
CS267 Lecture 2 1 

01/28/2011!

CS267 Lecture 3! 1!

CS 267:  
Introduction to Parallel Machines 

and Programming Models  
Lecture 3  

"
James Demmel 

www.cs.berkeley.edu/~demmel/cs267_Spr15/!
!
!

01/27/2015 CS267 Lecture 3! 2!

Outline  
• Overview of parallel machines (~hardware) and 

programming models (~software) 
• Shared memory 
• Shared address space 
• Message passing 
• Data parallel 
• Clusters of SMPs or GPUs 
• Grid 

• Note: Parallel machine may or may not be tightly 
coupled to programming model 

• Historically, tight coupling 
• Today, portability is important 
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A generic parallel architecture 

Proc 

 
Interconnection Network 
 

• Where is the memory physically located? 
•  Is it connected directly to processors? 
• What is the connectivity of the network? 

Memory 

Proc Proc Proc 
Proc Proc 

Memory Memory Memory Memory 
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Parallel Programming Models 
• Programming model is made up of the languages and 

libraries that create an abstract view of the machine 
• Control 

•  How is parallelism created? 
•  What orderings exist between operations? 

• Data 
•  What data is private vs. shared? 
•  How is logically shared data accessed or communicated? 

• Synchronization 
•  What operations can be used to coordinate parallelism? 
•  What are the atomic (indivisible) operations? 

• Cost 
•  How do we account for the cost of each of the above? 
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Simple Example 
• Consider applying a function f to the elements 

of an array A and then computing its sum:  

• Questions: 
• Where does A live?  All in single memory? 

Partitioned? 
• What work will be done by each processors? 
• They need to coordinate to get a single result, how? 
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A: 

fA: 
f 

sum 

A = array of all data 
fA = f(A) 
s = sum(fA) 

s: 
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Programming Model 1:  Shared Memory 
•  Program is a collection of threads of control. 

•  Can be created dynamically, mid-execution, in some languages 
•  Each thread has a set of private variables, e.g., local stack variables  
•  Also a set of shared variables, e.g., static variables, shared common 

blocks, or global heap. 
•  Threads communicate implicitly by writing and reading shared 

variables. 
•  Threads coordinate by synchronizing on shared variables 

Pn P1 P0 

s       s = ... 
y = ..s ... 

Shared memory 

i: 2 i: 5 Private 
memory 

i: 8 
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Simple Example 
• Shared memory strategy: 

•  small number p << n=size(A) processors  
•  attached to single memory 

• Parallel Decomposition:  
•  Each evaluation and each partial sum is a task. 

• Assign n/p numbers to each of p procs 
•  Each computes independent “private” results and partial sum. 
•  Collect the p partial sums and compute a global sum. 

Two Classes of Data:  
•  Logically Shared 

•  The original n numbers, the global sum. 
•  Logically Private 

•  The individual function evaluations. 
•  What about the individual partial sums? 
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Shared Memory “Code” for Computing a Sum 

Thread 1 
 
   for i = 0, n/2-1 
        s = s + f(A[i]) 

Thread 2 
 
  for i = n/2, n-1 
        s = s + f(A[i]) 

static int s = 0; 

• What is the problem with this program?  

• A race condition or data race occurs when: 
- Two processors (or two threads) access the same 

variable, and at least one does a write. 
- The accesses are concurrent (not synchronized) so 

they could happen simultaneously 

fork(sum,a[0:n/2-1]); 
sum(a[n/2,n-1]); 
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Shared Memory “Code” for Computing a Sum 

Thread 1 
  …. 
   compute f([A[i]) and put in reg0 
   reg1 = s  
   reg1 = reg1 + reg0  
   s = reg1 
  … 

Thread 2 
 … 
  compute f([A[i]) and put in reg0 
   reg1 = s  
   reg1 = reg1 + reg0  
   s = reg1 
  … 

static int s = 0; 

• Assume A = [3,5], f(x) = x2, and s=0 initially 
• For this program to work, s should be 32 + 52 = 34 at the end 

•  but it may be 34,9, or 25 
• The atomic operations are reads and writes 

•  Never see ½ of one number, but += operation is not atomic 
•  All computations happen in (private) registers 

9 25 
0 0 
9 25 

25 9 

3 5 A= f (x)  = x2 

01/27/2015 CS267 Lecture 3! 10!

