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Outline 
°  A log n lower bound to compute any function in parallel 
°  Reduction and broadcast in O(log n) time 
°  Parallel prefix (scan) in O(log n) time 
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°  Multiplying n-by-n matrices in O(log n) time 
°  Inverting n-by-n triangular matrices in O(log2 n) time 
°  Inverting n-by-n dense matrices in O(log2 n) time 
°  Evaluating arbitrary expressions in O(log n) time 
°  Evaluating recurrences in O(log n) time 
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A log n lower bound to compute any function of n variables 

° Assume we can only use binary operations, one per 
time unit 

° After 1 time unit, an output can only depend on two 
inputs 

° Use induction to show that after k time units, an 
output can only depend on 2k inputs 

•  After log2 n time units, output depends on at most n inputs 

° A binary tree performs such a computation 
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Broadcasts and Reductions on Trees 
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Parallel Prefix, or Scan 

°  If “+” is an associative operator, and x[0],…,x[p-1] are input 
data then parallel prefix operation computes 

°  Notation:    j:k  means x[j]+x[j+1]+…+x[k],  blue is final value 
y[j] = x[0] + x[1] + … + x[j]    for j=0,1,…,p-1 
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Mapping Parallel Prefix onto a Tree - Details 
°  Up-the-tree phase (from leaves to root) 

°  By induction, Lsave = sum of all leaves in left subtree 
°  Down the tree phase (from root to leaves) 

°  By induction, S = sum of all leaves to left of vertex receiving S 

1)  Get values L and R from left and right children 
2)  Save L in a local register Lsave 
3)  Pass sum L+R to parent 

1) Get value S from parent (the root gets 0) 
2) Send S to the left child 
3) Send S + Lsave to the right child 
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E.g., Fibonacci via Matrix Multiply Prefix 

Fn+1 = Fn  + Fn-1 
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Can compute all Fn  by matmul_prefix on  

[        ,       ,       ,       ,        ,       ,      ,       ,        ] 
then select the upper left entry   
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Adding two n-bit integers in O(log n) time 
°  Let a = a[n-1]a[n-2]…a[0] and b = b[n-1]b[n-2]…b[0] be two n-bit 

binary numbers 
°  We want their sum s = a+b = s[n]s[n-1]…s[0] 

°  Challenge: compute all c[i] in O(log n) time via parallel prefix 

°  Used in all computers to implement addition - Carry look-ahead 

c[-1] = 0           … rightmost carry bit 
for i = 0 to n-1 
     c[i] = ( (a[i] xor b[i])  and  c[i-1] )  or  ( a[i]  and  b[i] )   ... next carry bit 
     s[i] = ( a[i] xor b[i] ) xor c[i-1] 

 for all (0 <= i <= n-1)  p[i] = a[i] xor b[i]       … propagate bit 
 for all (0 <= i <= n-1)  g[i] = a[i] and b[i]      … generate bit 
 
  c[i]   =  ( p[i] and c[i-1] ) or g[i]  =  p[i]    g[i]  *  c[i-1]   =   C[i] *  c[i-1] 
   1                             1                   0       1         1                         1 
                   … 2-by-2 Boolean matrix multiplication (associative) 
          =  C[i] * C[i-1] * … C[0] *     0 
                                                     1 
                   … evaluate each P[i] = C[i] * C[i-1] * … * C[0] by parallel prefix 
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Other applications of scan = parallel prefix 

° There are many applications of scans, some more 
obvious than others 

•  add multi-precision numbers (represented as array of numbers) 
•  evaluate recurrences, expressions  
•  solve tridiagonal systems (but numerically unstable!) 
•  implement bucket sort and radix sort 
•  to dynamically allocate processors 
•  to search for regular expression (e.g., grep) 
•  many others… 

° Names:  +\ (APL),  cumsum (Matlab),  MPI_SCAN 

° Note: 2n operations used when only n-1 needed 
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Multiplying n-by-n matrices in O(log n) time 

° For all (1 <= i,j,k <= n)    P(i,j,k) = A(i,k) * B(k,j) 
•  cost = 1 time unit, using n3 processors 

° For all (1 <= i,j <= n)      C(i,j) = Σ P(i,j,k) 
•  cost = O(log n) time, using n2 trees with n3 / 2 processors 

k =1 

n 
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Inverting triangular n-by-n matrices in O(log2 n) time 

