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CS 267  
Dense Linear Algebra: 
History and Structure, 

Parallel Matrix Multiplication"
James Demmel!

!
www.cs.berkeley.edu/~demmel/cs267_Spr15!

!

Quick review of earlier lecture 
• What do you call 

• A program written in PyGAS, a Global Address 
Space language based on Python… 

• That uses a Monte Carlo simulation algorithm to 
approximate π … 

• That has a race condition, so that it gives you a 
different funny answer every time you run it? 

                                Monte - π - thon 
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Outline 
• History and motivation 

• What is dense linear algebra? 
• Why minimize communication? 
• Lower bound on communication 

• Structure of the Dense Linear Algebra motif 
• What does A\b do? 

• Parallel Matrix-matrix multiplication 
• Attaining the lower bound 

• Other Parallel Algorithms (next lecture) 
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Motifs 

The Motifs (formerly “Dwarfs”) from  
“The Berkeley View” (Asanovic et al.) 

Motifs form key computational patterns 

What is dense linear algebra? 
•  Not just matmul! 
•  Linear Systems:  Ax=b 
•  Least Squares: choose x to minimize ||Ax-b||2 

•  Overdetermined or underdetermined 

•  Unconstrained, constrained, weighted 

•  Eigenvalues and vectors of Symmetric Matrices 
•  Standard (Ax = λx), Generalized (Ax=λBx) 

•  Eigenvalues and vectors of Unsymmetric matrices 
•  Eigenvalues, Schur form, eigenvectors, invariant subspaces 
•  Standard, Generalized 

•  Singular Values and vectors (SVD) 
•  Standard, Generalized 

•  Different matrix structures 
•  Real, complex; Symmetric, Hermitian, positive definite; dense, triangular, banded … 

•  Level of detail 
•  Simple Driver (“x=A\b”) 
•  Expert Drivers with error bounds,  extra-precision, other options 
•  Lower level routines (“apply certain kind of orthogonal transformation”, matmul…) 
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A brief history of (Dense) Linear Algebra software (1/7) 

 
• Libraries like EISPACK (for eigenvalue problems) 

• Then the BLAS (1) were invented (1973-1977) 
• Standard library of 15 operations (mostly) on vectors 

•  “AXPY”  ( y = α·x + y ), dot product, scale (x = α·x ), etc 
•  Up to 4 versions of each (S/D/C/Z), 46 routines, 3300 LOC 

• Goals 
•  Common “pattern” to ease programming, readability 
•  Robustness, via careful coding (avoiding over/underflow) 
•  Portability + Efficiency via machine specific implementations 

• Why BLAS 1 ?  They do O(n1) ops on O(n1) data 
• Used in libraries like LINPACK (for linear systems) 

•  Source of the name “LINPACK Benchmark” (not the code!) 
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•  In the beginning was the do-loop… 
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Current Records for Solving Dense Systems (11/2013) 

•  Linpack Benchmark  
•  Fastest machine overall (www.top500.org) 

•   Tianhe-2 (Guangzhou, China) 
•   33.9 Petaflops out of 54.9 Petaflops peak (n=10M) 
•   3.1M cores, of which 2.7M are accelerator cores 

•  Intel Xeon E5-2692 (Ivy Bridge) and                
Xeon Phi 31S1P  

•   1 Pbyte memory 
•   17.8 MWatts of power, 1.9 Gflops/Watt 

•   Historical data (www.netlib.org/performance) 
•   Palm Pilot III   
•   1.69 Kiloflops 
•   n = 100 

Current Records for Solving Dense Systems (11/2014) 
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A brief history of (Dense) Linear Algebra software (2/7) 
• But the BLAS-1 weren’t enough 

• Consider AXPY ( y = α·x + y ): 2n flops on 3n read/writes  
• Computational intensity = (2n)/(3n) = 2/3 
• Too low to run near peak speed (read/write dominates) 
• Hard to vectorize (“SIMD’ize”) on supercomputers of 

the day (1980s) 
• So the BLAS-2 were invented (1984-1986) 

• Standard library of 25 operations (mostly) on matrix/
vector pairs 

•  “GEMV”: y = α·A·x + β·x, “GER”: A = A + α·x·yT,  x = T-1·x 
•  Up to 4 versions of each (S/D/C/Z), 66 routines, 18K LOC 

• Why BLAS 2 ?  They do O(n2) ops on O(n2) data 
• So computational intensity still just ~(2n2)/(n2) = 2 

•  OK for vector machines, but not for machine with caches 
02/26/2015! CS267 Lecture 12! 9!

A brief history of (Dense) Linear Algebra software (3/7) 
• The next step: BLAS-3 (1987-1988) 

• Standard library of 9 operations (mostly) on matrix/matrix pairs 
•  “GEMM”: C = α·A·B + β·C, C = α·A·AT + β·C,  B = T-1·B 
•  Up to 4 versions of each (S/D/C/Z), 30 routines, 10K LOC 

• Why BLAS 3 ?  They do O(n3) ops on O(n2) data 
• So computational intensity (2n3)/(4n2) = n/2 – big at last! 

