
e e e e

e =TS N 1
e~

— 34— Yo e

ES 556 2 ey g,

Stride Size

L L L " L
Gy 25a¢, e gy o1, Sy

01/22/2015

CS267 Lecture 2

Stanza Triad

» Even smaller benchmark for prefetching
* Derived from STREAM Triad

« Stanza (L) is the length of a unit stride run
while i < arraylength
for each L element stanza
A[i] = scalar * X[i] + Y[i]
skip k elements

1) do L triads 2) skip k

3) do L triads
stanza elements

stanza

5267 - Lecture 2 Source: Kamil et al, MSP05

20

Stanza Triad Results

s STriad Bandwidth

e ® Hanum? STriad
Hanim2 STREAM
Opteron STriad
Optoran STREAM

A G5 STriad
G5 STREAM
® P3STriad

— P3STREAM

GBlsac

16 32 64 128 2;6 512 1" * 4‘\ a 16k
Stanza Length (words)
« This graph (x-axis) starts at a cache line size (>=16 Bytes)
« If cache locality was the only thing that mattered, we would expect
« Flat lines equal to measured memory peak bandwidth (STREAM) as on Pentium3
» Prefetching gets the next cache line (pipelining) while using the current one
« This does not “kick in” immediately, so performance depends on L

0112212015 CS267 - Lecture 2 21

Lessons

« Actual performance of a simple program can be a
complicated function of the architecture

« Slight changes in the architecture or program change the
performance significantly

» To write fast programs, need to consider architecture

« True on sequential or parallel processor

« We would like simple models to help us design efficient

algorithms

* We will illustrate with a common technique for improving
cache performance, called blocking or tiling

« Idea: used divide-and-conquer to define a problem that fits in
register/L1-cache/L2-cache

011222015 CS267 - Lecture 2 22

Outline

* Use of microbenchmarks to characterized performance
* Parallelism within single processors

* Hidden from software (sort of)

* Pipelining

* SIMD units

* Use of performance models to understand performance
* Attainable lower bounds on communication

01/22/2015 CS267 - Lecture 2 23

T0QAYQ xun o

What is Pipelining?
Dave Patterson’ s Laundry example: 4 people doing laundry
wash (30 min) + dry (40 min) + fold (20 min) = 90 min

PM 7 8 9

‘ Time

oo o —
40 40 20 30+4740+20 = 3.5 hours

40
=—lg « Bandwidth = loads/h
@ otk
7—74
Hl
y7—74

Latencg
|

* In this example:
» Sequential execution takes
‘ 4 * 90min = 6 hours
» Pipelined execution takes

« BW=4/3.5 I/h w pipelining

*« BW <=1.5I/h w pipelining,
more total loads

» Pipelining helps bandwidth
but not latency (90 min)

« Bandwidth limited by slowest
pipeline stage

« Potential speedup = Number
of pipe stages 24

01/22/2015 CS267 - Lecture 2

CS267 Lecture 2

Example: 5 Steps of MIPS Datapath

Figure 3.4, Page 134, CA:AQA 2e by Patterson and Hennessy

Instruction ;Insfr. Decode Execute Memory Write
Fetch { Reg. Fetch i Addr. Calc{ Access | Back

Next PC

Next SEQ PC Next SEQ PC

WB Data

- Pipelining is also used within arithmetic units
- a fp multiply may have latency 10 cycles, but throughput of 1/cycle

SIMD: Single Instruction, Multiple Data

+ Scalar processing » SIMD processing
« traditional mode « with SSE / SSE2
« one operation produces « SSE = streaming SIMD extensions
one result « one operation produces
multiple results

+

A
X+Y X+Y | x3+y3 f;c.)-:‘-yz XdZVAN x0+y0

Slide Source: Alex Klimovitski & Dean Macri, Intel Corporation

011222015 CS267 - Lecture 2 26

SSE / SSE2 SIMD on Intel
» SSE2 data types: anything that fits into 16 bytes, e.g.,

4x floats

2x doubles

16x bytes

* Instructions perform add, multiply etc. on all the data in
this 16-byte register in parallel
* Challenges:
» Need to be contiguous in memory and aligned

» Some instructions to move data around from one part of
register to another

« Similar on GPUs, vector processors (but many more simultaneous
operations)

