
CS267 Lecture 2 1

01/28/2011!

CS267 Lecture 3! 1!

CS 267:  
Introduction to Parallel Machines

and Programming Models  
Lecture 3  

"
James Demmel

www.cs.berkeley.edu/~demmel/cs267_Spr15/!
!
!

01/27/2015 CS267 Lecture 3! 2!

Outline
• Overview of parallel machines (~hardware) and

programming models (~software)
• Shared memory
• Shared address space
• Message passing
• Data parallel
• Clusters of SMPs or GPUs
• Grid

• Note: Parallel machine may or may not be tightly
coupled to programming model

• Historically, tight coupling
• Today, portability is important

01/27/2015 CS267 Lecture 3! 3!

A generic parallel architecture

Proc

Interconnection Network

• Where is the memory physically located?
•  Is it connected directly to processors?
• What is the connectivity of the network?

Memory

Proc Proc Proc
Proc Proc

Memory Memory Memory Memory

01/27/2015 CS267 Lecture 3! 4!

Parallel Programming Models
• Programming model is made up of the languages and

libraries that create an abstract view of the machine
• Control

•  How is parallelism created?
•  What orderings exist between operations?

• Data
•  What data is private vs. shared?
•  How is logically shared data accessed or communicated?

• Synchronization
•  What operations can be used to coordinate parallelism?
•  What are the atomic (indivisible) operations?

• Cost
•  How do we account for the cost of each of the above?

CS267 Lecture 2 2

01/27/2015 CS267 Lecture 3! 5!

Simple Example
• Consider applying a function f to the elements

of an array A and then computing its sum:

• Questions:
• Where does A live? All in single memory?

Partitioned?
• What work will be done by each processors?
• They need to coordinate to get a single result, how?

∑
−

=

1

0
])[(

n

i
iAf

A:

fA:
f

sum

A = array of all data
fA = f(A)
s = sum(fA)

s:

01/27/2015 CS267 Lecture 3! 6!

Programming Model 1: Shared Memory
•  Program is a collection of threads of control.

•  Can be created dynamically, mid-execution, in some languages
•  Each thread has a set of private variables, e.g., local stack variables
•  Also a set of shared variables, e.g., static variables, shared common

blocks, or global heap.
•  Threads communicate implicitly by writing and reading shared

variables.
•  Threads coordinate by synchronizing on shared variables

Pn P1 P0

s s = ...
y = ..s ...

Shared memory

i: 2 i: 5 Private
memory

i: 8

01/27/2015 CS267 Lecture 3! 7!

Simple Example
• Shared memory strategy:

•  small number p << n=size(A) processors
•  attached to single memory

• Parallel Decomposition:
•  Each evaluation and each partial sum is a task.

• Assign n/p numbers to each of p procs
•  Each computes independent “private” results and partial sum.
•  Collect the p partial sums and compute a global sum.

Two Classes of Data:
•  Logically Shared

•  The original n numbers, the global sum.
•  Logically Private

•  The individual function evaluations.
•  What about the individual partial sums?

∑
−

=

1

0
])[(

n

i
iAf

01/27/2015 CS267 Lecture 3! 8!

Shared Memory “Code” for Computing a Sum

Thread 1

 for i = 0, n/2-1
 s = s + f(A[i])

Thread 2

 for i = n/2, n-1
 s = s + f(A[i])

static int s = 0;

• What is the problem with this program?

• A race condition or data race occurs when:
- Two processors (or two threads) access the same

variable, and at least one does a write.
- The accesses are concurrent (not synchronized) so

they could happen simultaneously

fork(sum,a[0:n/2-1]);
sum(a[n/2,n-1]);

CS267 Lecture 2 3

01/27/2015 CS267 Lecture 3! 9!