•  Good for machines with caches, other mem. hierarchy levels 
• How much BLAS1/2/3 code so far  (all at www.netlib.org/blas) 

• Source: 142 routines, 31K LOC,    Testing:  28K LOC 
•  Reference  (unoptimized) implementation only  
•  Ex: 3 nested loops for GEMM 

•  Lots more optimized code (eg Homework 1) 
•  Motivates “automatic tuning” of the BLAS 

• Part  of standard math libraries (eg AMD ACML, Intel MKL) 
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A brief history of (Dense) Linear Algebra software (4/7) 
•  LAPACK – “Linear Algebra PACKage” - uses BLAS-3 (1989 – now) 

•  Ex: Obvious way to express Gaussian Elimination  (GE) is adding 
multiples of one row to other rows – BLAS-1 

•  How do we reorganize GE to use BLAS-3 ? (details later) 
•  Contents of LAPACK (summary) 

•  Algorithms that are (nearly) 100% BLAS 3 
–  Linear Systems: solve Ax=b for x 
–  Least Squares: choose x to minimize ||Ax-b||2 

•  Algorithms that are only ≈50% BLAS 3 
–  Eigenproblems: Find λ and x where Ax = λ x 
–  Singular Value Decomposition (SVD) 

•  Generalized problems (eg Ax = λ Bx) 
•  Error bounds for everything 
•  Lots of variants depending on A’s structure  (banded, A=AT, etc) 

•  How much code?  (Release 3.5.0, Nov 2013) (www.netlib.org/lapack) 
•  Source: 1740 routines, 704K LOC,  Testing: 1096 routines, 467K LOC 

•  Ongoing development (at UCB and elsewhere) (class projects!) 
•  Next planned release June 2015 

02/21/2012! CS267 Lecture 11!
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A brief history of (Dense) Linear Algebra software (5/7) 
•  Is LAPACK parallel? 

• Only if the BLAS are parallel (possible in shared memory) 
• ScaLAPACK – “Scalable LAPACK” (1995 – now) 

• For distributed memory – uses MPI 
• More complex data structures, algorithms than LAPACK 

•  Only (small) subset of LAPACK’s functionality available 
•  Details later (class projects!)  

• All at www.netlib.org/scalapack 
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Success Stories for Sca/LAPACK (6/7) 

Cosmic Microwave Background 
Analysis, BOOMERanG 

collaboration, MADCAP code (Apr. 
27, 2000). 

ScaLAPACK 

•  Widely used 
• Adopted by Mathworks, Cray, 

Fujitsu, HP, IBM, IMSL, Intel, 
NAG, NEC, SGI, … 

•  7.5M webhits/year @ Netlib 
(incl. CLAPACK, LAPACK95) 

•  New Science discovered through the 
solution of dense matrix systems 

• Nature article on the flat 
universe used ScaLAPACK 

• Other articles in Physics 
Review B that also use it 

•  1998 Gordon Bell Prize 
• www.nersc.gov/news/reports/

newNERSCresults050703.pdf 

A brief future look at (Dense) Linear Algebra software (7/7) 
• PLASMA, DPLASMA and MAGMA (now) 

• Ongoing extensions to Multicore/GPU/Heterogeneous 
• Can one software infrastructure accommodate all algorithms 

and platforms of current (future) interest? 
•  How much code generation and tuning can we automate? 

• Details later (Class projects!) (icl.cs.utk.edu/{{d}plasma,magma}) 
• Other related projects 

• Elemental (libelemental.org) 
•  Distributed memory dense linear algebra 
•  “Balance ease of use and high performance” 

• FLAME (z.cs.utexas.edu/wiki/flame.wiki/FrontPage) 
•  Formal Linear Algebra Method Environment 
•  Attempt to automate code generation across multiple platforms 

• BLAST Forum (www.netlib.org/blas/blast-forum) 
•  Attempt to extend BLAS, add new functions, extra-precision, … 
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Back to basics:  
Why avoiding communication is important (1/3) 
Algorithms have two costs: 
1. Arithmetic (FLOPS) 
2. Communication: moving data between  

•  levels of a memory hierarchy (sequential case)  
• processors over a network (parallel case).  

CPU 
Cache 

DRAM 

CPU 
DRAM 

CPU 
DRAM 

CPU 
DRAM 

CPU 
DRAM 
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Why avoiding communication is important (2/3) 
•  Running time of an algorithm is sum of 3 terms: 

•  # flops * time_per_flop 
•  # words moved / bandwidth 
•  # messages * latency 

17!

communica(on	
  

•  Time_per_flop  <<  1/ bandwidth  <<  latency 
•  Gaps growing exponentially with time 

•  Goal : organize linear algebra to avoid communication 
•  Between all memory hierarchy levels  

•  L1         L2         DRAM          network,  etc  
•  Not just hiding communication (overlap with arith) (speedup ≤ 2x )  
•  Arbitrary speedups possible 

Annual improvements 
Time_per_flop Bandwidth Latency 

DRAM 26% 15% 
Network 23% 5% 

59% 

02/26/2015!