01/22/2015 CS267 - Lecture 2 27

CS267 Lecture 2

What does this mean to you?
* In addition to SIMD extensions, the processor may have
other special instructions
« Fused Multiply-Add (FMA) instructions:
X=y+c*z
is so common some processor execute the multiply/add as a
single instruction, at the same rate (bandwidth) as + or * alone
* In theory, the compiler understands all of this
« When compiling, it will rearrange instructions to get a good
“schedule” that maximizes pipelining, uses FMAs and SIMD
« It works with the mix of instructions inside an inner loop or other
block of code
* But in practice the compiler may need your help
* Choose a different compiler, optimization flags, etc.
« Rearrange your code to make things more obvious
« Using special functions (“intrinsics”) or write in assembly &

01/2212015 CS267 - Lecture 2 28

Outline

» Use of microbenchmarks to characterized performance

* Case study: Matrix Multiplication
* Use of performance models to understand performance
* Attainable lower bounds on communication
» Simple cache model
» Warm-up: Matrix-vector multiplication
» Naive vs optimized Matrix-Matrix Multiply
* Minimizing data movement
+ Beating O(n%) operations

» Practical optimizations (continued next time)
0112212015 CS267 - Lecture 2 29

What do commercial and CSE applications have in common?
Motif/Dwarf: Common Computational Methods

(Red Hot — Blue Cool)
/2 W e G

'Health Image Speech Music Browser

? o 3
EE ok
w (O]

HPC

[11]
o

1 Finite State Mach.
2 Combinational
3 Graph Traversal

7 Spectral (FFT)

8 Dynamic Prog
9 N-Body

10 MapReduce

11 Backtrack/ B&B

12 Graphical Models

13 Unstructured Grid

01/22/2015 CS267 - Lecture 2

CS267 Lecture 2

Why Matrix Multiplication?

* An important kernel in many problems
« Appears in many linear algebra algorithms
< Bottleneck for dense linear algebra, including Top500
* One of the 7 dwarfs / 13 motifs of parallel computing

« Closely related to other algorithms, e.g., transitive closure on a
graph using Floyd-Warshall

» Optimization ideas can be used in other problems
*» The best case for optimization payoffs

» The most-studied algorithm in high performance computing

011222015 CS267 - Lecture 2 30

Matrix-multiply, optimized several ways

T

f
| \«\/ V\J\ R ™ y

NN Mt Muply U ia-11170]

Partormanca (Mikpie)

g

(] 100 200 00 %0 £ &0 700 0
N

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops

01/22/2015 CS267 - Lecture 2 32

Note on Matrix Storage

* A matrix is a 2-D array of elements, but memory
addresses are “1-D”
+ Conventions for matrix layout
* by column, or “column major” (Fortran default); A(i,j) at A+i+j*n

* by row, or “row major” (C default) A(i,j) at A+i*n+j
« recursive (later) Column major matrix in memory

Column major Row major ”Illllillllll
0] 5]|10(15 0l12]3 ||I ||I
LR
116 ([11]16 41567 II .III T
2|7 |12)17 8lol10]n /I”l“ Illl
3|8 [13]18] [12]13[14]15 |||| |||| |
4|9 |14]19] [16]17]18]19 “ ||| |||
/' Lt
. Blue row of matrix is
cachelines

« Column major (fOF now) stored in red cachelines

01/22/2015 CS267 - Lecture 2 Figure source: Larry Carter, UCSIB3

Note on Matrix Storage

* A matrix is a 2-D array of elements, but memory
addresses are “1-D”
» Conventions for matrix layout
« by column, or “column major” (Fortran default); A(i j) at A+i+j*n
* by row, or “row major” (C default) A \I‘A+| n
Colu

* recursive (later) . lx in memory

Column major Row major | | | |
0510]15 ol 273 |||| ||| |
116 [11]16 215167 l
2|7 (12|17 8| 9l10/(11
3|8 [13]18 12[13]14 |15 |
419 (14]19 16|17 18|19 I

B

cachelines : "
« Column major (fOI' now) stored jn red cachelines

01/2212015 CS267 - Lecture 2 Figure source: Larry Carter, UCSIB4

Using a Simple Model of Memory to Optimize

» Assume just 2 levels in the hierarchy, fast and slow
+ All data initially in slow memory
» m = number of memory elements (words) moved between fast and

slow memory -
. . Computational
» t,, = time per slow memory operation Intensity: Key to

» £ = number of arithmetic operations algorithm efficiency

+ t; = time per arithmetic operation <<t ——

* Minimum possible time = f* t; when all data in fast memory

* Actual time
e f¥ttm*t, =% % (1 +Ht,

Machine
Balance:
Key to
machine
efficiency

+ Larger ¢ means time closer to minimum f * t;
* g =t /t; needed to get at least half of peak speed