Improved Code for Computing a Sum 

Thread 1 
 
    local_s1= 0 
    for i = 0, n/2-1 
        local_s1 = local_s1 + f(A[i]) 
     
    s = s + local_s1 
     

Thread 2 
 
    local_s2 = 0 
    for i = n/2, n-1 
        local_s2= local_s2 + f(A[i]) 
     
    s = s +local_s2 
     

static int s = 0; 
 

• Since addition is associative, it’s OK to rearrange order 
• Most computation is on private variables 

-  Sharing frequency is also reduced, which might improve speed  
-  But there is still a race condition on the update of shared s 
-  The race condition can be fixed by adding locks (only one 

thread can hold a lock at a time; others wait for it) 

static lock lk; 

lock(lk); 

unlock(lk); 

lock(lk); 

unlock(lk); 

Why not do lock 
Inside loop? 
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Review so far and plan for Lecture 3 
Programming Models                Machine Models 
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1.  Shared Memory  1a.  Shared Memory 
1b.  Multithreaded Procs. 
1c.  Distributed Shared Mem. 

2.  Message Passing 

2a. Global Address Space 

2a.  Distributed Memory 
2b.  Internet & Grid Computing 
2c.  Global Address Space 

3.  Data Parallel  3a.  SIMD  
3b.  Vector 

4.  Hybrid  4.  Hybrid  

What about GPU?  What about Cloud? 
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Machine Model 1a:  Shared Memory 

P1 

bus 

$

memory 

•  Processors all connected to a large shared memory. 
•  Typically called Symmetric Multiprocessors (SMPs) 
•  SGI, Sun, HP, Intel, IBM SMPs  
•  Multicore chips, except that all caches are shared 

•  Advantage: uniform memory access (UMA)  
•  Cost: much cheaper to access data in cache than main memory 
•  Difficulty scaling to large numbers of processors 

•  <= 32 processors typical 
 P2 

$

Pn 

$

Note: $ = cache 
shared $ 
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Problems Scaling Shared Memory Hardware 
• Why not put more processors on (with larger memory?) 

•  The memory bus becomes a bottleneck 
•  Caches need to be kept coherent 

• Example from a Parallel Spectral Transform Shallow 
Water Model (PSTSWM) demonstrates the problem 

•  Experimental results (and slide) from Pat Worley at ORNL 
•  This is an important kernel in atmospheric models 

•  99% of the floating point operations are multiplies or adds, 
which generally run well on all processors 

•  But it does sweeps through memory with little reuse of 
operands, so uses bus and shared memory frequently 

•  These experiments show performance per processor,  with 
one “copy” of the code running independently on varying 
numbers of procs 

•  The best case for shared memory: no sharing 
•  But the data doesn’t all fit in the registers/cache 
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Example: Problem in Scaling  Shared Memory 

•  Performance degradation 
is a “smooth” function of 
the number of processes. 

•  No shared data between 
them, so there should be 
perfect parallelism. 

•  (Code was run for a 18 
vertical levels with a 
range of horizontal 
sizes.) 
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Machine Model 1b: Multithreaded Processor 
• Multiple thread “contexts” without full processors 
• Memory and some other state is shared 
• Sun Niagra processor (for servers) 

•  Up to 64 threads all running simultaneously (8 threads x 8 cores) 
•  In addition to sharing memory, they share floating point units  
•  Why?  Switch between threads for long-latency memory operations 

• Cray MTA and Eldorado processors (for HPC) 

Memory 

shared $, shared floating point units, etc. 

T0 T1 Tn 
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Eldorado Processor (logical view) 

Source: John Feo, Cray 

i = n

i = 3

i = 2
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Sub- 
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Machine Model 1c: Distributed Shared Memory 
• Memory is logically shared, but physically distributed 

• Any processor can access any address in memory 
• Cache lines (or pages) are passed around machine 

• SGI is canonical example (+ research machines) 
• Scales to 512 (SGI Altix (Columbia) at NASA/Ames) 
• Limitation is cache coherency protocols – how to 

keep cached copies of the same address consistent  

P1 

network 

$

memory 

P2 

$

Pn 

$

memory memory 

Cache lines (pages) 
must be large to 
amortize overhead 
 ! 
 locality still critical 
to performance 
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Review so far and plan for Lecture 3 
Programming Models                Machine Models 
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1.  Shared Memory  1a.  Shared Memory 
1b.  Multithreaded Procs. 
1c.  Distributed Shared Mem. 

