CS 267

Tricks with Trees

James Demmel

www.cs.berkeley.edu/~demmel/cs267_Spri15

02/05/2015 CS267 Lecture 6+ 1

Outline

o

A log n lower bound to compute any function in parallel
Reduction and broadcast in O(log n) time

Parallel prefix (scan) in O(log n) time

Adding two n-bit integers in O(log n) time

Multiplying n-by-n matrices in O(log n) time

Inverting n-by-n triangular matrices in O(log? n) time
Inverting n-by-n dense matrices in O(log? n) time
Evaluating arbitrary expressions in O(log n) time
Evaluating recurrences in O(log n) time

02/05/2015 CS267 Lecture 6+

Outline

o

A log n lower bound to compute any function in parallel
Reduction and broadcast in O(log n) time

Parallel prefix (scan) in O(log n) time

Adding two n-bit integers in O(log n) time

Multiplying n-by-n matrices in O(log n) time

Inverting n-by-n triangular matrices in O(log? n) time

Inverting n-by-n dense matrices in O(log? n) time

Evaluating arbitrary expressions in O(log n) time

Evaluating recurrences in O(log n) time

“2D parallel prefix”, for image segmentation (Bryan Catanzaro, Kurt Keutzer)
Sparse-Matrix-Vector-Multiply (SpMV) using Segmented Scan
Parallel page layout in a browser (Leo Meyerovich, Ras Bodik)

02/05/2015 CS267 Lecture 6+ 3

Outline

o

A log n lower bound to compute any function in parallel
Reduction and broadcast in O(log n) time

Parallel prefix (scan) in O(log n) time

Adding two n-bit integers in O(log n) time

Multiplying n-by-n matrices in O(log n) time

Inverting n-by-n triangular matrices in O(log? n) time

Inverting n-by-n dense matrices in O(log? n) time

Evaluating arbitrary expressions in O(log n) time

Evaluating recurrences in O(log n) time

“2D parallel prefix”, for image segmentation (Bryan Catanzaro, Kurt Keutzer)
Sparse-Matrix-Vector-Multiply (SpMV) using Segmented Scan
Parallel page layout in a browser (Leo Meyerovich, Ras Bodik)

02/05/2015 CS267 Lecture 6+




A log n lower bound to compute any function of n variables

° Assume we can only use binary operations, one per
time unit

° After 1 time unit, an output can only depend on two
inputs

° Use induction to show that after k time units, an
output can only depend on 2k inputs

« After logz n time units, output depends on at most n inputs

° A binary tree performs such a computation

02/05/2015 CS267 Lecture 6+ 5

Broadcasts and Reductions on Trees

al+al+a2+ad+ad+aS+ab+a?

02/05/2015 CS267 Lecture 6+

Parallel Prefix, or Scan

° If “+” is an associative operator, and x[0],...,x[p-1] are input
data then parallel prefix operation computes

ylil = x[0] + x[1] + ... + x[j] for j=0,1,...,p-1
° Notation: j:k means x[j]+x[j+1]+...+x[k], blue is final value

02/05/2015 CS267 Lecture 6+ 7

Mapping Parallel Prefix onto a Tree - Details

° Up-the-tree phase (from leaves to root)

1) Get values L and R from left and right children

2) Save L in alocal register Lsave

3) Pass sum L+R to parent
° By induction, Lsave = sum of all leaves in left subtree
° Down the tree phase (from root to leaves)

1) Get value S from parent (the root gets 0)

2) Send S to the left child

3) Send S + Lsave to the right child
° By induction, S = sum of all leaves to left of vertex receiving S

Up the Tree Down the Tree
5

0 3 4 6 6 10 1 12
X 43 4l 42 40 4 41 1 43
=seany= 3 4 6 6 10 11 12 15

02/05/2015 CS267 Lecture 6+




E.g., Fibonacci via Matrix Multiply Prefix

F.\ (1 1\(F

n+ n

F | (1 oJ{F,

n n-

Can compute all F, by matmul_prefix on
LG 6o a6 o) 6 o) 0 o) ]

then select the upper left entry

02/05/2015 €S267 Lecture 6+ Slide source: Alan Edelman, JIIT

Adding two n-bit integers in O(log n) time

° Let a = a[n-1]a[n-2]...a[0] and b = b[n-1]b[n-2]...b[0] be two n-bit
binary numbers

° We want their sum s = a+b = s[n]s[n-1]...s[0]
c[-1]=0 ... rightmost carry bit
fori=0ton-1
c[i] = ((a[i] xor b[i]) and c[i-1]) or (a[i] and b[i]) ... next carry bit
s[i] = ( a[i] xor b[i] ) xor c[i-1]

° Challenge: compute all c[i] in O(log n) time via parallel prefix

for all (0 <=i<=n-1) p[i] = a[i] xor b][i] ... propagate bit
forall (0 <=i<=n-1) g[il=aliland b[i] ... generate bit