01/22/2015 CS267 - Lecture 2 35

CS267 Lecture 2

Warm up: Matrix-vector multiplication

{implements y =y + A*x}
fori=1:n
forj=1:n
y(i) = y(i) + A(i.j)*x()
= +
y(i) y(i)
01/22/2015 CS267 - Lecture 2 36

Warm up: Matrix-vector multiplication

{read x(1:n) into fast memory}
{read y(1:n) into fast memory}
fori=1:n
{read row i of A into fast memory}
forj=1:n
y(i) = y(i) + A(i.j)"x()
{write y(1:n) back to slow memory}

* m = number of slow memory refs = 3n + n?
«f = number of arithmetic operations = 2n?
eq =f/m=2

» Matrix-vector multiplication limited by slow memory speed

0112212015 CS267 - Lecture 2 37

Modeling Matrix-Vector Multiplication

» Compute time for nxn = 1000x1000 matrix

* Time
e fE g m*t, =% 6% (1 +t,/t * 1/q)
. =2%n2 %t % (1 + t,/t* 1/2)

« For t, and t,,, using data from R. Vuduc’ s PhD (pp 351-3)

* For t,, use minimum-memory-latency / words-per-cache-line

Clock Peak Mem Lat (Min,Max) Linesize |t_m/t_f

MHz Mflop/s cycles Bytes machine
Ultra 2i 333 667 38 66 16 24.8| polance
Ultra 3 900 1800 28 200 32 14.0| (g must
Pentium 3 500 500 25 60 32 6.3| pe at least
Pentium3\ 800 800 40 60 32 10.0 this for
Power3 375 1500 35 139 128 8.8| 1, peak
Power4 1300 5200 60 10000 128 15.0| speed)
Itanium1 800 3200 36 85 32 36.0
Itanium2 900 3600 11 60 64 5.5

011222015 CS267 - Lecture 2 38

Simplifying Assumptions

» What simplifying assumptions did we make in this
analysis?
* Ignored parallelism in processor between memory and
arithmetic within the processor
» Sometimes drop arithmetic term in this type of analysis
» Assumed fast memory was large enough to hold three vectors
+ Reasonable if we are talking about any level of cache
+ Not if we are talking about registers (~32 words)
» Assumed the cost of a fast memory access is 0
« Reasonable if we are talking about registers
* Not necessarily if we are talking about cache (1-2 cycles for L1)
* Memory latency is constant

+ Could simplify even further by ignoring memory
operations in X and Y vectors
» Mflop rate/element =2/ (2*t; +1t.)

01/22/2015 CS267 - Lecture 2 39

CS267 Lecture 2

Validating the Model

» How well does the model predict actual performance?

« Actual DGEMV: Most highly optimized code for the platform
* Model sufficient to compare across machines
« But under-predicting on most recent ones due to latency estimate

1400 m Predicted MFLOP
(ignoring x,y)

1200 mPre DGEMV Mflops

1000 (with x,y)
° m Actual DGEMV
g 800 (MFLOPS)
m
L 600

400

200

0 4
Ultra 2i Utra3 Pentium 3 Pentium3M Power3 ~ Power4 Itanium1 Itanium2
01/2212015 CS267 - Lecture 2 40

10

Naive Matrix Multiply

{implements C = C + A*B}

fori=1ton
forj=1ton
fork=1ton

C(ij) = C(i.j) + A(i.k) * B(k.j)

Algorithm has 2*n® = O(n%) Flops and
operates on 3*n2 words of memory

q potentially as large as 2*n3/ 3*n? = O(n)

C(i) C(i) Ali)
[}

0112212015 CS267 - Lecture 2 41

Naive Matrix Multiply

{implements C = C + A*B}
fori=1ton
{read row i of A into fast memory}
forj=1ton
{read C(i,j) into fast memory}

fork=1ton
C(i,j) = C(i,j) + A(i,k) * B(k,j)

{read column j of B into fast memory}

{write C(i,j) back to slow memory}

C(ij) C(ij)
5] 5]

Air)

B(-j)

01/22/2015 CS267 - Lecture 2

42

Naive Matrix Multiply

Number of slow memory references on unblocked matrix multiply
m=n3 to read each column of B n times
+n? toread each row of A once
+2n? to read and write each element of C once
=1’ + 3n2
Soq=f/m=2n3/(n®+3n?)
= 2 for large n, no improvement over matrix-vector multiply

Inner two loops are just matrix-vector multiply, of row i of A times B
Similar for any other order of 3 loops

C(i) C(ij) Ali)
| B

01/22/2015 CS267 - Lecture 2 43

Matrix-multiply, optimized several ways

N N Wt Mutp

Iy Uira-1/170]

I

TR

Al W

Partormanca (Mikpie)

.