•  Minimize communication to save time 
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Why Minimize Communication? (3/3) 
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Minimize communication to save energy 
Goal:  
Organize Linear Algebra to Avoid Communication 

20!

•  Between all memory hierarchy levels  
•  L1         L2         DRAM          network,  etc  

•  Not just hiding communication (overlap with arithmetic)  
•  Speedup ≤ 2x   

•  Arbitrary speedups/energy savings possible 
•  Later: Same goal for other computational patterns 

•  Lots of open problems 

02/26/2015! CS267 Lecture 12!



CS267 Lecture 2 6 

Review: Blocked Matrix Multiply 
• Blocked Matmul C = A·B breaks A, B and C into blocks 

with dimensions that depend on cache size 

21!

… Break Anxn, Bnxn, Cnxn into bxb blocks labeled  A(i,j), etc 
…  b chosen so 3 bxb blocks fit in cache 
for i = 1 to n/b,   for j=1 to n/b,   for k=1 to n/b 
      C(i,j) = C(i,j) + A(i,k)·B(k,j)      …  b x b matmul,  4b2 reads/writes 
   
•  When b=1, get “naïve” algorithm, want b larger … 
•   (n/b)3 · 4b2 = 4n3/b reads/writes altogether 
•  Minimized when 3b2 = cache size = M, yielding O(n3/M1/2) reads/writes 

•  What if we had more levels of memory? (L1, L2, cache etc)? 
•  Would need 3 more nested loops per level 
•  Recursive (cache-oblivious algorithm) also possible 
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Communication Lower Bounds:    Prior Work on Matmul 

• Assume  n3 algorithm  (i.e. not Strassen-like) 
• Sequential case, with fast memory of size M 

• Lower bound on  #words moved to/from slow memory  = 
Ω (n3 / M1/2 )    [Hong, Kung, 81]  

• Attained using blocked or cache-oblivious algorithms 

22!

• Parallel case on P processors: 
•  Let M be memory per processor; assume load balanced 
•  Lower bound on #words moved                                         

= Ω (n3 /(p · M1/2 ))        [Irony, Tiskin, Toledo, 04] 
•  If M = 3n2/p (one copy of each matrix), then                 

lower bound = Ω (n2 /p1/2 )  
• Attained by SUMMA, Cannon’s algorithm 

NNZ  (name of alg) Lower bound 
on #words 

Attained by 

3n2           (“2D alg”) Ω (n2 / P1/2 ) [Cannon, 69] 
3n2 P1/3  (“3D alg”) Ω (n2 / P2/3 ) [Johnson,93] 

02/26/2015! CS267 Lecture 12!

New lower bound for all “direct” linear algebra 

•  Holds for 
•  Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, … 
•  Some whole programs (sequences of  these operations,                 

no matter how they are interleaved, eg computing Ak) 
•  Dense and sparse matrices (where #flops  <<  n3 ) 
•  Sequential and parallel algorithms 
•  Some graph-theoretic algorithms (eg Floyd-Warshall) 

•  Generalizations later (Strassen-like algorithms, loops accessing arrays) 
23!

Let M = “fast” memory size per processor 
          = cache size (sequential case) or O(n2/p) (parallel case) 
#flops = number of flops done per processor 
 
     #words_moved per processor = Ω(#flops / M1/2 )  

     #messages_sent per processor = Ω (#flops / M3/2 )  
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New lower bound for all “direct” linear algebra 

•  Sequential case, dense n x n matrices, so O(n3) flops 
•  #words_moved = Ω(n3/ M1/2 ) 
•  #messages_sent =  Ω(n3/ M3/2 ) 

•  Parallel case, dense n x n matrices 
•  Load balanced, so   O(n3/p) flops processor 
•  One copy of data, load balanced, so M = O(n2/p) per processor 
•  #words_moved = Ω(n2/ p1/2 ) 
•  #messages_sent = Ω( p1/2 ) 

24!

Let M = “fast” memory size per processor 
          = cache size (sequential case) or O(n2/p) (parallel case) 
#flops = number of flops done per processor 
 
     #words_moved per processor = Ω(#flops / M1/2 )  

     #messages_sent per processor = Ω (#flops / M3/2 )  
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SIAM Linear Algebra Prize, 2012 
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Can we attain these lower bounds? 
•  Do conventional dense algorithms as implemented in  LAPACK and 

ScaLAPACK attain these bounds? 
•  Mostly not yet, work in progress 

•  If not, are there other algorithms that do? 
•  Yes 

•  Goals for algorithms: 
•  Minimize #words_moved 
•  Minimize #messages_sent 

•  Need new data structures 
•  Minimize for multiple memory hierarchy levels 

•  Cache-oblivious algorithms would be simplest 
•  Fewest flops when matrix fits in fastest memory 

•  Cache-oblivious algorithms don’t  always attain  this 
•  Attainable for nearly all dense linear algebra 

•  Just a few prototype implementations so far (class projects!) 
•  Only a few sparse algorithms so far (eg Cholesky) 
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Outline 
• History and motivation 

• What is dense linear algebra? 
• Why minimize communication? 
• Lower bound on communication 

• Structure of the Dense Linear Algebra motif 
• What does A\b do? 