Shared Memory “Code” for Computing a Sum

Thread 1
 ….
 compute f([A[i]) and put in reg0
 reg1 = s
 reg1 = reg1 + reg0
 s = reg1
 …

Thread 2
 …
 compute f([A[i]) and put in reg0
 reg1 = s
 reg1 = reg1 + reg0
 s = reg1
 …

static int s = 0;

• Assume A = [3,5], f(x) = x2, and s=0 initially
• For this program to work, s should be 32 + 52 = 34 at the end

•  but it may be 34,9, or 25
• The atomic operations are reads and writes

•  Never see ½ of one number, but += operation is not atomic
•  All computations happen in (private) registers

9 25
0 0
9 25

25 9

3 5 A= f (x) = x2

01/27/2015 CS267 Lecture 3! 10!

Improved Code for Computing a Sum

Thread 1

 local_s1= 0
 for i = 0, n/2-1
 local_s1 = local_s1 + f(A[i])

 s = s + local_s1

Thread 2

 local_s2 = 0
 for i = n/2, n-1
 local_s2= local_s2 + f(A[i])

 s = s +local_s2

static int s = 0;

• Since addition is associative, it’s OK to rearrange order
• Most computation is on private variables

-  Sharing frequency is also reduced, which might improve speed
-  But there is still a race condition on the update of shared s
-  The race condition can be fixed by adding locks (only one

thread can hold a lock at a time; others wait for it)

static lock lk;

lock(lk);

unlock(lk);

lock(lk);

unlock(lk);

Why not do lock
Inside loop?

01/27/2015

Review so far and plan for Lecture 3
Programming Models Machine Models

CS267 Lecture 3! 11!

1.  Shared Memory 1a. Shared Memory
1b. Multithreaded Procs.
1c. Distributed Shared Mem.

2.  Message Passing

2a. Global Address Space

2a. Distributed Memory
2b. Internet & Grid Computing
2c. Global Address Space

3. Data Parallel 3a. SIMD
3b. Vector

4. Hybrid 4. Hybrid

What about GPU? What about Cloud?

01/27/2015 CS267 Lecture 3! 12!

Machine Model 1a: Shared Memory

P1

bus

$

memory

•  Processors all connected to a large shared memory.
•  Typically called Symmetric Multiprocessors (SMPs)
•  SGI, Sun, HP, Intel, IBM SMPs
•  Multicore chips, except that all caches are shared

•  Advantage: uniform memory access (UMA)
•  Cost: much cheaper to access data in cache than main memory
•  Difficulty scaling to large numbers of processors

•  <= 32 processors typical
 P2

$

Pn

$

Note: $ = cache
shared $

CS267 Lecture 2 4

01/27/2015 CS267 Lecture 3! 13!

Problems Scaling Shared Memory Hardware
• Why not put more processors on (with larger memory?)

•  The memory bus becomes a bottleneck
•  Caches need to be kept coherent

• Example from a Parallel Spectral Transform Shallow
Water Model (PSTSWM) demonstrates the problem

•  Experimental results (and slide) from Pat Worley at ORNL
•  This is an important kernel in atmospheric models

•  99% of the floating point operations are multiplies or adds,
which generally run well on all processors

•  But it does sweeps through memory with little reuse of
operands, so uses bus and shared memory frequently

•  These experiments show performance per processor, with
one “copy” of the code running independently on varying
numbers of procs

•  The best case for shared memory: no sharing
•  But the data doesn’t all fit in the registers/cache

01/27/2015 CS267 Lecture 3! 14!From Pat Worley, ORNL"

Example: Problem in Scaling Shared Memory

•  Performance degradation
is a “smooth” function of
the number of processes.

•  No shared data between
them, so there should be
perfect parallelism.

•  (Code was run for a 18
vertical levels with a
range of horizontal
sizes.)

01/27/2015 CS267 Lecture 3! 15!