[cm} - [( pli] and cfi-1] ) or ng: [p[i] g[i]} . [C[H]J = ciil *[C[HIJ
1 1 0 1 1 1
... 2-by-2 Boolean matrix multiplication (associative)

= C[i]* C[i-1] * ... C[0] * [0
1

... evaluate each PI[i] = C[i] * C[i-1] * ... * C[0] by parallel prefix

° Used in all computers to implement addition - Carry look-ahead
02/05/2015 CS267 Lecture 6+ 10

Other applications of scan = parallel prefix

° There are many applications of scans, some more
obvious than others

evaluate recurrences, expressions

solve tridiagonal systems (but numerically unstable!)
implement bucket sort and radix sort

to dynamically allocate processors

to search for regular expression (e.g., grep)

* many others...

° Names: +\ (APL), cumsum (Matlab), MPI_SCAN

° Note: 2n operations used when only n-1 needed

02/05/2015 CS267 Lecture 6+

add multi-precision numbers (represented as array of numbers)

Multiplying n-by-n matrices in O(log n) time

°Forall (1 <=ijk<=n) P(ij,k) = A(i,k) * B(k,])

+ cost =1 time unit, using nd processors

°Forall (1<=ij<=n) C(ij) =k%=1P(i,j,k)

» cost = O(log n) time, using n? trees with n3/ 2 processors

02/05/2015 CS267 Lecture 6+ 12




Inverting triangular n-by-n matrices in O(log? n) time

° Fact: -1 A1
[A o} I N
C B e -
-B CA‘I B1

° Function Tri_Inv(T)

If Tis 1-by-1
return 1/T
else
. WriteT= A 0
C B
In parallel do {
invA = Tri_Inv(A)
invB = Tri_Inv(B) }
newC = -invB * C * invA
Return [invA 0 J

. assume n = dim(T) = 2™ for simplicity

. implicitly uses a tree

newC invB
° time(Tri_Inv(n)) = time(Tri_Inv(n/2)) + O(log(n))
» Change variable to m = log n to get time(Tri_Inv(n)) = O(log?n)

02/05/2015 CS267 Lecture 6+ 13

Inverting Dense n-by-n matrices in O(log? n) time

° Lemma 1: Cayley-Hamilton Theorem
+ expression for A via characteristic polynomial in A

° Lemma 2: Newton’ s Identities

« Triangular system of equations for coefficients of characteristic

polynomial, where matrix entries = sy
° Lemma 3: sy = trace(A%) = 2 A*[i,i]
i=1
> Csanky’ s Algorithm (1976)

1) Compute the powers A2, A3, ...,A™! by parallel prefix
cost = O(log? n)
2) Compute the traces s, = trace(A¥)
cost = O(log n)
3) Solve Newton identities for coefficients of characteristic polynomial
cost = O(log? n)
4) Evaluate A" using Cayley-Hamilton Theorem
cost = O(log n)

o Completely numerically unstable

(C8267 Lecture 6+
02/05/2015

Evaluating arbitrary expressions

° Let E be an arbitrary expression formed from +, -,
* 1, parentheses, and n variables, where each
appearance of each variable is counted separately

° Can think of E as arbitra? expression tree with n
leaves (t(r‘ltle variables) and internal nodes labeled by
+, -, *an

° Theorem (Brent): E can be evaluated in O(log n)
time, if we reorganize it using laws of commutativity,
associativity and distributivity

° Sketch of (modern) Joroof: evaluate expression tree E
greedily by repeatedly
« collapsing all leaves into their parents at each time step
« evaluating all “chains” in E with parallel prefix

02/05/2015 CS267 Lecture 6+ 15

Evaluating recurrences

° Let x; = f|(x;4), f;a rational function, x, given
° How fast can we compute x,,?

° Theorem (Kung): Suppose degree(f;) = d for all i
« If d=1, x,, can be evaluated in O(log n) using parallel prefix
« If d>1, evaluating x, takes Q(n) time, i.e. no speedup is possible
° Sketch of proof when d=1
x; = fi(xi.1) = (&8 " x4 + b /(¢ ™ x;4 +d;) canbe written as
X, = num; / den; = (a; * num;_4 + b; * den;_4)/(c; * num;_4 + d; * den;_4) or

dem; ¢ d

Can use parallel prefix with 2-by-2 matrix multiplication
° Sketch of proof when d>1
+ degree(x;) as a function of x; is d
« After i parallel steps, degree(anything) < 2!
+ Computing x; take Q(i) steps

den; 4 den; 4

02/05/2015 CS267 Lecture 6+

[numq = [ai bﬂ *[wmm = M~ numi_q =M Mg Myt

deng

e




Image Segmentation (1/4)
° Contours are subjective — they depend on perspective
° Surprise: Humans agree (somewhat)