• Parallel Matrix-matrix multiplication 
• Attaining the lower bound 
• Proof of the lower bound (if time) 

• Other Parallel Algorithms (next lecture) 

What could go into the linear algebra motif(s)? 

For all linear algebra problems 
  

For all matrix/problem structures 
  

For all data types 
  

For all programming interfaces  
  

Produce best algorithm(s) w.r.t.     
  performance and/or accuracy 
  (including error bounds, etc) 
  

For all architectures and networks 
  

Need to prioritize, automate! 
CS267 Lecture 12! 27!02/26/2015!

For all linear algebra problems: 
Ex: LAPACK Table of Contents 

•  Linear Systems 
•  Least Squares 

•  Overdetermined, underdetermined 
•  Unconstrained, constrained, weighted 

•  Eigenvalues and vectors of Symmetric Matrices 
•  Standard (Ax = λx), Generalized (Ax=λBx) 

•  Eigenvalues and vectors of Unsymmetric matrices 
•  Eigenvalues, Schur form, eigenvectors, invariant subspaces 
•  Standard, Generalized 

•  Singular Values and vectors (SVD) 
•  Standard, Generalized 

•  Level of detail 
•  Simple Driver 
•  Expert Drivers with error bounds,  extra-precision, other options 
•  Lower level routines (“apply certain kind of orthogonal transformation”) 

CS267 Lecture 12! 28!02/26/2015!
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What does A\b do? What could it do? 
Ex: LAPACK Table of Contents 

•  BD – bidiagonal 
•  GB – general banded 
•  GE – general  
•  GG – general , pair 
•  GT – tridiagonal 
•  HB – Hermitian banded 
•  HE – Hermitian 
•  HG – upper Hessenberg, pair 
•  HP – Hermitian, packed 
•  HS – upper Hessenberg 
•  OR – (real) orthogonal 
•  OP – (real) orthogonal, packed 
•  PB – positive definite, banded 
•  PO – positive definite 
•  PP –  positive definite, packed 
•  PT –  positive definite, tridiagonal 

•  SB – symmetric, banded 
•  SP –  symmetric, packed 
•  ST –  symmetric, tridiagonal  
•  SY –  symmetric  
•  TB – triangular, banded 
•  TG – triangular, pair 
•  TP – triangular, packed 
•  TR – triangular 
•  TZ – trapezoidal 
•  UN – unitary 
•  UP – unitary packed 
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What does A\b do? What could it do? 
Ex: LAPACK Table of Contents 

•  BD – bidiagonal 
•  GB – general banded 
•  GE – general  
•  GG – general , pair 
•  GT – tridiagonal 
•  HB – Hermitian banded 
•  HE – Hermitian 
•  HG – upper Hessenberg, pair 
•  HP – Hermitian, packed 
•  HS – upper Hessenberg 
•  OR – (real) orthogonal 
•  OP – (real) orthogonal, packed 
•  PB – positive definite, banded 
•  PO – positive definite 
•  PP –  positive definite, packed 
•  PT –  positive definite, tridiagonal 

•  SB – symmetric, banded 
•  SP –  symmetric, packed 
•  ST –  symmetric, tridiagonal  
•  SY –  symmetric  
•  TB – triangular, banded 
•  TG – triangular, pair 
•  TP – triangular, packed 
•  TR – triangular 
•  TZ – trapezoidal 
•  UN – unitary 
•  UP – unitary packed 
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What does A\b do? What could it do? 
Ex: LAPACK Table of Contents 

•  BD – bidiagonal 
•  GB – general banded 
•  GE – general  
•  GG – general, pair  
•  GT – tridiagonal 
•  HB – Hermitian banded 
•  HE – Hermitian 
•  HG – upper Hessenberg, pair 
•  HP – Hermitian, packed 
•  HS – upper Hessenberg 
•  OR – (real) orthogonal 
•  OP – (real) orthogonal, packed 
•  PB – positive definite, banded 
•  PO – positive definite 
•  PP –  positive definite, packed 
•  PT –  positive definite, tridiagonal 

•  SB – symmetric, banded 
•  SP –  symmetric, packed 
•  ST –  symmetric, tridiagonal  
•  SY –  symmetric  
•  TB – triangular, banded 
•  TG – triangular, pair 
•  TP – triangular, packed 
•  TR – triangular 
•  TZ – trapezoidal 
•  UN – unitary 
•  UP – unitary packed 
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What does A\b do? What could it do? 
Ex: LAPACK Table of Contents 