2.  Message Passing 

2a. Global Address Space 

2a.  Distributed Memory 
2b.  Internet & Grid Computing 
2c.  Global Address Space 

3.  Data Parallel  3a.  SIMD  
3b.  Vector 

4.  Hybrid  4.  Hybrid  

What about GPU?  What about Cloud? 
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Review so far and plan for Lecture 3 
Programming Models                Machine Models 
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1.  Shared Memory  1a.  Shared Memory 
1b.  Multithreaded Procs. 
1c.  Distributed Shared Mem. 

2.  Message Passing 

2a. Global Address Space 

2a.  Distributed Memory 
2b.  Internet & Grid Computing 
2c.  Global Address Space 

3.  Data Parallel  3a.  SIMD  
3b.  Vector 

4.  Hybrid  4.  Hybrid  

What about GPU?  What about Cloud? 
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Programming Model 2:  Message Passing 
• Program consists of a collection of named processes. 

•  Usually fixed at program startup time 
•  Thread of control plus local address space -- NO shared data. 
•  Logically shared data is partitioned over local processes. 

• Processes communicate by explicit send/receive pairs 
•  Coordination is implicit in every communication event. 
•  MPI (Message Passing Interface) is the most commonly used SW 

Pn P1 P0 

y = ..s ... 

s: 12  

i: 2 

Private 
memory 

s: 14  

i: 3 

s: 11  

i: 1 

send P1,s 

Network 

receive Pn,s 
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Computing s = f(A[1])+f(A[2]) on each processor 
°  First possible solution – what could go wrong? 

Processor 1 
    xlocal = f(A[1]) 
    send xlocal, proc2 
    receive xremote, proc2 
    s = xlocal + xremote    

Processor 2 
    xlocal = f(A[2]) 
    receive xremote, proc1 
    send xlocal, proc1 
    s = xlocal + xremote 

°  Second possible solution 

Processor 1 
    xlocal = f(A[1]) 
    send xlocal, proc2 
    receive xremote, proc2 
    s = xlocal + xremote    

Processor 2 
    xlocal = f(A[2]) 
    send xlocal, proc1 
    receive xremote, proc1 
    s = xlocal + xremote 

°  If send/receive acts like the telephone system?  The post office? 

°  What if there are more than 2 processors?  
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MPI has become the de facto standard for parallel 
computing using message passing 
Pros and Cons of standards 

•  MPI created finally a standard for applications 
development in the HPC community → portability 

•  The MPI standard is a least common denominator 
building on mid-80s technology, so may discourage 
innovation 

Programming Model reflects hardware!  

“I am not sure how I will program a Petaflops computer, 
but I am sure that I will need MPI somewhere” – HDS 2001 

 

MPI – the de facto standard 
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Machine Model 2a:  Distributed Memory 
• Cray XE6 (Hopper), Cray XC30 (Edison) 
• PC Clusters (Berkeley NOW, Beowulf) 
• Edison, Hopper, most of the Top500, are distributed 

memory machines, but the nodes are SMPs. 
• Each processor has its own memory and cache but 

cannot directly access another processor’s memory. 
• Each “node” has a Network Interface (NI) for all 

communication and synchronization. 

interconnect 

P0 

memory 

NI 

. . . 

P1 

memory 

NI Pn 

memory 

NI 
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PC Clusters: Contributions of Beowulf 
•  An experiment in parallel computing systems (1994) 
•  Established vision of low cost, high end computing 

•  Cost effective because it uses off-the-shelf parts 

•  Demonstrated effectiveness of PC clusters for 
some (not all) classes of applications 

•  Provided networking software 
•  Conveyed findings to broad community (great PR) 
•  Tutorials and book 
•  Design standard to rally  
   community! 
 
•  Standards beget:  
   books, trained people,  
   software … virtuous cycle 

Adapted from Gordon Bell, presentation at Salishan 2000 
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Tflop/s  and Pflop/s Clusters (2009 data)  

The following are examples of clusters configured out of 
separate networks and processor components 

•  About 82% of Top 500 are clusters (Nov 2009, up from 
72% in 2005),  

•  4 of top 10 
•  IBM Cell cluster at Los Alamos (Roadrunner) is #2 

•  12,960 Cell chips + 6,948 dual-core AMD Opterons;  
•  129600 cores altogether 

•  1.45 PFlops peak, 1.1PFlops Linpack, 2.5MWatts 
•  Infiniband connection network 

•  For more details use “database/sublist generator” at www.top500.org 
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Machine Model 2b: Internet/Grid Computing 
•  SETI@Home: Running on 3.3M hosts, 1.3M users (1/2013) 

•  ~1000 CPU Years per Day (older data) 
•  485,821 CPU Years so far 

•  Sophisticated Data & Signal Processing Analysis 
•  Distributes Datasets from Arecibo Radio Telescope 

Next Step- 
Allen Telescope Array 

Google 
  “volunteer computing” 
   or “BOINC” 
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Programming Model 2a: Global Address Space 
• Program consists of a collection of named threads. 