° Goal: generate contours automatically
° Use them to break images into separate segments (subimages)
° J. Malik’ s group has leading algorithm
° Enable automatic image search and retrieval (“Find all the pictures with Fred”)

- S\ I A
\ /o }
) N
fp
o=
"/
~@ [N
D / p
L/ e
N /
2\ \{ VAR
{ )
S { / N
/A -
Image Human Generated Contours Machine Generated
02/05/2015 CS267 Lecture 6+ Contours 17

Image Segmentation (2/4)

° Think of image as matrix A(i,j) of pixels
» Each pixel has separate R(ed), G(reen), B(lue) intensities
° Bottleneck (so far) of Malik’ s algorithm is to compute other
matrices indicating whether pixel (i,j) likely to be on contour
« Ex: C(i,j) = average “R intensity” of pixels in rectangle above (i,j) -
average “R intensity” of pixels in rectangle below (i,j)
* C(i,j) large for pixel (i,j) marked with 3 , so (i,j) likely to be on
contour

° Algorithm eventually computes eigenvectors of sparse matrix
with entries computed from matrices like C

« Analogous to graph partitioning in later lecture

02/05/2015 CS267 Lecture 6+

Image Segmentation (3/4)

° Bottleneck: Given A(i,j), compute C(i,j) where
 Sa(i,j) = sum of A(i,j) for entries in k x (2k+1) rectangle above A(i,j)
=2 A(r,s) for i-k <r<i-1andjk<s =<j+k
« Sb(i,j) = similar sum of rectangle below A(i,j)
+ C(i,j) = Sa(i,j) — Sh(i,j)
° Approach (Bryan Catanzaro)
+ Compute S(i,j) = 2 A(r,s) for r=siand s=j

* Then sum of A(i,j) over any rectangle (l,o,, < i s lyighs Jiow S = Jpign)
iS S(lhighs Jnigh) = S(liow =1, Jnigh) = S(ligns Jiow1) + S? 1, Jiow 1)

IIow -

J Jiow Jhigh

1114120 |+

S(i.j)

. IIow
[ Ihigh

02/05/2015 CS267 Lecture 6+

Image Segmentation (4/4)

° New Bottleneck: Given A(i,j), compute S(i,j) where
* S(i,j)== A(r,s)for rsiand s=<j

° “2 dimensional parallel prefix”
Do parallel prefix independently on each row of A(i,j) :

- Spuli) = b A(i,s) fors =j
* Do parallel prefix independently on each column of S,

- S(ij) =X S, (rj) forr=i =2 A(r,s)fors=jand r=i

S(i.j)

02/05/2015 CS267 Lecture 6+ 20




°

o

°

o

°

o

- ultiply (SpMV) v = A*x
Using Segmented Scan (SegScan)
Segscan computes prefix sums of arbitrary segments
Segscan ([3,1,4,5,6,1,2,3],
[LERETTFFET]
= [3,4,8,5,6,7,9 3]

Use CSR format of Sparse Matrix A, store x densely 7
10230 Val =[12324531] 8
A=|2 400 5 ColInd=[13412515] X‘f
30001 Row Ptr=[ 14 7 9] 3

Create array P of all nonzero A(i,j)*x(j) = Val(k)*x(Col_Ind(k))
P=[7 4 314 32 15 21 3]
Create array S showing where segments (rows) start
S=[TFF TF F TF]
Compute SegScan(P,S) =
[7 11 14 14 46 61 21 24]
Extract A*x =[14 61 24]

www.cs.cmu.edu/afs/cs.cmu.edu/project/scandal/public/papers/CMU-CS-93-1 73 ps.Z
02/05/2015 CS267 Lecture 6+

Page layout in a browser

° ApBIylng layout rules to html description of a
page is a bottleneck, scan can help

° Simplest example

* Given widths [x4, x2, ..., Xp] of items to display on page, where
should each item go?
+ Item j starts at x4 + x5 + ... + X4

° Real examples have complicated constraints

- Defined by general trees, since in html each object to display can be
composed of other objects

« To get location of each object, need to do preorder traversal of tree,
“adding up” constraints of previous objects

« Scan can do preorder traversal of any tree in parallel
- Not just binary trees

° Ras Bodik, Leo Meyerovich

02/05/2015 CS267 Lecture 6+ 22

Summary of tree algorithms

° Lots of problems can be done quickly - in theory -
using trees

° Some algorithms are widely used
« broadcasts, reductions, parallel prefix
« carry look ahead addition

° Some are of theoretical interest only
« Csanky’ s method for matrix inversion
« Solving tridiagonal linear systems (without pivoting)
» Both numerically unstable
+ Csanky needs too many processors

° Embedded in various systems
« MPI, Split-C, Titanium, NESL, other languages
» CM-5 hardware control network

02/05/2015 CS267 Lecture 6+ 23