•  BD – bidiagonal 
•  GB – general banded 
•  GE – general  
•  GG – general, pair  
•  GT – tridiagonal 
•  HB – Hermitian banded 
•  HE – Hermitian 
•  HG – upper Hessenberg, pair 
•  HP – Hermitian, packed 
•  HS – upper Hessenberg 
•  OR – (real) orthogonal 
•  OP – (real) orthogonal, packed 
•  PB – positive definite, banded 
•  PO – positive definite 
•  PP –  positive definite, packed 
•  PT –  positive definite, tridiagonal 

•  SB – symmetric, banded 
•  SP –  symmetric, packed 
•  ST –  symmetric, tridiagonal  
•  SY –  symmetric  
•  TB – triangular, banded 
•  TG – triangular, pair 
•  TP – triangular, packed 
•  TR – triangular 
•  TZ – trapezoidal 
•  UN – unitary 
•  UP – unitary packed 
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What does A\b do? What could it do? 
Ex: LAPACK Table of Contents 
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•  BD – bidiagonal 
•  GB – general banded 
•  GE – general  
•  GG – general, pair  
•  GT – tridiagonal 
•  HB – Hermitian banded 
•  HE – Hermitian 
•  HG – upper Hessenberg, pair 
•  HP – Hermitian, packed 
•  HS – upper Hessenberg 
•  OR – (real) orthogonal 
•  OP – (real) orthogonal, packed 
•  PB – positive definite, banded 
•  PO – positive definite 
•  PP –  positive definite, packed 
•  PT –  positive definite, tridiagonal 

•  SB – symmetric, banded 
•  SP –  symmetric, packed 
•  ST –  symmetric, tridiagonal  
•  SY –  symmetric  
•  TB – triangular, banded 
•  TG – triangular, pair 
•  TP – triangular, packed 
•  TR – triangular 
•  TZ – trapezoidal 
•  UN – unitary 
•  UP – unitary packed 

Organizing Linear Algebra – in books 

www.netlib.org/lapack www.netlib.org/scalapack 

www.cs.utk.edu/~dongarra/etemplates www.netlib.org/templates 

gams.nist.gov 
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Outline 
• History and motivation 

• What is dense linear algebra? 
• Why minimize communication? 
• Lower bound on communication 

• Structure of the Dense Linear Algebra motif 
• What does A\b do? 

• Parallel Matrix-matrix multiplication 
• Attaining the lower bound 

• Other Parallel Algorithms (next lecture) 
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Different Parallel Data Layouts for Matrices (not all!) 

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 

0 1 2 3 0 1 2 3 

1) 1D Column Blocked Layout 2) 1D Column Cyclic Layout 

3) 1D Column Block Cyclic Layout 

4) Row versions of the previous layouts 

Generalizes others 

0 1 0 1 0 1 0 1 
2 3 2 3 2 3 2 3 
0 1 0 1 0 1 0 1 
2 3 2 3 2 3 2 3 
0 1 0 1 0 1 0 1 
2 3 2 3 2 3 2 3 
0 1 0 1 0 1 0 1 
2 3 2 3 2 3 2 3 6) 2D Row and Column 

Block Cyclic Layout 

0 1 2 3 

0 1 

2 3 

5) 2D Row and Column Blocked Layout 

b 
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Parallel Matrix-Vector Product 
• Compute y = y + A*x, where A is a dense  matrix 
•  Layout:  

•  1D row blocked 
• A(i) refers to the n by n/p block row                                                    

that processor i owns,  
•  x(i) and y(i) similarly refer to                                                         

segments of x,y owned by i 
• Algorithm: 

•  Foreach processor i 
•     Broadcast x(i) 
•     Compute y(i) = A(i)*x 

• Algorithm uses the formula 
y(i) = y(i) + A(i)*x = y(i) + Σj A(i,j)*x(j) 

x 

y 

P0 

P1 

P2 

P3 

P0   P1    P2     P3 

A(0) 

A(1) 

A(2) 

A(3) 
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Matrix-Vector Product y = y + A*x 
• A column layout of the matrix eliminates the broadcast of x 

• But adds a reduction to update the destination y 
• A 2D blocked layout uses a broadcast and reduction, both 

on a subset of processors 
• sqrt(p) for square processor grid 

P0     P1    P2    P3 

P0      P1     P2    P3 

P4      P5     P6    P7 

P8     P9     P10   P11 

P12    P13   P14   P15 
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Parallel Matrix Multiply 
• Computing C=C+A*B 
• Using basic algorithm: 2*n3 Flops 
• Variables are: 

• Data layout: 1D? 2D? Other? 
• Topology of machine: Ring? Torus?   
• Scheduling communication 

• Use of performance models for algorithm design 
•  Message Time = “latency” + #words * time-per-word 

                   = α + n*β 
• Efficiency (in any model): 

• serial time / (p *  parallel time) 
• perfect (linear) speedup ↔ efficiency = 1 
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Matrix Multiply with 1D Column Layout 
• Assume matrices are n x n and n is divisible by p 