Machine Model 1b: Multithreaded Processor
• Multiple thread “contexts” without full processors
• Memory and some other state is shared
• Sun Niagra processor (for servers)

•  Up to 64 threads all running simultaneously (8 threads x 8 cores)
•  In addition to sharing memory, they share floating point units
•  Why? Switch between threads for long-latency memory operations

• Cray MTA and Eldorado processors (for HPC)

Memory

shared $, shared floating point units, etc.

T0 T1 Tn

01/27/2015 CS267 Lecture 3! 16!

Eldorado Processor (logical view)

Source: John Feo, Cray

i = n

i = 3

i = 2

i = 1

. . .

 1 2 3 4

Sub-
problem

A

i = n

i = 1

i = 0

. . .
Su b-

problem
B

Subproblem A

Serial
Code

Programs
running in
para lle l

Concurrent
threads of
computation

Multithreaded
across
multip le
processors

.

CS267 Lecture 2 5

01/27/2015 CS267 Lecture 3! 17!

Machine Model 1c: Distributed Shared Memory
• Memory is logically shared, but physically distributed

• Any processor can access any address in memory
• Cache lines (or pages) are passed around machine

• SGI is canonical example (+ research machines)
• Scales to 512 (SGI Altix (Columbia) at NASA/Ames)
• Limitation is cache coherency protocols – how to

keep cached copies of the same address consistent

P1

network

$

memory

P2

$

Pn

$

memory memory

Cache lines (pages)
must be large to
amortize overhead
 !
 locality still critical
to performance

01/27/2015

Review so far and plan for Lecture 3
Programming Models Machine Models

CS267 Lecture 3! 18!

1.  Shared Memory 1a. Shared Memory
1b. Multithreaded Procs.
1c. Distributed Shared Mem.

2.  Message Passing

2a. Global Address Space

2a. Distributed Memory
2b. Internet & Grid Computing
2c. Global Address Space

3. Data Parallel 3a. SIMD
3b. Vector

4. Hybrid 4. Hybrid

What about GPU? What about Cloud?

01/27/2015

Review so far and plan for Lecture 3
Programming Models Machine Models

CS267 Lecture 3! 19!

1.  Shared Memory 1a. Shared Memory
1b. Multithreaded Procs.
1c. Distributed Shared Mem.

2.  Message Passing

2a. Global Address Space

2a. Distributed Memory
2b. Internet & Grid Computing
2c. Global Address Space

3. Data Parallel 3a. SIMD
3b. Vector

4. Hybrid 4. Hybrid

What about GPU? What about Cloud?

01/27/2015 CS267 Lecture 3! 20!

Programming Model 2: Message Passing
• Program consists of a collection of named processes.

•  Usually fixed at program startup time
•  Thread of control plus local address space -- NO shared data.
•  Logically shared data is partitioned over local processes.

• Processes communicate by explicit send/receive pairs
•  Coordination is implicit in every communication event.
•  MPI (Message Passing Interface) is the most commonly used SW

Pn P1 P0

y = ..s ...

s: 12

i: 2

Private
memory

s: 14

i: 3

s: 11

i: 1

send P1,s

Network

receive Pn,s

CS267 Lecture 2 6

01/27/2015 CS267 Lecture 3! 21!

Computing s = f(A[1])+f(A[2]) on each processor
°  First possible solution – what could go wrong?

Processor 1
 xlocal = f(A[1])
 send xlocal, proc2
 receive xremote, proc2
 s = xlocal + xremote

Processor 2
 xlocal = f(A[2])
 receive xremote, proc1
 send xlocal, proc1
 s = xlocal + xremote

°  Second possible solution

Processor 1
 xlocal = f(A[1])
 send xlocal, proc2
 receive xremote, proc2
 s = xlocal + xremote

Processor 2
 xlocal = f(A[2])
 send xlocal, proc1
 receive xremote, proc1
 s = xlocal + xremote

°  If send/receive acts like the telephone system? The post office?

°  What if there are more than 2 processors?
01/27/2015 CS267 Lecture 3! 22!

