
CS267 Lecture 2 1

CS267 Lecture 6! 1!

Shared Memory Programming: 
 

Threads and OpenMP 
 

Lecture 6  
 
"James Demmel

www.cs.berkeley.edu/~demmel/cs267_Spr15/!
!

02/05/2015 CS267 Lecture 6! 2!

Outline
• Parallel Programming with Threads
• Parallel Programming with OpenMP

•  See parlab.eecs.berkeley.edu/2012bootcampagenda
•  2 OpenMP lectures (slides and video) by Tim Mattson

•  openmp.org/wp/resources/
•  computing.llnl.gov/tutorials/openMP/
•  portal.xsede.org/online-training
•  www.nersc.gov/assets/Uploads/XE62011OpenMP.pdf
•  Slides on OpenMP derived from: U.Wisconsin tutorial, which in

turn were from LLNL, NERSC, U. Minn, and OpenMP.org
•  See tutorial by Tim Mattson and Larry Meadows presented at

SC08, at OpenMP.org; includes programming exercises

•  (There are other Shared Memory Models: CILK, TBB…)
• Performance comparison
• Summary

CS267 Lecture 6! 3!

Parallel Programming
with Threads"

02/05/2015 CS267 Lecture 6! 4!

Recall Programming Model 1: Shared Memory
•  Program is a collection of threads of control.

•  Can be created dynamically, mid-execution, in some languages
•  Each thread has a set of private variables, e.g., local stack variables
•  Also a set of shared variables, e.g., static variables, shared common

blocks, or global heap.
•  Threads communicate implicitly by writing and reading shared

variables.
•  Threads coordinate by synchronizing on shared variables

Pn P1 P0

s s = ...
y = ..s ...

Shared memory

i: 2 i: 5 Private
memory

i: 8

CS267 Lecture 2 2

02/05/2015 CS267 Lecture 6! 5!

Shared Memory Programming
Several Thread Libraries/systems
• PTHREADS is the POSIX Standard

•  Relatively low level
•  Portable but possibly slow; relatively heavyweight

• OpenMP standard for application level programming
•  Support for scientific programming on shared memory
•  openmp.org

• TBB: Thread Building Blocks
•  Intel

• CILK: Language of the C “ilk”
•  Lightweight threads embedded into C

•  Java threads
•  Built on top of POSIX threads
•  Object within Java language

02/05/2015 CS267 Lecture 6! 6!

Common Notions of Thread Creation
•  cobegin/coend

cobegin
 job1(a1);
 job2(a2);
coend

•  fork/join
tid1 = fork(job1, a1);
job2(a2);
join tid1;

•  future
v = future(job1(a1));
… = …v…;

• Cobegin cleaner than fork, but fork is more general
• Futures require some compiler (and likely hardware) support

•  Statements in block may run in parallel
•  cobegins may be nested
•  Scoped, so you cannot have a missing coend

•  Future expression evaluated in parallel
•  Attempt to use return value will wait

•  Forked procedure runs in parallel
•  Wait at join point if it’s not finished

02/05/2015 CS267 Lecture 6! 7!

Overview of POSIX Threads

• POSIX: Portable Operating System Interface
•  Interface to Operating System utilities

• PThreads: The POSIX threading interface
• System calls to create and synchronize threads
• Should be relatively uniform across UNIX-like OS

platforms
• PThreads contain support for

• Creating parallelism
• Synchronizing
• No explicit support for communication, because

shared memory is implicit; a pointer to shared data is
passed to a thread

02/05/2015 CS267 Lecture 6! 8!

Forking Posix Threads

•  thread_id is the thread id or handle (used to halt, etc.)
•  thread_attribute various attributes

•  Standard default values obtained by passing a NULL pointer
•  Sample attributes: minimum stack size, priority

•  thread_fun the function to be run (takes and returns void*)
•  fun_arg an argument can be passed to thread_fun when it starts
•  errorcode will be set nonzero if the create operation fails

Signature:
 int pthread_create(pthread_t *,
 const pthread_attr_t *,
 void * (*)(void *),
 void *);

Example call:
 errcode = pthread_create(&thread_id; &thread_attribute
 &thread_fun; &fun_arg);

CS267 Lecture 2 3

02/05/2015 CS267 Lecture 6! 9!