• A(i) refers to the n by n/p block column that processor i 
owns (similiarly for B(i) and C(i)) 

• B(i,j) is the n/p by n/p sublock of B(i)  
•  in rows j*n/p through (j+1)*n/p - 1 

• Algorithm uses the formula 
C(i) = C(i) + A*B(i) = C(i) + Σj A(j)*B(j,i) 

p0  p1  p2  p3  p5  p4  p6  p7  

May be a reasonable 
assumption for analysis, 
not for code 
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Matrix Multiply: 1D Layout on Bus or Ring 
• Algorithm uses the formula 

C(i) = C(i) + A*B(i) = C(i) + Σj A(j)*B(j,i) 

• First consider a bus-connected machine without 
broadcast:  only one pair of processors can 
communicate at a time (ethernet) 

• Second consider a machine with processors on a ring: 
all processors may communicate with nearest neighbors 
simultaneously 
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MatMul: 1D layout on Bus without Broadcast 
Naïve algorithm: 
    C(myproc) = C(myproc) + A(myproc)*B(myproc,myproc) 
     for i = 0 to p-1 
        for j = 0 to p-1 except i  
            if (myproc == i) send A(i) to processor j 
            if (myproc == j)  
                 receive A(i) from processor i 
                 C(myproc) = C(myproc) + A(i)*B(i,myproc) 
            barrier 
 
Cost of inner loop: 
       computation: 2*n*(n/p)2 = 2*n3/p2  
       communication: α + β*n2  /p 
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Naïve MatMul (continued) 
Cost of inner loop: 
       computation: 2*n*(n/p)2 = 2*n3/p2  
       communication: α + β*n2 /p        … approximately 
 
Only 1 pair of processors (i and j) are active on any iteration, 
  and of those, only i is doing computation 
                   => the algorithm is almost entirely serial 
 
Running time:  
         = (p*(p-1) + 1)*computation +  p*(p-1)*communication 
         ≈ 2*n3 + p2*α + p*n2*β	


 
 This is worse than the serial time and grows with p. 
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Matmul for 1D layout on a Processor Ring 

•  Pairs of adjacent processors can communicate simultaneously 

Copy A(myproc) into Tmp"
C(myproc) = C(myproc) + Tmp*B(myproc , myproc)"
for j = 1 to p-1"
      Send Tmp to processor myproc+1 mod p"
      Receive Tmp from processor myproc-1 mod p"
      C(myproc) = C(myproc) + Tmp*B( myproc-j mod p , myproc)"

•  Same idea as for gravity in simple sharks and fish algorithm"
•  May want double buffering in practice for overlap"
•  Ignoring deadlock details in code"

•  Time  of inner loop = 2*(α + β*n2/p) + 2*n*(n/p)2"
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Matmul for 1D layout on a Processor Ring 
•  Time  of inner loop = 2*(α + β*n2/p) + 2*n*(n/p)2 

•  Total Time  = 2*n* (n/p)2  +  (p-1) * Time of inner loop 
•                      ≈ 2*n3/p  + 2*p*α + 2*β*n2 

•  (Nearly) Optimal for 1D layout on Ring or Bus, even with Broadcast: 
•   Perfect speedup for arithmetic 
•   A(myproc) must move to each other processor, costs at least 
               (p-1)*cost of sending n*(n/p) words     

•  Parallel Efficiency = 2*n3 / (p * Total Time)  
                                = 1/(1 + α * p2/(2*n3) + β * p/(2*n) ) 
                                = 1/ (1 + O(p/n)) 
•   Grows to 1 as n/p increases (or α and β shrink) 

•  But far from communication lower bound 
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Need to try 2D Matrix layout 

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 

0 1 2 3 0 1 2 3 

1) 1D Column Blocked Layout 2) 1D Column Cyclic Layout 

3) 1D Column Block Cyclic Layout 

4) Row versions of the previous layouts 

Generalizes others 

0 1 0 1 0 1 0 1 
2 3 2 3 2 3 2 3 
0 1 0 1 0 1 0 1 
2 3 2 3 2 3 2 3 
0 1 0 1 0 1 0 1 
2 3 2 3 2 3 2 3 
0 1 0 1 0 1 0 1 
2 3 2 3 2 3 2 3 6) 2D Row and Column 

Block Cyclic Layout 

0 1 2 3 

0 1 

2 3 

5) 2D Row and Column Blocked Layout 

b 

Summary of Parallel Matrix Multiply 
• SUMMA 

• Scalable Universal Matrix Multiply Algorithm 
• Attains communication lower bounds (within log p) 

• Cannon 
• Historically first, attains lower bounds  
• More assumptions 

•  A and B square 
•  P a perfect square 

•  2.5D SUMMA 
• Uses more memory to communicate even less 

• Parallel Strassen 
• Attains different, even lower bounds 
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SUMMA Algorithm 
• SUMMA = Scalable Universal Matrix Multiply  
• Presentation from van de Geijn and Watts 

• www.netlib.org/lapack/lawns/lawn96.ps 
• Similar ideas appeared many times 

• Used in practice in PBLAS = Parallel BLAS 
• www.netlib.org/lapack/lawns/lawn100.ps 
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SUMMA uses Outer Product form of MatMul 
• C = A*B  means  C(i,j) = Σk A(i,k)*B(k,j) !