3-nasiad keps (Sun o, ful

1)

(] 100 200 00 %0
N

£

&0

700 0

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops

01/22/2015 CS267 - Lecture 2

44

CS267 Lecture 2

11

Naive Matrix Multiply on RS/6000

12000 would take

1
6 - / 095 years

T=N47

Size 2000 took 5 days

log cycles/flop

log Problem Size

O(N3) performance would have constant cycles/flop

Performance looks like O(N#*.7)

01/22/2015 CS267 - Lecture 2 Slide source: Larry Carter, UCSD 45

Naive Matrix Multiply on RS/6000

Page miss every iteration

TLB miss every
iteration

N

Page miss every 512 iterations

2 4 Cache miss every \
16 iterations
N

log cycles/flop
w

0 T T T T 1
0 1 2 3 4 5
log Problem Size
01/22/2015 CS267 - Lecture 2 Slide source: Larry Carter, UCSD 46

Blocked (Tiled) Matrix Multiply

Consider A,B,C to be N-by-N matrices of b-by-b subblocks where
b=n/Nis called the block size
fori=1toN
forj=1toN

{read block C(i,j) into fast memory}

fork=1toN
{read block A(i,k) into fast memory}
{read block B(k,j) into fast memory}
C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}

{write block C(i,j) back to slow memory}

C(i) C(ij) AR
| _ B mo,
= + m Bk

01/22/2015 CS267 - Lecture 2 47

Blocked (Tiled) Matrix Multiply

Recall:
m is amount memory traffic between slow and fast memory

matrix has nxn elements, and NxN blocks each of size bxb

f is number of floating point operations, 2n3 for this problem

q =f/mis our measure of algorithm efficiency in the memory system

So:
m= N*n?> read each block of B N3 times (N® * b2 = N3 * (n/N)2=N*n?)

+ N*n? read each block of A N3 times

+2n2 read and write each block of C once

= (2N +2)*n?

So computational intensity g =f/m =2n3/ ((2N + 2) * n?)
~n/N=b forlarge n

So we can improve performance by increasing the blocksize b

Can be much faster than matrix-vector multiply (q=2)

01/22/2015 CS267 - Lecture 2 48

CS267 Lecture 2

12

Using Analysis to Understand Machines

The blocked algorithm has computational intensity g = b
+ The larger the block size, the more efficient our algorithm will be
« Limit: All three blocks from A,B,C must fit in fast memory (cache), so
we cannot make these blocks arbitrarily large
+ Assume your fast memory has size M.
302 <M, SO G=b s (Me/3)"?

+ To build a machine to run matrix required
multiply at 1/2 peak arithmetic speed tmitf KB

of the machine, we need a fast Ultra 2i 24.8 14.8
memory of size Ultra 3 14 4.7
2_392= 2 Pentium 3 6.25 0.9
 Miag = 307 = 30° = 3(t,/t) Pentium3M 10 24
* This size is regsonable for L1 cache, poper3 8.75 18
but not for register sets Powerd 15 5.4

+ Note: analysis assumes it is possible ftanium1 36 31.1
Itanium2 5.5 0.7

to schedule the instructions perfectly

0112212015 CS267 - Lecture 2 49

Limits to Optimizing Matrix Multiply

+ The blocked algorithm changes the order in which values are
accumulated into each Cfi,j] by applying commutativity and associativity
+ Get slightly different answers from naive code, because of roundoff - OK
 The previous analysis showed that the blocked algorithm has
computational intensity:
q=b = (My3)"

« There is a lower bound result that says we cannot do any better than this
(using only associativity, so still doing n® multiplications)

* Theorem (Hong & Kung, 1981): Any reorganization of this algorithm
(that uses only associativity) is limited to q = O((M;,s)"2)
+ #words moved between fast and slow memory = Q (n®/ (M,,,)"?)