Simple Threading Example

void* SayHello(void *foo) {
 printf("Hello, world!\n");
 return NULL;
}

int main() {
 pthread_t threads[16];
 int tn;
 for(tn=0; tn<16; tn++) {
 pthread_create(&threads[tn], NULL, SayHello, NULL);
 }
 for(tn=0; tn<16 ; tn++) {
 pthread_join(threads[tn], NULL);
 }
 return 0;
}

Compile using gcc –lpthread

02/05/2015 CS267 Lecture 6! 10!

Loop Level Parallelism
• Many scientific application have parallelism in loops

•  With threads:
 … my_stuff [n][n];
 for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++)
 … pthread_create (update_cell[i][j], …,
 my_stuff[i][j]);

• But overhead of thread creation is nontrivial
•  update_cell should have a significant amount of work
•  1/p-th of total work if possible

02/05/2015

Some More Pthread Functions
• pthread_yield();

•  Informs the scheduler that the thread is willing to yield its quantum,
requires no arguments.

• pthread_exit(void *value);
•  Exit thread and pass value to joining thread (if exists)

• pthread_join(pthread_t *thread, void **result);
•  Wait for specified thread to finish. Place exit value into *result.

Others:
• pthread_t me; me = pthread_self();

•  Allows a pthread to obtain its own identifier pthread_t thread;
• pthread_detach(thread);

•  Informs the library that the thread’s exit status will not be needed by
subsequent pthread_join calls resulting in better thread performance.
For more information consult the library or the man pages, e.g.,
man -k pthread Kathy Yelick! 11!

2/4/15

02/05/2015 CS267 Lecture 6! 12!

Recall Data Race Example

Thread 1

 for i = 0, n/2-1
 s = s + f(A[i])

Thread 2

 for i = n/2, n-1
 s = s + f(A[i])

static int s = 0;

• Problem is a race condition on variable s in the program
• A race condition or data race occurs when:

-  two processors (or two threads) access the same
variable, and at least one does a write.

- The accesses are concurrent (not synchronized) so
they could happen simultaneously

CS267 Lecture 2 4

02/05/2015 CS267 Lecture 6! 13!

Barrier -- global synchronization
•  Especially common when running multiple copies of

the same function in parallel
•  SPMD “Single Program Multiple Data”

•  simple use of barriers -- all threads hit the same one
 work_on_my_subgrid();
 barrier;
 read_neighboring_values();
 barrier;

•  more complicated -- barriers on branches (or loops)
 if (tid % 2 == 0) {
 work1();
 barrier
 } else { barrier }

•  barriers are not provided in all thread libraries

Basic Types of Synchronization: Barrier

02/05/2015 CS267 Lecture 6! 14!

Creating and Initializing a Barrier
• To (dynamically) initialize a barrier, use code similar to

this (which sets the number of threads to 3):
pthread_barrier_t b;

pthread_barrier_init(&b,NULL,3);

• The second argument specifies an attribute object for
finer control; using NULL yields the default attributes.

• To wait at a barrier, a process executes:
pthread_barrier_wait(&b);

02/05/2015 CS267 Lecture 6! 15!

Basic Types of Synchronization: Mutexes

Mutexes -- mutual exclusion aka locks
•  threads are working mostly independently
• need to access common data structure

 lock *l = alloc_and_init(); /* shared */
 acquire(l);
 access data
 release(l);

• Locks only affect processors using them:
•  If a thread accesses the data without doing the acquire/

release, locks by others will not help
• Java and other languages have lexically scoped

synchronization, i.e., synchronized methods/blocks
•  Can’t forgot to say “release”

• Semaphores generalize locks to allow k threads
simultaneous access; good for limited resources

02/05/2015 CS267 Lecture 6! 16!