• Column-wise outer product: 
         C = A*B  
             = Σk A(:,k)*B(k,:) !
             = Σk (k-th col of A)*(k-th row of B)!
!
• Block column-wise outer product  
  (block size = 4 for illustration) 
         C = A*B 
             = A(:,1:4)*B(1:4,:) + A(:,5:8)*B(5:8,:) + … 
             =  Σk (k-th block of 4 cols of A)*!
                      (k-th block of 4 rows of B)!
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SUMMA – n x n matmul on P1/2 x P1/2 grid   

•    C[i, j] is  n/P1/2  x  n/P1/2   submatrix of C on processor Pij!
•    A[i,k] is  n/P1/2  x  b   submatrix of A!
•    B[k,j] is  b  x  n/P1/2   submatrix of B  !
•   C[i,j] = C[i,j] + Σk A[i,k]*B[k,j] !

•  summation over submatrices!
•    Need not be square processor grid !

*  = 
i"

j"

A[i,k]"

k"
k"

B[k,j]"

C[i,j] 
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SUMMA– n x n matmul on P1/2 x P1/2 grid  

For k=0 to n-1     … or n/b-1 where b is the block size  
                            …  = # cols in A(i,k) and # rows in B(k,j)  
     for all i = 1 to pr   … in parallel 
           owner of A(i,k) broadcasts it to whole processor row 
     for all j = 1 to pc  … in parallel 
            owner of B(k,j) broadcasts it to whole processor column 
     Receive A(i,k) into Acol 
     Receive B(k,j) into Brow 
     C_myproc  = C_myproc  + Acol * Brow 

*  = 
i"

j"

A[i,k]"

k"
k"

B[k,j]"

C(i,j) 

For k=0 to n/b-1 
     for all i = 1 to P1/2  

              owner of A[i,k] broadcasts it to whole processor row (using binary tree) 
     for all j = 1 to  P1/2 

            owner of B[k,j] broadcasts it to whole processor column (using bin. tree) 
     Receive A[i,k] into Acol 
     Receive B[k,j] into Brow 
     C_myproc = C_myproc + Acol * Brow 
 

Brow 

Acol 
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SUMMA Costs 

For k=0 to n/b-1 
     for all i = 1 to P1/2  

              owner of A[i,k] broadcasts it to whole processor row (using binary tree) 
               … #words  = log P1/2 *b*n/P1/2  ,     #messages = log P1/2 
     for all j = 1 to  P1/2 

            owner of B[k,j] broadcasts it to whole processor column (using bin. tree) 
              …  same #words and #messages 
     Receive A[i,k] into Acol 
     Receive B[k,j] into Brow 
     C_myproc = C_myproc + Acol * Brow     … #flops = 2n2*b/P 

°  Total #words        = log P * n2 /P1/2"

°  Within factor of log P of lower bound"
°  (more complicated implementation removes log P factor)"

°  Total #messages = log P * n/b"
°  Choose b close to maximum, n/P1/2,  to approach lower bound P1/2"

°  Total #flops = 2n3/P"
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PDGEMM =  PBLAS routine 
      for matrix multiply 
 
Observations: 
    For fixed N, as P increases 
       Mflops increases, but 
       less than 100% efficiency 
    For fixed P, as N increases, 
       Mflops (efficiency) rises 
 
 

DGEMM = BLAS routine 
      for matrix multiply 
 
Maximum speed for PDGEMM 
     = # Procs * speed of DGEMM 
 
Observations (same as above): 
     Efficiency always at least 48% 
     For fixed N, as P increases, 
         efficiency drops  
     For fixed P, as N increases, 
         efficiency increases 

54!

Can we do better?  
•  Lower bound assumed 1 copy of data:  M = O(n2/P) per proc. 
• What if matrix small enough to fit c>1 copies, so M = cn2/P ?  

• #words_moved = Ω( #flops / M1/2 )  = Ω(  n2 / ( c1/2 P1/2 )) 
• #messages         = Ω( #flops / M3/2 )  = Ω(  P1/2 /c3/2) 

• Can we attain new lower bound? 
• Special case: “3D Matmul”:  c = P1/3 

•  Bernsten 89, Agarwal, Chandra, Snir 90, Aggarwal 95 
•  Processors arranged in P1/3 x P1/3 x P1/3  grid 
•  Processor (i,j,k) performs C(i,j) = C(i,j) + A(i,k)*B(k,j),  where 

each submatrix is n/P1/3 x n/P1/3 

• Not always that much memory available… 
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2.5D Matrix Multiplication  