MPI has become the de facto standard for parallel
computing using message passing
Pros and Cons of standards

•  MPI created finally a standard for applications
development in the HPC community → portability

•  The MPI standard is a least common denominator
building on mid-80s technology, so may discourage
innovation

Programming Model reflects hardware!

“I am not sure how I will program a Petaflops computer,
but I am sure that I will need MPI somewhere” – HDS 2001

MPI – the de facto standard

01/27/2015 CS267 Lecture 3! 23!

Machine Model 2a: Distributed Memory
• Cray XE6 (Hopper), Cray XC30 (Edison)
• PC Clusters (Berkeley NOW, Beowulf)
• Edison, Hopper, most of the Top500, are distributed

memory machines, but the nodes are SMPs.
• Each processor has its own memory and cache but

cannot directly access another processor’s memory.
• Each “node” has a Network Interface (NI) for all

communication and synchronization.

interconnect

P0

memory

NI

. . .

P1

memory

NI Pn

memory

NI

01/27/2015 CS267 Lecture 3! 24!

PC Clusters: Contributions of Beowulf
•  An experiment in parallel computing systems (1994)
•  Established vision of low cost, high end computing

•  Cost effective because it uses off-the-shelf parts

•  Demonstrated effectiveness of PC clusters for
some (not all) classes of applications

•  Provided networking software
•  Conveyed findings to broad community (great PR)
•  Tutorials and book
•  Design standard to rally
 community!

•  Standards beget:
 books, trained people,
 software … virtuous cycle

Adapted from Gordon Bell, presentation at Salishan 2000

CS267 Lecture 2 7

01/27/2015 CS267 Lecture 3! 25!

Tflop/s and Pflop/s Clusters (2009 data)

The following are examples of clusters configured out of
separate networks and processor components

•  About 82% of Top 500 are clusters (Nov 2009, up from
72% in 2005),

•  4 of top 10
•  IBM Cell cluster at Los Alamos (Roadrunner) is #2

•  12,960 Cell chips + 6,948 dual-core AMD Opterons;
•  129600 cores altogether

•  1.45 PFlops peak, 1.1PFlops Linpack, 2.5MWatts
•  Infiniband connection network

•  For more details use “database/sublist generator” at www.top500.org

01/27/2015 CS267 Lecture 4! 26!

Machine Model 2b: Internet/Grid Computing
•  SETI@Home: Running on 3.3M hosts, 1.3M users (1/2013)

•  ~1000 CPU Years per Day (older data)
•  485,821 CPU Years so far

•  Sophisticated Data & Signal Processing Analysis
•  Distributes Datasets from Arecibo Radio Telescope

Next Step-
Allen Telescope Array

Google
 “volunteer computing”
 or “BOINC”

01/27/2015 CS267 Lecture 3! 27!

Programming Model 2a: Global Address Space
• Program consists of a collection of named threads.

•  Usually fixed at program startup time
•  Local and shared data, as in shared memory model
•  But, shared data is partitioned over local processes
•  Cost models says remote data is expensive

• Examples: UPC, Titanium, Co-Array Fortran
• Global Address Space programming is an intermediate

point between message passing and shared memory

Pn P1 P0 s[myThread] = ...

y = ..s[i] ...
i: 1 i: 5 Private

memory

Shared memory

i: 8

s[0]: 26 s[1]: 32 s[n]: 27

01/27/2015 CS267 Lecture 3! 28!

Machine Model 2c: Global Address Space
• Cray T3D, T3E, X1, and HP Alphaserver cluster
• Clusters built with Quadrics, Myrinet, or Infiniband
• The network interface supports RDMA (Remote Direct

Memory Access)
•  NI can directly access memory without interrupting the CPU
•  One processor can read/write memory with one-sided

operations (put/get)
•  Not just a load/store as on a shared memory machine

•  Continue computing while waiting for memory op to finish
•  Remote data is typically not cached locally

interconnect

P0

memory

NI

. . .