Mutexes in POSIX Threads
• To create a mutex:
 #include <pthread.h>
 pthread_mutex_t amutex = PTHREAD_MUTEX_INITIALIZER;
 // or pthread_mutex_init(&amutex, NULL);

• To use it:
 int pthread_mutex_lock(amutex);
 int pthread_mutex_unlock(amutex);
• To deallocate a mutex
 int pthread_mutex_destroy(pthread_mutex_t *mutex);

• Multiple mutexes may be held, but can lead to problems:
 thread1 thread2
 lock(a) lock(b)
 lock(b) lock(a)
• Deadlock results if both threads acquire one of their locks,
so that neither can acquire the second

deadlock

CS267 Lecture 2 5

02/05/2015 CS267 Lecture 6! 17!

Summary of Programming with Threads
• POSIX Threads are based on OS features

•  Can be used from multiple languages (need appropriate header)
•  Familiar language for most of program
•  Ability to shared data is convenient

• Pitfalls
•  Data race bugs are very nasty to find because they can be

intermittent
•  Deadlocks are usually easier, but can also be intermittent

• Researchers look at transactional memory an alternative
• OpenMP is commonly used today as an alternative

CS267 Lecture 6! 18!

Parallel
Programming in

OpenMP"

02/05/2015 CS267 Lecture 6! 19!

Introduction to OpenMP
• What is OpenMP?

•  Open specification for Multi-Processing, latest version 4.0, July 2013
•  “Standard” API for defining multi-threaded shared-memory

programs
•  openmp.org – Talks, examples, forums, etc.
•  See parlab.eecs.berkeley.edu/2012bootcampagenda

•  2 OpenMP lectures (slides and video) by Tim Mattson
•  computing.llnl.gov/tutorials/openMP/
•  portal.xsede.org/online-training
•  www.nersc.gov/assets/Uploads/XE62011OpenMP.pdf

• High-level API

•  Preprocessor (compiler) directives (~ 80%)
•  Library Calls (~ 19%)
•  Environment Variables (~ 1%)
 02/05/2015 CS267 Lecture 6! 20!

A Programmer’s View of OpenMP
• OpenMP is a portable, threaded, shared-memory

programming specification with “light” syntax
•  Exact behavior depends on OpenMP implementation!
•  Requires compiler support (C, C++ or Fortran)

• OpenMP will:
•  Allow a programmer to separate a program into serial regions and

parallel regions, rather than T concurrently-executing threads.
•  Hide stack management
•  Provide synchronization constructs

• OpenMP will not:
•  Parallelize automatically
•  Guarantee speedup
•  Provide freedom from data races

CS267 Lecture 2 6

02/05/2015 CS267 Lecture 6! 21!

Motivation – OpenMP

 int main() {

 // Do this part in parallel

 printf("Hello, World!\n");

 return 0;
 }

02/05/2015 CS267 Lecture 6! 22!

Motivation – OpenMP

 int main() {

 omp_set_num_threads(16);

 // Do this part in parallel
 #pragma omp parallel
 {
 printf("Hello, World!\n");
 }

 return 0;
 }

02/05/2015 CS267 Lecture 6! 23!

Programming Model – Concurrent Loops
•  OpenMP easily parallelizes loops

•  Requires: No data dependencies
(reads/write or write/write pairs)
between iterations!

•  Preprocessor calculates loop
bounds for each thread directly
from serial source

?

?

for(i=0; i < 25; i++)
{

 printf(“Foo”);

}

#pragma omp parallel for

02/05/2015 CS267 Lecture 6! 24!

Programming Model – Loop Scheduling
• schedule clause determines how loop iterations are

divided among the thread team; no one best way
• static([chunk]) divides iterations statically between

threads (default if no hint)
•  Each thread receives [chunk] iterations, rounding as necessary

to account for all iterations
•  Default [chunk] is ceil(# iterations / # threads)

• dynamic([chunk]) allocates [chunk] iterations per thread,
allocating an additional [chunk] iterations when a thread
finishes

•  Forms a logical work queue, consisting of all loop iterations
•  Default [chunk] is 1

• guided([chunk]) allocates dynamically, but [chunk] is
exponentially reduced with each allocation

CS267 Lecture 2 7

02/05/2015 CS267 Lecture 6! 25!