°  Fact: 

°  Function Tri_Inv(T)   …  assume n = dim(T) = 2m for simplicity 

°  time(Tri_Inv(n)) = time(Tri_Inv(n/2)) + O(log(n)) 
•  Change variable to m = log n to get time(Tri_Inv(n)) = O(log2n) 

A   0 
C   B 

-1 
=      A          0 

 
-B  CA      B 

-1 

-1 

-1 -1 

If T is 1-by-1 
    return 1/T 
else 
     …   Write T =   A   0 
                              C   B 
     In parallel do { 
             invA = Tri_Inv(A)  
             invB = Tri_Inv(B)  }      …  implicitly uses a tree 
     newC = -invB * C * invA 
     Return   invA      0 
                   newC  invB 
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Inverting Dense n-by-n matrices in O(log  n) time 

° Lemma 1: Cayley-Hamilton Theorem 
•  expression for A-1 via characteristic polynomial in A 

° Lemma 2: Newton’s Identities 
•  Triangular system of equations for coefficients of characteristic 

polynomial,  where matrix entries = sk 

° Lemma 3: sk = trace(Ak)  =  Σ Ak [i,i]  

° Csanky’s Algorithm (1976) 

2 

i=1 

n 

1) Compute the powers A2, A3, …,An-1 by parallel prefix 
          cost = O(log2 n) 
2) Compute the traces sk = trace(Ak) 
          cost = O(log n) 
3) Solve Newton identities for coefficients of characteristic polynomial 
          cost = O(log2 n) 
4) Evaluate A-1 using Cayley-Hamilton Theorem 
          cost = O(log n) 

o  Completely numerically unstable 
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Evaluating arbitrary expressions 

° Let E be an arbitrary expression formed from +, -, 
*, /, parentheses, and n variables, where each 
appearance of each variable is counted separately 

° Can think of E as arbitrary expression tree with n 
leaves (the variables) and internal nodes labeled by 
+, -, * and / 

° Theorem (Brent): E can be evaluated in O(log n) 
time, if we reorganize it using laws of commutativity, 
associativity and distributivity 

° Sketch of (modern) proof: evaluate expression tree E 
greedily by repeatedly 

•  collapsing all leaves into their parents at each time step 
•  evaluating all “chains” in E with parallel prefix 
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Evaluating recurrences 

°  Let xi = fi(xi-1),  fi a rational function, x0 given 
°  How fast can we compute xn? 
°  Theorem (Kung): Suppose degree(fi) = d for all i 

•  If d=1, xn can be evaluated in O(log n) using parallel prefix 
•  If d>1, evaluating xn takes Ω(n) time, i.e. no speedup is possible 

°  Sketch of proof when d=1 

°  Sketch of proof when d>1 
•  degree(xi) as a function of x0 is di 
•  After i parallel steps, degree(anything) ≤ 2i 

•  Computing xi take Ω(i) steps 

xi = fi(xi-1) = (ai * xi-1 + bi )/( ci *  xi-1 + di )   can be written as 
xi = numi / deni = (ai * numi-1 + bi * deni-1)/(ci * numi-1 + di * deni-1)  or 
       numi    =     ai   bi  * numi-1   =    Mi  * numi-1   = Mi * Mi-1 * … * M1*  num0 
       demi           ci   di     deni-1                  deni-1                                       den0 
Can use parallel prefix with 2-by-2 matrix multiplication 
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Image Segmentation (1/4) 

Image Human Generated Contours Machine Generated 
Contours 

°  Contours are subjective – they depend on perspective 
°  Surprise: Humans agree (somewhat) 

°  Goal: generate contours automatically 
°  Use them to break images into separate segments (subimages) 
°  J. Malik’s group has leading algorithm 
°  Enable automatic image search and retrieval (“Find all the pictures with Fred”) 

18!