011222015 CS267 - Lecture 2 50

Communication lower bounds for Matmul

* Hong/Kung theorem is a lower bound on amount of data
communicated by matmul
* Number of words moved between fast and slow memory (cache
and DRAM, or DRAM and disk, or ...) = Q (n®/ M, '/%)
* Cost of moving data may also depend on the number of
“messages” into which data is packed
» Eg: number of cache lines, disk accesses, ...
« #messages = Q (n3/ M,,.>?)
* Lower bounds extend to anything “similar enough” to
3 nested loops
* Rest of linear algebra (solving linear systems, least squares...)
» Dense and sparse matrices
» Sequential and parallel algorithms, ...
* More recent: extends to any nested loops accessing arrays

* Need (more) new al(%orithms to attain these lower boungds...
01/22/2015 267 - Lecture 2

Review of lecture 2 so far (and a look ahead)

« Applications
* How to decompose into well-understood algorithms
(and their implementations)
* Algorithms (matmul as example)

minimize accesses to slow memory

[
e » If lucky, theory describing “best algorithm”
5 « For O(n3) sequential matmul, must move Q(n3M?"2) words
« Software tools
* How do | implement my applications and algorithms
in most efficient and productive way?
* Hardware
« Even simple programs have complicated behaviors
« “Small” changes make execution time vary by orders
01/22/2015 of magnitude ©S267 - Lecture 2 52

* Need simple model of hardware to guide design, analysis:

CS267 Lecture 2

13

Basic Linear Algebra Subroutines (BLAS)

« Industry standard interface (evolving)
« www.netlib.org/blas, www.netlib.org/blas/blast--forum
* Vendors, others supply optimized implementations
« History
* BLAS1 (1970s):
« vector operations: dot product, saxpy (y=a*x+y), etc
* m=2*n, f=2*n, q = f/m = computational intensity ~1 or less
* BLAS2 (mid 1980s)
matrix-vector operations: matrix vector multiply, etc
m=n”2, f=2*n*2, q~2, less overhead
+ somewhat faster than BLAS1
+ BLAS3 (late 1980s)
matrix-matrix operations: matrix matrix multiply, etc
m <= 3n*2, f=0(n*3), so q=f/m can possibly be as large as n, so BLAS3 is
potentially much faster than BLAS2
* Good algorithms use BLAS3 when possible (LAPACK & ScaLAPACK)
* See www.netlib.org/{lapack,scalapack}
* More later in course

0112212015 CS267 - Lecture 2 53

BLAS speeds on an IBM RS6000/590

Peak speed = 266 Mflops

RS2: Level 1,2 and 3 BLAS

""""""""""""""""""""""""""" Peak
2501 BLAS 3

Speed in Megaflops
@ 3
3 s

o
8

F BLAS 2
BLAS 1

501

Iz

o 100 200 300 400 500 600
Order of vectorsimatrices

BLAS 3 (n-by-n matrix matrix multiply) vs
BLAS 2 (n-by-n matrix vector multiply) vs
BLAS 1 (saxpy of n vectors)

011222015 CS267 - Lecture 2 54

Dense Linear Algebra: BLAS2 vs. BLAS3

* BLAS2 and BLASS3 have very different computational
intensity, and therefore different performance

BLAS3 (MatrixMatrix) vs. BLAS2 (MatrixVector)

MFlop/s
o
o
o

01/22/2015 CS267 - Lecture 2 55

What if there are more than 2 levels of memory?

* Need to minimize communication between all levels
» Between L1 and L2 cache, cache and DRAM, DRAM and disk...
* The tiled algorithm requires finding a good block size
* Machine dependent
* Need to “block” b x b matrix multiply in inner most loop
« 1level of memory => 3 nested loops (naive algorithm)
* 2 levels of memory = 6 nested loops
+ 3 levels of memory = 9 nested loops ...

 Cache Oblivious Algorithms offer an alternative
« Treat nxn matrix multiply as a set of smaller problems
» Eventually, these will fit in cache
+ Will minimize # words moved between every level of memory
hierarchy — at least asymptotically
* “Oblivious” to number and sizes of levels

01/22/2015 CS267 - Lecture 2 56

CS267 Lecture 2

14

Recursive Matrix Multiplication (RMM) (1/2)

*C=|CyCyi=A"B =|An Ay By By
C, C Ay Ay (B, B,

21 V2

:[A11'B11 +A;p'Byy AyBppt A1z'Bzz}
A2'Bit Ap'Byy Ay'Biat ApBy,

* True when each Ajetc 1x1 or n/2 x n/2
» For simplicity: square matrices with n = 2m
 Extends to general rectangular case

func C =RMM (A, B, n)
ifn=1,C=A*B, else
{ C44=RMM (A, , B4;, n/2) + RMM (A,, , B,;, n/2)
C,,=RMM (A, , B;,, n/2) + RMM (A, , B,,, n/2)
C,,=RMM (A, , B4;, n/2) + RMM (A,, , B,,, n/2)
C,,=RMM (A, , B;,, n/2) + RMM (A,, , B,,, n/2) }
return