Programming Model – Data Sharing
•  Parallel programs often employ

two types of data
•  Shared data, visible to all

threads, similarly named
•  Private data, visible to a single

thread (often stack-allocated)

•  OpenMP:
•  shared variables are shared
•  private variables are private

•  PThreads:
•  Global-scoped variables are

shared
•  Stack-allocated variables are

private

// shared, globals

int bigdata[1024];

void* foo(void* bar) {

 // private, stack

 int tid;

 /* Calculation goes

 here */

}

int bigdata[1024];

void* foo(void* bar) {

 int tid;

 #pragma omp parallel \

 shared (bigdata) \

 private (tid)

 {

 /* Calc. here */

 }

}

02/05/2015 CS267 Lecture 6! 26!

Programming Model - Synchronization
• OpenMP Synchronization

•  OpenMP Critical Sections
•  Named or unnamed
•  No explicit locks / mutexes

•  Barrier directives

•  Explicit Lock functions
•  When all else fails – may

require flush directive

•  Single-thread regions within
parallel regions
•  master, single directives

#pragma omp critical
{
 /* Critical code here */
}

#pragma omp barrier

omp_set_lock(lock l);
/* Code goes here */
omp_unset_lock(lock l);

#pragma omp single
{
 /* Only executed once */
}

02/05/2015 CS267 Lecture 6! 27!

Microbenchmark: Grid Relaxation (Stencil)

for(t=0; t < t_steps; t++) {

 for(x=0; x < x_dim; x++) {
 for(y=0; y < y_dim; y++) {
 grid[x][y] = /* avg of neighbors */
 }
 }

}

#pragma omp parallel for \

 shared(grid,x_dim,y_dim) private(x,y)

// Implicit Barrier Synchronization

temp_grid = grid;
grid = other_grid;
other_grid = temp_grid;

02/05/2015 CS267 Lecture 6! 28!

Microbenchmark: Structured Grid
• ocean_dynamic – Traverses entire ocean, row-

by-row, assigning row iterations to threads with
dynamic scheduling.

• ocean_static – Traverses entire ocean, row-
by-row, assigning row iterations to threads with
static scheduling.

• ocean_squares – Each thread traverses a
square-shaped section of the ocean. Loop-level
scheduling not used—loop bounds for each thread
are determined explicitly.

• ocean_pthreads – Each thread traverses a
square-shaped section of the ocean. Loop bounds
for each thread are determined explicitly.

OpenMP

PThreads

CS267 Lecture 2 8

02/05/2015 CS267 Lecture 6! 29!

Microbenchmark: Ocean

02/05/2015 CS267 Lecture 6! 30!

Microbenchmark: Ocean

02/05/2015 CS267 Lecture 6! 31!

Evaluation
• OpenMP scales to 16-processor systems

•  Was overhead too high?
•  In some cases, yes (when too little work per processor)

•  Did compiler-generated code compare to hand-written code?
•  Yes!

•  How did the loop scheduling options affect performance?
•  dynamic or guided scheduling helps loops with variable

iteration runtimes
•  static or predicated scheduling more appropriate for shorter

loops

• OpenMP is a good tool to parallelize (at least some!)
applications

02/05/2015 CS267 Lecture 6! 32!

OpenMP Summary
• OpenMP is a compiler-based technique to create

concurrent code from (mostly) serial code
• OpenMP can enable (easy) parallelization of loop-based

code
•  Lightweight syntactic language extensions

• OpenMP performs comparably to manually-coded
threading

•  Scalable
•  Portable

• Not a silver bullet for all (more irregular) applications

•  Lots of detailed tutorials/manuals on-line