•  Usually fixed at program startup time 
•  Local and shared data, as in shared memory model 
•  But, shared data is partitioned over local processes 
•  Cost models says remote data is expensive 

• Examples: UPC, Titanium, Co-Array Fortran 
• Global Address Space programming is an intermediate 

point between message passing and shared memory 

Pn P1 P0 s[myThread] = ... 

y = ..s[i] ... 
i: 1 i: 5 Private 

memory 

Shared memory 

i: 8 

s[0]: 26 s[1]: 32 s[n]: 27 
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Machine Model 2c:  Global Address Space 
• Cray T3D, T3E, X1, and HP Alphaserver cluster 
• Clusters built with Quadrics, Myrinet, or Infiniband 
• The network interface supports RDMA (Remote Direct 

Memory Access) 
•  NI can directly access memory without interrupting the CPU 
•  One processor can read/write memory with one-sided 

operations (put/get) 
•  Not just a load/store as on a shared memory machine 

•  Continue computing while waiting for memory op to finish 
•  Remote data is typically not cached locally  

interconnect 

P0 

memory 

NI 

. . . 

P1 

memory 

NI Pn 

memory 

NI 
Global address 
space may be 
supported in 
varying degrees 
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Review so far and plan for Lecture 3 
Programming Models                Machine Models 
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1.  Shared Memory  1a.  Shared Memory 
1b.  Multithreaded Procs. 
1c.  Distributed Shared Mem. 

2.  Message Passing 

2a. Global Address Space 

2a.  Distributed Memory 
2b.  Internet & Grid Computing 
2c.  Global Address Space 

3.  Data Parallel  3a.  SIMD  
3b.  Vector 

4.  Hybrid  4.  Hybrid  

What about GPU?  What about Cloud? 
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Programming Model 3:  Data Parallel 
• Single thread of control consisting of parallel operations. 

•  A = B+C could mean add two arrays in parallel 
• Parallel operations applied to all (or a defined subset) of a 

data structure, usually an array 
•  Communication is implicit in parallel operators  
•  Elegant and easy to understand and reason about  
•  Coordination is implicit – statements executed synchronously 
•  Similar to Matlab language for array operations 

• Drawbacks:  
•  Not all problems fit this model 
•  Difficult to map onto coarse-grained machines 

A: 

fA: 
f 

sum 

A = array of all data 
fA = f(A) 
s = sum(fA) 

s: 
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Machine Model 3a:  SIMD System 
• A large number of (usually) small processors. 

•  A single “control processor” issues each instruction. 
•  Each processor executes the same instruction. 
•  Some processors may be turned off on some instructions. 

• Originally machines were specialized to scientific computing, 
few made (CM2, Maspar) 

• Programming model can be implemented in the compiler!
•  mapping n-fold parallelism to p processors, n >> p, but it’s hard 

(e.g., HPF)"

interconnect 

P1 

memory 

NI 
. . . 

control processor 

P2 

memory 

NI P3 

memory 

NI Pn-1 

memory 

NI Pn 

memory 

NI 
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Machine Model 3b: Vector Machines 
• Vector architectures are based on a single processor 

•  Multiple functional units 
•  All performing the same operation 
•  Instructions may specific large amounts of parallelism (e.g., 64-

way) but hardware executes only a subset in parallel 
• Historically important 

•  Overtaken by MPPs in the 90s 
• Re-emerging in recent years 

•  At a large scale in the Earth Simulator (NEC SX6) and Cray X1 
•  At a small scale in SIMD media extensions to microprocessors 

•  SSE, SSE2 (Intel: Pentium/IA64) 
•  Altivec (IBM/Motorola/Apple: PowerPC) 
•  VIS (Sun: Sparc) 

•  At a larger scale in GPUs 
• Key idea: Compiler does some of the difficult work of finding 

parallelism, so the hardware doesn’t have to 
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Vector Processors 
• Vector instructions operate on a vector of elements 

•  These are specified as operations on vector registers 

• A supercomputer vector register holds ~32-64 elts 
•  The number of elements is larger than the amount of parallel 

hardware, called vector pipes or lanes, say 2-4 
• The hardware performs a full vector operation in 