P1

memory

NI Pn

memory

NI
Global address
space may be
supported in
varying degrees

CS267 Lecture 2 8

01/27/2015

Review so far and plan for Lecture 3
Programming Models Machine Models

CS267 Lecture 3! 29!

1.  Shared Memory 1a. Shared Memory
1b. Multithreaded Procs.
1c. Distributed Shared Mem.

2.  Message Passing

2a. Global Address Space

2a. Distributed Memory
2b. Internet & Grid Computing
2c. Global Address Space

3. Data Parallel 3a. SIMD
3b. Vector

4. Hybrid 4. Hybrid

What about GPU? What about Cloud?

01/27/2015 CS267 Lecture 3! 30!

Programming Model 3: Data Parallel
• Single thread of control consisting of parallel operations.

•  A = B+C could mean add two arrays in parallel
• Parallel operations applied to all (or a defined subset) of a

data structure, usually an array
•  Communication is implicit in parallel operators
•  Elegant and easy to understand and reason about
•  Coordination is implicit – statements executed synchronously
•  Similar to Matlab language for array operations

• Drawbacks:
•  Not all problems fit this model
•  Difficult to map onto coarse-grained machines

A:

fA:
f

sum

A = array of all data
fA = f(A)
s = sum(fA)

s:

01/27/2015 CS267 Lecture 3! 31!

Machine Model 3a: SIMD System
• A large number of (usually) small processors.

•  A single “control processor” issues each instruction.
•  Each processor executes the same instruction.
•  Some processors may be turned off on some instructions.

• Originally machines were specialized to scientific computing,
few made (CM2, Maspar)

• Programming model can be implemented in the compiler!
•  mapping n-fold parallelism to p processors, n >> p, but it’s hard

(e.g., HPF)"

interconnect

P1

memory

NI
. . .

control processor

P2

memory

NI P3

memory

NI Pn-1

memory

NI Pn

memory

NI

01/27/2015 CS267 Lecture 3! 32!

Machine Model 3b: Vector Machines
• Vector architectures are based on a single processor

•  Multiple functional units
•  All performing the same operation
•  Instructions may specific large amounts of parallelism (e.g., 64-

way) but hardware executes only a subset in parallel
• Historically important

•  Overtaken by MPPs in the 90s
• Re-emerging in recent years

•  At a large scale in the Earth Simulator (NEC SX6) and Cray X1
•  At a small scale in SIMD media extensions to microprocessors

•  SSE, SSE2 (Intel: Pentium/IA64)
•  Altivec (IBM/Motorola/Apple: PowerPC)
•  VIS (Sun: Sparc)

•  At a larger scale in GPUs
• Key idea: Compiler does some of the difficult work of finding

parallelism, so the hardware doesn’t have to

CS267 Lecture 2 9

01/27/2015 CS267 Lecture 3! 33!

Vector Processors
• Vector instructions operate on a vector of elements

•  These are specified as operations on vector registers

• A supercomputer vector register holds ~32-64 elts
•  The number of elements is larger than the amount of parallel

hardware, called vector pipes or lanes, say 2-4
• The hardware performs a full vector operation in

•  #elements-per-vector-register / #pipes

r1 r2

r3

+ +

 … vr2 … vr1

 … vr3

(logically, performs # elts
adds in parallel)

 … vr2 … vr1
(actually, performs
#pipes adds in parallel)

+ + + + + +

01/27/2015 CS267 Lecture 3! 34!

Cray X1: Parallel Vector Architecture

Cray combines several technologies in the X1
•  12.8 Gflop/s Vector processors (MSP)
•  Shared caches (unusual on earlier vector machines)
•  4 processor nodes sharing up to 64 GB of memory
•  Single System Image to 4096 Processors
•  Remote put/get between nodes (faster than MPI)

01/27/2015 CS267 Lecture 3! 35!