0112212015 CS267 - Lecture 2 57

Recursive Matrix Multiplication (2/2)

func C =RMM (A, B, n)
ifn=1,C=A*B, else
{ C4=RMM (A, , By, n/2) + RMM (A,,, B,;, n/2)
C;,=RMM (A, , B;,, n/2) + RMM (A, , B,,, n/2)
C,,=RMM (A, , By, n/2) + RMM (A,, , B,,, n/2)
C;,=RMM (A, , By,, n/2) + RMM (A5, , B,,, n/2) }
return

A(n) = # arithmetic operations in RMM(., ., n)
=8-A(n/2) + 4(n/2)2 if n>1, else1
=2n3 ... same operations as usual, in different order

W(n) = # words moved between fast, slow memory by RMM(., ., n)
=8 - W(n/2) + 4- 3(n/2)2 if 3n2> M, , else 3n?
=0(n3/ (Mg)2 +n2) ... same as blocked matmul

Don’'t need to know Mg, for this to work!

011222015 CS267 - Lecture 2 58

Recursion: Cache Oblivious Algorithms

* The tiled algorithm requires finding a good block size
» Cache Oblivious Algorithms offer an alternative
* Treat nxn matrix multiply set of smaller problems
» Eventually, these will fit in cache
* Cases for A (nxm) * B (mxp)
« Case1: m>= max{n,p}: split A horizontally:
+ Case 2 : n>= max{m,p}: split A vertically and B horizontally
» Case 3: p>= max{m,n}: split B vertically

B
Ay, (A (.4 |- 4 .5)
= 2
4 4B Case 2
Case 1 [4(8,8,)= (4 B,48B,)
* Attains lower bound in O() sense Case 3
01/22/2015 CS267 - Lecture 2 59

Experience with Cache-Oblivious Algorithms

In practice, need to cut off recursion well before 1x1 blocks
« Call “micro-kernel” on small blocks
Implementing a high-performance Cache-Oblivious code is
not easy
» Careful attention to micro-kernel is needed
Using fully recursive approach with highly optimized recursive
micro-kernel, Pingali et al report that they never got more than
2/3 of peak. (unpublished, presented at LACSI'06)
Issues with Cache Oblivious (recursive) approach
» Recursive Micro-Kernels yield less performance than iterative ones
using same scheduling techniques
» Pre-fetching is needed to compete with best code: not well-understood
in the context of Cache-Oblivious codes
More recent work on CARMA (UCB) uses recursion for
parallelism, but aware of available memory, very fast (later)

01/22/2015 CS267 - Lecture 2

CS267 Lecture 2

15

Recursive Data Layouts

« Arelated idea is to use a recursive structure for the matrix
* Improve locality with machine-independent data structure
» Can minimize latency with multiple levels of memory hierarchy
« There are several possible recursive decompositions depending on
the order of the sub-blocks
« This figure shows Z-Morton Ordering (“space filling curve”)
» See papers on “cache oblivious algorithms” and “recursive
layouts”
» Gustavson, Kagstrom, et al, SIAM Review, 2004

Advantages:

« the recursive layout works well
for any cache size

Disadvantages:

« The index calculations to find

| Ali,j] are expensive

« Implementations switch to

column-major for small sizes
0112212015 5267 - LeBilire 2

Strassen’ s Matrix Multiply

« The traditional algorithm (with or without tiling) has O(n3) flops

« Strassen discovered an algorithm with asymptotically lower flops

. o(n28")

« Consider a 2x2 matrix multiply, normally takes 8 multiplies, 4 adds
« Strassen does it with 7 multiplies and 18 adds

LetM =[m11 m12}=(a11 a12|(b11 b12
m21m22) (a21a22)(b21b22
Let p1 = (a12 - a22) * (b21 + b22)

p2 = (all +a22) * (b11 + b22)
p3=(atl-a21)* (b11+b12)

p5=all* (b12-b22)
p6 =222 * (b21 - b11)
p7 = (a21 +a22) * b1

p4 = (a1l +a12) * b22
Then m11=p1 +p2-p4 + p6
m12 = pd + p5 Extends to nxn by divide&conquer
m21 =p6 + p7
m22 =p2-p3+p5-p7

011222015 CS267 - Lecture 2 62

Strassen (continued)
T(n)

Cost of multiplying nxn matrices
7*T(n/2) + 18*(n/2)2
O(n log27)
O(n 2.81)
+ Asymptotically faster
+ Several times faster for large n in practice
+ Cross-over depends on machine
« “Tuning Strassen's Matrix Multiplication for Memory Efficiency”,