•  #elements-per-vector-register /  #pipes 

r1 r2 

r3 

+ + 

                   …       vr2                    …       vr1 

                   …       vr3 

(logically, performs # elts 
adds in parallel) 

                   …       vr2                    …       vr1 
(actually, performs 
#pipes adds in parallel) 

+ + + + + + 
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Cray X1: Parallel Vector Architecture 

Cray combines several technologies in the X1 
•  12.8 Gflop/s Vector processors (MSP) 
•  Shared caches (unusual on earlier vector machines) 
•  4 processor nodes sharing up to 64 GB of memory 
•  Single System Image to 4096 Processors 
•  Remote put/get between nodes (faster than MPI) 
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Earth Simulator Architecture 

Parallel Vector 
Architecture!

• High speed (vector) 
processors!

• High memory 
bandwidth (vector 
architecture)!

• Fast network (new 
crossbar switch)!

Rearranging  commodity 
parts can’t match this  
performance"
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Review so far and plan for Lecture 3 
Programming Models                Machine Models 
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1.  Shared Memory  1a.  Shared Memory 
1b.  Multithreaded Procs. 
1c.  Distributed Shared Mem. 

2.  Message Passing 

2a. Global Address Space 

2a.  Distributed Memory 
2b.  Internet & Grid Computing 
2c.  Global Address Space 

3.  Data Parallel  3a.  SIMD & GPU 
3b.  Vector 

4.  Hybrid  4.  Hybrid  

What about GPU?  What about Cloud? 



CS267 Lecture 2 10 

01/27/2015 CS267 Lecture 3! 37!

Machine Model 4:  Hybrid machines 
• Multicore/SMPs are a building block for a larger machine 

with a network 
• Old name: 

• CLUMP = Cluster of SMPs 
• Many modern machines look like this: 

•  Edison and Hopper (2x12 way nodes), most of Top500 
• What is an appropriate programming model #4 ??? 

• Treat machine as “flat”, always use message passing, 
even within SMP (simple, but ignores an important part 
of memory hierarchy). 

• Shared memory within one SMP, but message passing 
outside of an SMP. 

• GPUs may also be building block 
•  Nov 2014 Top500: 14% have accelerators, but 35% of performance 

01/27/2015 

Accelerators in Top 500 (Nov 2014) 

01/27/2015 

Performance of Accelerators in Top500, Nov 2014 

01/27/2015 

Performance Share of Accelerators  
in Top500, Nov 2014 
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Programming Model 4: Hybrids 

• Programming models can be mixed  
• Message passing (MPI) at the top level with shared 

memory within a node is common 
• New DARPA HPCS languages mix data parallel and 

threads in a global address space 
• Global address space models can (often) call message 

passing libraries or vice verse 
• Global address space models can be used in a hybrid 

mode 
•  Shared memory when it exists in hardware 
•  Communication (done by the runtime system) otherwise 

• For better or worse 
•  Supercomputers often programmed this way for peak performance 
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Review so far and plan for Lecture 3 
Programming Models                Machine Models 
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1.  Shared Memory  1a.  Shared Memory 
1b.  Multithreaded Procs. 
1c.  Distributed Shared Mem. 

2.  Message Passing 

2a. Global Address Space 

2a.  Distributed Memory 
2b.  Internet & Grid Computing 
2c.  Global Address Space 

3.  Data Parallel  3a.  SIMD & GPU 
3b.  Vector 

4.  Hybrid  4.  Hybrid  

What about GPU?  What about Cloud? 
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What about GPU and Cloud? 
• GPU’s big performance opportunity is data parallelism 

•  Most programs have a mixture of highly parallel operations, and 
some not so parallel 

•  GPUs provide a threaded programming model (CUDA) for data 
parallelism to accommodate both 

•  Current research attempting to generalize programming model 
to other architectures, for portability (OpenCL) 

•  Guest lecture later in the semester 
• Cloud computing lets large numbers of people easily 

share O(105) machines 
•  MapReduce was first programming model: data parallel on 

distributed memory 
•  More flexible models (Hadoop, Spark, …) invented since then 
•  Guest lecture later in the semester 

• Both may be used for class projects 
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Lessons from Lecture 3 

• Three basic conceptual models 
• Shared memory 
• Distributed memory 
• Data parallel 
and hybrids of these machines  

• All of these machines rely on dividing up work 
into parts that are: 

• Mostly independent (little synchronization) 
• About same size (load balanced) 
• Have good locality (little communication) 

• Next Lecture: How to identify parallelism and 
locality in applications 

 

 


