
1

1!02/05/2015 CS267 Lecture 6+

CS 267

Tricks with Trees

James Demmel
www.cs.berkeley.edu/~demmel/cs267_Spr15

2!02/05/2015 CS267 Lecture 6+

Outline
°  A log n lower bound to compute any function in parallel
°  Reduction and broadcast in O(log n) time
°  Parallel prefix (scan) in O(log n) time
°  Adding two n-bit integers in O(log n) time
°  Multiplying n-by-n matrices in O(log n) time
°  Inverting n-by-n triangular matrices in O(log2 n) time
°  Inverting n-by-n dense matrices in O(log2 n) time
°  Evaluating arbitrary expressions in O(log n) time
°  Evaluating recurrences in O(log n) time

3!02/05/2015 CS267 Lecture 6+

Outline
°  A log n lower bound to compute any function in parallel
°  Reduction and broadcast in O(log n) time
°  Parallel prefix (scan) in O(log n) time
°  Adding two n-bit integers in O(log n) time
°  Multiplying n-by-n matrices in O(log n) time
°  Inverting n-by-n triangular matrices in O(log2 n) time
°  Inverting n-by-n dense matrices in O(log2 n) time
°  Evaluating arbitrary expressions in O(log n) time
°  Evaluating recurrences in O(log n) time
°  “2D parallel prefix”, for image segmentation (Bryan Catanzaro, Kurt Keutzer)
°  Sparse-Matrix-Vector-Multiply (SpMV) using Segmented Scan
°  Parallel page layout in a browser (Leo Meyerovich, Ras Bodik)

4!02/05/2015 CS267 Lecture 6+

Outline
°  A log n lower bound to compute any function in parallel
°  Reduction and broadcast in O(log n) time
°  Parallel prefix (scan) in O(log n) time
°  Adding two n-bit integers in O(log n) time
°  Multiplying n-by-n matrices in O(log n) time
°  Inverting n-by-n triangular matrices in O(log2 n) time
°  Inverting n-by-n dense matrices in O(log2 n) time
°  Evaluating arbitrary expressions in O(log n) time
°  Evaluating recurrences in O(log n) time
°  “2D parallel prefix”, for image segmentation (Bryan Catanzaro, Kurt Keutzer)
°  Sparse-Matrix-Vector-Multiply (SpMV) using Segmented Scan
°  Parallel page layout in a browser (Leo Meyerovich, Ras Bodik)
°  Solving n-by-n tridiagonal matrices in O(log n) time
°  Traversing linked lists
°  Computing minimal spanning trees
°  Computing convex hulls of point sets…

2

5!02/05/2015 CS267 Lecture 6+

A log n lower bound to compute any function of n variables

° Assume we can only use binary operations, one per
time unit

° After 1 time unit, an output can only depend on two
inputs

° Use induction to show that after k time units, an
output can only depend on 2k inputs

•  After log2 n time units, output depends on at most n inputs

° A binary tree performs such a computation

6!02/05/2015 CS267 Lecture 6+

Broadcasts and Reductions on Trees

7!02/05/2015 CS267 Lecture 6+

Parallel Prefix, or Scan

°  If “+” is an associative operator, and x[0],…,x[p-1] are input
data then parallel prefix operation computes

°  Notation: j:k means x[j]+x[j+1]+…+x[k], blue is final value
y[j] = x[0] + x[1] + … + x[j] for j=0,1,…,p-1

8!02/05/2015 CS267 Lecture 6+

Mapping Parallel Prefix onto a Tree - Details
°  Up-the-tree phase (from leaves to root)

°  By induction, Lsave = sum of all leaves in left subtree
°  Down the tree phase (from root to leaves)

°  By induction, S = sum of all leaves to left of vertex receiving S

1) Get values L and R from left and right children
2) Save L in a local register Lsave
3) Pass sum L+R to parent

1) Get value S from parent (the root gets 0)
2) Send S to the left child
3) Send S + Lsave to the right child

3

9!02/05/2015 CS267 Lecture 6+

E.g., Fibonacci via Matrix Multiply Prefix

Fn+1 = Fn + Fn-1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +

1-n

n

n

1n

F
F

01
11

F
F

Can compute all Fn by matmul_prefix on

[, , , , , , , ,]
then select the upper left entry

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

01
11

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

01
11

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

01
11

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

01
11

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

01
11

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

01
11

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

01
11

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

01
11

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

01
11

Slide source: Alan Edelman, MIT 10!02/05/2015 CS267 Lecture 6+

Adding two n-bit integers in O(log n) time
°  Let a = a[n-1]a[n-2]…a[0] and b = b[n-1]b[n-2]…b[0] be two n-bit

binary numbers
°  We want their sum s = a+b = s[n]s[n-1]…s[0]