Earth Simulator Architecture

Parallel Vector
Architecture!

• High speed (vector)
processors!

• High memory
bandwidth (vector
architecture)!

• Fast network (new
crossbar switch)!

Rearranging commodity
parts can’t match this
performance"

01/27/2015

Review so far and plan for Lecture 3
Programming Models Machine Models

CS267 Lecture 3! 36!

1.  Shared Memory 1a. Shared Memory
1b. Multithreaded Procs.
1c. Distributed Shared Mem.

2.  Message Passing

2a. Global Address Space

2a. Distributed Memory
2b. Internet & Grid Computing
2c. Global Address Space

3. Data Parallel 3a. SIMD & GPU
3b. Vector

4. Hybrid 4. Hybrid

What about GPU? What about Cloud?

CS267 Lecture 2 10

01/27/2015 CS267 Lecture 3! 37!

Machine Model 4: Hybrid machines
• Multicore/SMPs are a building block for a larger machine

with a network
• Old name:

• CLUMP = Cluster of SMPs
• Many modern machines look like this:

•  Edison and Hopper (2x12 way nodes), most of Top500
• What is an appropriate programming model #4 ???

• Treat machine as “flat”, always use message passing,
even within SMP (simple, but ignores an important part
of memory hierarchy).

• Shared memory within one SMP, but message passing
outside of an SMP.

• GPUs may also be building block
•  Nov 2014 Top500: 14% have accelerators, but 35% of performance

01/27/2015

Accelerators in Top 500 (Nov 2014)

01/27/2015

Performance of Accelerators in Top500, Nov 2014

01/27/2015

Performance Share of Accelerators
in Top500, Nov 2014

CS267 Lecture 2 11

01/27/2015 CS267 Lecture 3! 41!

Programming Model 4: Hybrids

• Programming models can be mixed
• Message passing (MPI) at the top level with shared

memory within a node is common
• New DARPA HPCS languages mix data parallel and

threads in a global address space
• Global address space models can (often) call message

passing libraries or vice verse
• Global address space models can be used in a hybrid

mode
•  Shared memory when it exists in hardware
•  Communication (done by the runtime system) otherwise

• For better or worse
•  Supercomputers often programmed this way for peak performance

01/27/2015

Review so far and plan for Lecture 3
Programming Models Machine Models

CS267 Lecture 3! 42!

1.  Shared Memory 1a. Shared Memory
1b. Multithreaded Procs.
1c. Distributed Shared Mem.

2.  Message Passing

2a. Global Address Space

2a. Distributed Memory
2b. Internet & Grid Computing
2c. Global Address Space

3. Data Parallel 3a. SIMD & GPU
3b. Vector

4. Hybrid 4. Hybrid

What about GPU? What about Cloud?

01/27/2015

What about GPU and Cloud?
• GPU’s big performance opportunity is data parallelism

•  Most programs have a mixture of highly parallel operations, and
some not so parallel

•  GPUs provide a threaded programming model (CUDA) for data
parallelism to accommodate both

•  Current research attempting to generalize programming model
to other architectures, for portability (OpenCL)

•  Guest lecture later in the semester
• Cloud computing lets large numbers of people easily

share O(105) machines
•  MapReduce was first programming model: data parallel on

distributed memory
•  More flexible models (Hadoop, Spark, …) invented since then
•  Guest lecture later in the semester

• Both may be used for class projects
CS267 Lecture 3! 43! 01/27/2015 CS267 Lecture 3! 44!

Lessons from Lecture 3

• Three basic conceptual models
• Shared memory
• Distributed memory
• Data parallel
and hybrids of these machines

• All of these machines rely on dividing up work
into parts that are:

• Mostly independent (little synchronization)
• About same size (load balanced)
• Have good locality (little communication)

• Next Lecture: How to identify parallelism and
locality in applications