M. S. Thottethodi, S. Chatterjee, and A. Lebeck, in Proceedings
of Supercomputing '98

« Possible to extend communication lower bound to Strassen
« #words moved between fast and slow memory
= Q(n'o927 [M(og2 7)2=1) ~ ()(n281/ M04)
(Ballard, D., Holtz, Schwartz, 2011, SPAA Best Paper Prize)
« Attainable too, more on parallel version later
01/22/2015 CS267 - Lecture 2 63

CS267 Lecture 2

Other Fast Matrix Multiplication Algorithms
+ World’s record was O(n 237548...)
+ Coppersmith & Winograd, 1987

* New Record! 2.37548 reduced to 2.37293
+ Virginia Vassilevska Williams, UC Berkeley & Stanford, 2011

» Newer Record! 2.37293 reduced to 2.37286
+ Francois Le Gall, 2014

« Lower bound on #words moved can be extended to (some)
of these algorithms
« Possibility of O(n?+) algorithm!
» Cohn, Umans, Kleinberg, 2003
+ Can show they all can be made numerically stable
+ D., Dumitriu, Holtz, Kleinberg, 2007
« Can do rest of linear algebra (solve Ax=b, Ax=Ax, etc) as
fast , and numerically stably
+ D., Dumitriu, Holtz, 2008
 Fast methods (besides Strassen) may need unrealistically
large n

01/22/2015 CS267 - Lecture 2 64

16

Tuning Code in Practice

* Tuning code can be tedious
* Lots of code variations to try besides blocking
» Machine hardware performance hard to predict
» Compiler behavior hard to predict
- Response: “Autotuning”
* Let computer generate large set of possible code variations,
and search them for the fastest ones
» Used with CS267 homework assignment in mid 1990s
* PHIPAC, leading to ATLAS, incorporated in Matlab
» We still use the same assignment
» We (and others) are extending autotuning to other dwarfs /
motifs
« Still need to understand how to do it by hand
* Not every code will have an autotuner
* Need to know if you want to build autotuners

0112212015 CS267 - Lecture 2 65

Search Over Block Sizes

» Performance models are useful for high level algorithms
« Helps in developing a blocked algorithm
* Models have not proven very useful for block size selection
« too complicated to be useful
— See work by Sid Chatterjee for detailed model
* too simple to be accurate
— Multiple multidimensional arrays, virtual memory, etc.
+ Speed depends on matrix dimensions, details of code, compiler,
processor

011222015 CS267 - Lecture 2 66

What the Search Space Looks Like

Number of columns in register block

2 4 6 8 10 12 14 16
Mo Number of rows in register block

A 2-D slice of a 3-D register-tile search space. The dark blue region was pruned.
(Platform: Sun Ultra-1li, 333 MHz, 667 Mflop/s peak, Sun cc v5.0 compiler)

01/22/2015 CS267 - Lecture 2 67

MFLOPS

ATLAS (pcEmM n = 500)

Source: Jack Dongarra

900.0

m Vendor BLAS
800.0 mATLAS BLAS

mF77 BLAS

700.0

600.0

500.0

Architectures

* ATLAS is faster than all other portable BLAS implementations and it is
comparable with machine-specific libraries provided by the vendor.

01/22/2015 CS267 - Lecture 2 68

CS267 Lecture 2

17

Optimizing in Practice

* Tiling for registers
« loop unrolling, use of named “register” variables
» Tiling for multiple levels of cache and TLB
* Exploiting fine-grained parallelism in processor
* superscalar; pipelining
» Complicated compiler interactions (flags)
« Hard to do by hand (but you’ Il try)
 Automatic optimization an active research area
* ASPIRE: aspire.eecs.berkeley.edu
* BeBOP: bebop.cs.berkeley.edu
* Weekly group meeting Mondays 1pm
* PHIPAC: www.icsi.berkeley.edu/~bilmes/phipac
in particular tr-98-035.ps.gz
e ATLAS: www.netlib.org/atlas

0112212015 CS267 - Lecture 2 69

Removing False Dependencies

« Using local variables, reorder operations to remove false
dependencies

a[i] = b[i] + c; false read-after-write hazard
a[i+l] = b[i+l] * d; between a[i] and b[i+1]

!

float f1
float £2

b[i];
b[i+l];

a[i] = f1 + c;
a[i+l] = £2 * d;

With some compilers, you can declare a and b unaliased.