°  Challenge: compute all c[i] in O(log n) time via parallel prefix

°  Used in all computers to implement addition - Carry look-ahead

c[-1] = 0 … rightmost carry bit
for i = 0 to n-1
 c[i] = ((a[i] xor b[i]) and c[i-1]) or (a[i] and b[i]) ... next carry bit
 s[i] = (a[i] xor b[i]) xor c[i-1]

 for all (0 <= i <= n-1) p[i] = a[i] xor b[i] … propagate bit
 for all (0 <= i <= n-1) g[i] = a[i] and b[i] … generate bit

 c[i] = (p[i] and c[i-1]) or g[i] = p[i] g[i] * c[i-1] = C[i] * c[i-1]
 1 1 0 1 1 1
 … 2-by-2 Boolean matrix multiplication (associative)
 = C[i] * C[i-1] * … C[0] * 0
 1
 … evaluate each P[i] = C[i] * C[i-1] * … * C[0] by parallel prefix

11!02/05/2015 CS267 Lecture 6+

Other applications of scan = parallel prefix

° There are many applications of scans, some more
obvious than others

•  add multi-precision numbers (represented as array of numbers)
•  evaluate recurrences, expressions
•  solve tridiagonal systems (but numerically unstable!)
•  implement bucket sort and radix sort
•  to dynamically allocate processors
•  to search for regular expression (e.g., grep)
•  many others…

° Names: +\ (APL), cumsum (Matlab), MPI_SCAN

° Note: 2n operations used when only n-1 needed

12!02/05/2015 CS267 Lecture 6+

Multiplying n-by-n matrices in O(log n) time

° For all (1 <= i,j,k <= n) P(i,j,k) = A(i,k) * B(k,j)
•  cost = 1 time unit, using n3 processors

° For all (1 <= i,j <= n) C(i,j) = Σ P(i,j,k)
•  cost = O(log n) time, using n2 trees with n3 / 2 processors

k =1

n

4

13!02/05/2015 CS267 Lecture 6+

Inverting triangular n-by-n matrices in O(log2 n) time

°  Fact:

°  Function Tri_Inv(T) … assume n = dim(T) = 2m for simplicity

°  time(Tri_Inv(n)) = time(Tri_Inv(n/2)) + O(log(n))
•  Change variable to m = log n to get time(Tri_Inv(n)) = O(log2n)

A 0
C B

-1
= A 0

-B CA B

-1

-1

-1 -1

If T is 1-by-1
 return 1/T
else
 … Write T = A 0
 C B
 In parallel do {
 invA = Tri_Inv(A)
 invB = Tri_Inv(B) } … implicitly uses a tree
 newC = -invB * C * invA
 Return invA 0
 newC invB

14!
02/05/2015

CS267 Lecture 6+

Inverting Dense n-by-n matrices in O(log n) time

° Lemma 1: Cayley-Hamilton Theorem
•  expression for A-1 via characteristic polynomial in A

° Lemma 2: Newton’s Identities
•  Triangular system of equations for coefficients of characteristic

polynomial, where matrix entries = sk

° Lemma 3: sk = trace(Ak) = Σ Ak [i,i]

° Csanky’s Algorithm (1976)

2

i=1

n

1) Compute the powers A2, A3, …,An-1 by parallel prefix
 cost = O(log2 n)
2) Compute the traces sk = trace(Ak)
 cost = O(log n)
3) Solve Newton identities for coefficients of characteristic polynomial
 cost = O(log2 n)
4) Evaluate A-1 using Cayley-Hamilton Theorem
 cost = O(log n)

o  Completely numerically unstable

15!02/05/2015 CS267 Lecture 6+

Evaluating arbitrary expressions

° Let E be an arbitrary expression formed from +, -,
*, /, parentheses, and n variables, where each
appearance of each variable is counted separately

° Can think of E as arbitrary expression tree with n
leaves (the variables) and internal nodes labeled by
+, -, * and /

° Theorem (Brent): E can be evaluated in O(log n)
time, if we reorganize it using laws of commutativity,
associativity and distributivity

° Sketch of (modern) proof: evaluate expression tree E
greedily by repeatedly

•  collapsing all leaves into their parents at each time step
•  evaluating all “chains” in E with parallel prefix

16!02/05/2015 CS267 Lecture 6+

Evaluating recurrences

°  Let xi = fi(xi-1), fi a rational function, x0 given
°  How fast can we compute xn?
°  Theorem (Kung): Suppose degree(fi) = d for all i

•  If d=1, xn can be evaluated in O(log n) using parallel prefix
•  If d>1, evaluating xn takes Ω(n) time, i.e. no speedup is possible

°  Sketch of proof when d=1

°  Sketch of proof when d>1
•  degree(xi) as a function of x0 is di
•  After i parallel steps, degree(anything) ≤ 2i

•  Computing xi take Ω(i) steps

xi = fi(xi-1) = (ai * xi-1 + bi)/(ci * xi-1 + di) can be written as
xi = numi / deni = (ai * numi-1 + bi * deni-1)/(ci * numi-1 + di * deni-1) or
 numi = ai bi * numi-1 = Mi * numi-1 = Mi * Mi-1 * … * M1* num0
 demi ci di deni-1 deni-1 den0
Can use parallel prefix with 2-by-2 matrix multiplication

5

17!02/05/2015 CS267 Lecture 6+

Image Segmentation (1/4)

Image Human Generated Contours Machine Generated
Contours

°  Contours are subjective – they depend on perspective
°  Surprise: Humans agree (somewhat)

°  Goal: generate contours automatically
°  Use them to break images into separate segments (subimages)
°  J. Malik’s group has leading algorithm
°  Enable automatic image search and retrieval (“Find all the pictures with Fred”)

18!