Image Segmentation (2/4) 

°  Think of image as matrix A(i,j) of pixels 
•  Each pixel has separate R(ed), G(reen), B(lue) intensities 

°  Bottleneck (so far) of Malik’s algorithm is to compute other 
matrices indicating whether pixel (i,j) likely to be on contour 

•  Ex: C(i,j) = average “R intensity” of pixels in rectangle above (i,j) –     
                      average “R intensity” of pixels in rectangle below (i,j) 
•  C(i,j) large for pixel (i,j) marked with        , so (i,j) likely to be on 

contour 

 
°  Algorithm eventually computes eigenvectors of sparse matrix 

with entries computed from matrices like C 
•  Analogous to graph partitioning in later lecture 

02/05/2015 CS267 Lecture 6+ 
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Image Segmentation (3/4) 

° Bottleneck: Given A(i,j), compute  C(i,j) where 
•  Sa(i,j) = sum of A(i,j) for entries in k x (2k+1) rectangle above A(i,j) 

              = Σ A(r,s) for  i-k ≤ r ≤ i-1 and j-k ≤ s ≤ j+k  
•  Sb(i,j) = similar sum of rectangle below A(i,j)    
•  C(i,j) = Sa(i,j) – Sb(i,j) 

° Approach (Bryan Catanzaro) 
•  Compute S(i,j) = Σ A(r,s) for  r ≤ i and  s ≤ j   
•  Then sum of A(i,j) over any rectangle (Ilow ≤ i ≤ Ihigh, Jlow ≤ j ≤ Jhigh )     

is S(Ihigh, Jhigh) - S(Ilow -1, Jhigh) -  S(Ihigh, Jlow-1) + S(Ilow -1, Jlow -1)  
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Image Segmentation (4/4) 

° New Bottleneck: Given A(i,j), compute  S(i,j) where 
•  S(i,j) = Σ A(r,s) for  r ≤ i and  s ≤ j  

° “2 dimensional parallel prefix” 
•  Do parallel prefix independently on each row of A(i,j) : 

-  Srow(i,j) = Σ A(i,s) for s ≤ j 
•  Do parallel prefix independently on each column of Srow 

-  S(i,j) = Σ Srow(r,j)  for r ≤ i  = Σ A(r,s) for s ≤ j and  r ≤ i 
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i 

j 

S(i,j) 
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Sparse-Matrix-Vector-Multiply  (SpMV)  y = A*x  
Using  Segmented Scan (SegScan) 

°  Segscan computes prefix sums of arbitrary segments 

 
°  Use CSR format of Sparse Matrix A, store x densely 

°  Create array P of all nonzero A(i,j)*x(j) = Val(k)*x(Col_Ind(k)) 

°  Create array S showing where segments (rows) start 

°  Compute SegScan( P, S ) =  

°  Extract A*x = [14  61  24 ] 
°  www.cs.cmu.edu/afs/cs.cmu.edu/project/scandal/public/papers/CMU-CS-93-173.ps.Z 
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Segscan ( [3, 1, 4, 5, 6, 1, 2, 3 ], 
                  [T, F, F, T, T, F, F, T ]) 
             =   [3, 4, 8, 5, 6, 7, 9, 3]  

1  0   2   3   0 
2   4   0   0   5 
3   0   0   0   1 

A = 
Val         = [ 1  2  3  2  4  5  3  1 ] 
Col_Ind = [  1  3  4  1  2  5  1  5 ] 
Row_Ptr=[   1 4  7  9 ] 

7 
8 
2 
1 
3 

x= 

P = [ 7   4   3  14  32  15  21   3 ] 

S = [ T   F   F    T   F    F    T   F ] 

[ 7  11  14  14  46  61  21  24 ] 
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Page layout in a browser 

° Applying layout rules to html description of a 
webpage is a bottleneck, scan can help 

° Simplest example 
•  Given widths [x1, x2, … , xn] of items to display on page, where 

should each item go? 
•  Item j starts at x1 + x2 + … + xj-1  

° Real examples have complicated constraints  
•  Defined by general trees, since in html each object to display can be 

composed of other objects 
•  To get location of each object, need to do preorder traversal of tree, 
“adding up” constraints of previous objects 

•  Scan can do preorder traversal of any tree in parallel  
-  Not  just  binary trees 

° Ras Bodik, Leo Meyerovich 
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Summary of tree algorithms 

° Lots of problems can be done quickly - in theory - 
using trees 

° Some algorithms are widely used 
•  broadcasts, reductions, parallel prefix 
•  carry look ahead addition 

° Some are of theoretical interest only 
•  Csanky’s method for matrix inversion 
•  Solving tridiagonal linear systems (without pivoting) 
•  Both numerically unstable 
•  Csanky needs too many processors 

° Embedded in various systems 
•  MPI,  Split-C, Titanium, NESL, other languages 
•  CM-5 hardware control network 