+ Done via “restrict pointers,” compiler flag, or pragma

011222015 CS267 - Lecture 2 70

Exploit Multiple Reqgisters

* Reduce demands on memory bandwidth by pre-loading
into local variables
while(..) {
*res++ = filter[0]*signal[0]
+ filter[l]*signal[l]
+ filter[2]*signal[2];

signal++;
’ |
float £0 = filter[O0]; also: register float f0 = ..;
float f1 = filter[1];
float £f2 = filter[2];
while(..) {
*res++ = f0*signall[0] Example is a convolution

+ fl*signal[l]
+ f2*signal[2];
signal++;

01/22/2015 CS267 - Lecture 2 7

Loop Unrolling

» Expose instruction-level parallelism

filter[2];

float £0 = filter[0], £f1 = filter[l], f2
= = signal[2];

float s0 = signal[0], sl = signal[l], s2
*res++ = £0*s0 + fl*sl + £f2*s2;
do {

signal += 3;

s0 = signal[0];

res[0] = £f0*sl + fl*s2 + £2*s0;

sl = signal[l];
res[l] = £0*s2 + fl*s0 + f2*sl;

s2 = signall[2];
res[2] = £0*s0 + fl*sl + f2*s2;

res += 3;
} while(..);

01/22/2015 CS267 - Lecture 2 72

CS267 Lecture 2

18

Expose Independent Operations

* Hide instruction latency

* Use local variables to expose independent operations that can
execute in parallel or in a pipelined fashion
+ Balance the instruction mix (what functional units are

available?)
fl1 = £5 * £9;
f2 = f6 + £10;
£3 = £7 * £11;
f4 = £8 + £12;
0112212015 CS267 - Lecture 2 73

Copy optimization

» Copy input operands or blocks
» Reduce cache conflicts
« Constant array offsets for fixed size blocks
« Expose page-level locality

« Alternative: use different data structures from start (if users willing)

* Recall recursive data layouts

Original matrix Reorganized into
(numbers are addresses) 2x2 blocks
0|4]8]12 0|2]|8]10
l 11519113 1139 (N1
2|6 (1014 416 (1213
3|7 |11]15 5|7 |14]15
011222015 CS267 - Lecture 2 74

Locality in Other Algorithms

 The performance of any algorithm is limited by q
* q = “computational intensity” = #arithmetic_ops / #words_moved
* In matrix multiply, we increase q by changing
computation order
* increased temporal locality

* For other algorithms and data structures, even hand-
transformations are still an open problem
* Lots of open problems, class projects

01/22/2015 CS267 - Lecture 2 75

CS267 Lecture 2

Summary of Lecture 2

* Details of machine are important for performance
« Processor and memory system (not just parallelism)

+ Before you parallelize, make sure you're getting good serial
performance

« What to expect? Use understanding of hardware limits
* There is parallelism hidden within processors
« Pipelining, SIMD, etc
» Machines have memory hierarchies
« 100s of cycles to read from DRAM (main memory)
« Caches are fast (small) memory that optimize average case
* Locality is at least as important as computation
* Temporal: re-use of data recently used
« Spatial: using data nearby to recently used data
» Can rearrange code/data to improve locality

« Goal: minimize communication = data movement
01/2212015 CS267 - Lecture 2 76

19

Class Logistics

* Homework 0 posted on web site
* Find and describe interesting application of parallelism
* Due Friday Jan 30
» Could even be your intended class project
* Please fill in on-line class survey
» We need this to assign teams for Homework 1
* Please fill out on-line request for Stampede account
* Needed for GPU part of assignment 2

77

Some reading for today (see website)

» Sourcebook Chapter 3, (note that chapters 2 and 3 cover the
material of lecture 2 and lecture 3, but not in the same order).
o " by

Stefan Goedecker and Adolfy Hoisie, SIAM 2001.
» Web pages for reference:

. (Basic Linear Algebra Subroutines), Reference for (unoptimized)
implementations of the BLAS, with documentation.
. (Linear Algebra PACKage), a standard linear algebra library

optimized to use the BLAS effectively on uniprocessors and shared
memory machines (software, documentation and reports)
. (Scalable LAPACK), a parallel version of LAPACK for
distributed memory machines (software, documentation and reports)
* Tuning Strassen's Matrix Multiplication for Memory Efficiency
Mithuna S. Thottethodi, Siddhartha Chatterjee, and Alvin R. Lebeck
in Proceedings of Supercomputing '98, November 1998
« Recursive Array Layouts and Fast Parallel Matrix Multiplication” by
Chatterjee et al. IEEE TPDS November 2002.
» Many related papers at bebop.cs.berkeley.edu
01/2212015 CS267 - Lecture 2 78

0112212015 CS267 - Lecture 2
Extra Slides
01/22/2015 CS267 - Lecture 2 79

CS267 Lecture 2

20