Image Segmentation (2/4)

°  Think of image as matrix A(i,j) of pixels
•  Each pixel has separate R(ed), G(reen), B(lue) intensities

°  Bottleneck (so far) of Malik’s algorithm is to compute other
matrices indicating whether pixel (i,j) likely to be on contour

•  Ex: C(i,j) = average “R intensity” of pixels in rectangle above (i,j) –
 average “R intensity” of pixels in rectangle below (i,j)
•  C(i,j) large for pixel (i,j) marked with , so (i,j) likely to be on

contour

°  Algorithm eventually computes eigenvectors of sparse matrix

with entries computed from matrices like C
•  Analogous to graph partitioning in later lecture

02/05/2015 CS267 Lecture 6+

19!

Image Segmentation (3/4)

° Bottleneck: Given A(i,j), compute C(i,j) where
•  Sa(i,j) = sum of A(i,j) for entries in k x (2k+1) rectangle above A(i,j)

 = Σ A(r,s) for i-k ≤ r ≤ i-1 and j-k ≤ s ≤ j+k
•  Sb(i,j) = similar sum of rectangle below A(i,j)
•  C(i,j) = Sa(i,j) – Sb(i,j)

° Approach (Bryan Catanzaro)
•  Compute S(i,j) = Σ A(r,s) for r ≤ i and s ≤ j
•  Then sum of A(i,j) over any rectangle (Ilow ≤ i ≤ Ihigh, Jlow ≤ j ≤ Jhigh)

is S(Ihigh, Jhigh) - S(Ilow -1, Jhigh) - S(Ihigh, Jlow-1) + S(Ilow -1, Jlow -1)

02/05/2015 CS267 Lecture 6+

+1

+1 -1 -1 +1 = 0

+1 -1 = 0

+1
-1
=0

Ihigh

Jhigh

Ilow

Jlow

i

j

S(i,j)

20!

Image Segmentation (4/4)

° New Bottleneck: Given A(i,j), compute S(i,j) where
•  S(i,j) = Σ A(r,s) for r ≤ i and s ≤ j

° “2 dimensional parallel prefix”
•  Do parallel prefix independently on each row of A(i,j) :

-  Srow(i,j) = Σ A(i,s) for s ≤ j
•  Do parallel prefix independently on each column of Srow

-  S(i,j) = Σ Srow(r,j) for r ≤ i = Σ A(r,s) for s ≤ j and r ≤ i

02/05/2015 CS267 Lecture 6+

i

j

S(i,j)

6

21!

Sparse-Matrix-Vector-Multiply (SpMV) y = A*x
Using Segmented Scan (SegScan)

°  Segscan computes prefix sums of arbitrary segments

°  Use CSR format of Sparse Matrix A, store x densely

°  Create array P of all nonzero A(i,j)*x(j) = Val(k)*x(Col_Ind(k))

°  Create array S showing where segments (rows) start

°  Compute SegScan(P, S) =

°  Extract A*x = [14 61 24]
°  www.cs.cmu.edu/afs/cs.cmu.edu/project/scandal/public/papers/CMU-CS-93-173.ps.Z

02/05/2015 CS267 Lecture 6+

Segscan ([3, 1, 4, 5, 6, 1, 2, 3],
 [T, F, F, T, T, F, F, T])
 = [3, 4, 8, 5, 6, 7, 9, 3]

1  0 2 3 0
2 4 0 0 5
3 0 0 0 1

A =
Val = [1 2 3 2 4 5 3 1]
Col_Ind = [1 3 4 1 2 5 1 5]
Row_Ptr=[1 4 7 9]

7
8
2
1
3

x=

P = [7 4 3 14 32 15 21 3]

S = [T F F T F F T F]

[7 11 14 14 46 61 21 24]

22!

Page layout in a browser

° Applying layout rules to html description of a
webpage is a bottleneck, scan can help

° Simplest example
•  Given widths [x1, x2, … , xn] of items to display on page, where

should each item go?
•  Item j starts at x1 + x2 + … + xj-1

° Real examples have complicated constraints
•  Defined by general trees, since in html each object to display can be

composed of other objects
•  To get location of each object, need to do preorder traversal of tree,
“adding up” constraints of previous objects

•  Scan can do preorder traversal of any tree in parallel
-  Not just binary trees

° Ras Bodik, Leo Meyerovich

02/05/2015 CS267 Lecture 6+

23!02/05/2015 CS267 Lecture 6+

Summary of tree algorithms

° Lots of problems can be done quickly - in theory -
using trees

° Some algorithms are widely used
•  broadcasts, reductions, parallel prefix
•  carry look ahead addition

° Some are of theoretical interest only
•  Csanky’s method for matrix inversion
•  Solving tridiagonal linear systems (without pivoting)
•  Both numerically unstable
•  Csanky needs too many processors

° Embedded in various systems
•  MPI, Split-C, Titanium, NESL, other languages
•  CM-5 hardware control network