• Assume can fit cn2/P data per processor, c > 1 
• Processors form (P/c)1/2  x  (P/c)1/2  x  c  grid 

c 

(P/c)1/2 

(P/c)1
/2 

Example: P =  32,  c = 2 
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2.5D Matrix Multiplication  

• Assume can fit cn2/P data per processor, c > 1 
• Processors form (P/c)1/2  x  (P/c)1/2  x  c  grid 

k 

j 

i 
Initially P(i,j,0) owns A(i,j) and B(i,j) 
    each of size n(c/P)1/2 x n(c/P)1/2 

(1)  P(i,j,0) broadcasts A(i,j) and B(i,j) to P(i,j,k) 
(2)  Processors at level k perform 1/c-th of SUMMA, i.e. 1/c-th of  Σm A(i,m)*B(m,j) 
(3)  Sum-reduce partial sums Σm A(i,m)*B(m,j) along k-axis so P(i,j,0) owns C(i,j) 
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2.5D Matmul on IBM BG/P, n=64K 
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Matrix multiplication on BG/P (n=65,536)

2.5D MM
2D MM

•  As P increases, available memory grows è c increases proportionally to P 
•  #flops, #words_moved, #messages per proc all decrease proportionally to P 
•  #words_moved = Ω( #flops / M1/2 )  = Ω(  n2 / ( c1/2 P1/2 )) 
•  #messages         = Ω( #flops / M3/2 )  = Ω(  P1/2 /c3/2) 

•  Perfect strong scaling!   But only up to c = P1/3 

2.5D Matmul on IBM BG/P, 16K nodes / 64K cores 

 0

 20

 40

 60

 80

 100

8192 131072

P
e
rc

e
n
ta

g
e
 o

f 
m

a
c
h
in

e
 p

e
a
k

n

Matrix multiplication on 16,384 nodes of BG/P

12X faster
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2D MM
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2.5D Matmul on IBM BG/P, 16K nodes / 64K cores 
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c = 16 copies 

Distinguished Paper Award, EuroPar’11 
SC’11 paper by Solomonik, Bhatele, D. 02/26/2015!

Perfect Strong Scaling – in Time and Energy  
•  Every time you add a processor, you should use its memory M too 
•  Start with minimal number of procs: PM = 3n2 
•  Increase P by a factor of c è total memory increases by a factor of c 
•  Notation for timing model: 

•  γT , βT , αT = secs per flop, per word_moved, per message of size m 
•  T(cP) = n3/(cP) [ γT+ βT/M1/2 + αT/(mM1/2) ] 
               = T(P)/c 
•  Notation for energy model: 

•  γE , βE , αE = joules for same operations 
•  δE = joules per word of memory used per sec 
•  εE = joules per sec for leakage, etc. 

•  E(cP) = cP { n3/(cP) [ γE+ βE/M1/2 + αE/(mM1/2) ] + δEMT(cP) + εET(cP) } 
               = E(P) 
•  c cannot increase forever: c <= P1/3   (3D algorithm) 

•  Corresponds to lower bound on #messages hitting 1 
•  Perfect scaling extends to Strassen’s matmul, direct N-body, … 

•  “Perfect Strong Scaling Using No Additional Energy” 
•  “Strong Scaling of Matmul and Memory-Indep. Comm. Lower Bounds” 
•  Both at bebop.cs.berkeley.edu 
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Classical Matmul vs Parallel Strassen 
• Complexity of classical Matmul vs Strassen 
• Flops:  O(n3/p) vs O(nw/p) where w = log2 7 ~ 2.81 
• Communication lower bound on #words: 
        Ω((n3/p)/M1/2) = Ω(M(n/M1/2)3/p) vs Ω(M(n/M1/2)w/p)  
• Communication lower bound on #messages: 
        Ω((n3/p)/M3/2) = Ω((n/M1/2)3/p) vs Ω((n/M1/2)w/p) 
• All attainable as M increases past O(n2/p), up to a limit: 
        can increase M by factor up to p1/3 vs p1-2/w    

        #words as low as Ω(n/p2/3) vs Ω(n/p2/w) 
• Best Paper Prize, SPAA’11, Ballard, D., Holtz, Schwartz 
 
• How well does parallel Strassen work in practice? 
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Strong scaling of Matmul on Hopper (n=94080) 

02/26/2015!
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G. Ballard, D., O. Holtz, B. Lipshitz, O. Schwartz  

“Communication-Avoiding Parallel Strassen” 
bebop.cs.berkeley.edu, Supercomputing’12 
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ScaLAPACK Parallel Library Extensions of Lower Bound and          
Optimal Algorithms 

• For each processor that does G flops with fast memory of size M 
        #words_moved = Ω(G/M1/2) 
• Extension: for any program that “smells like” 

• Nested loops … 
• That access arrays … 
• Where array subscripts are linear functions of loop indices 

•  Ex: A(i,j), B(3*i-4*k+5*j, i-j, 2*k, …), … 
• There is a constant s such that 
       #words_moved = Ω(G/Ms-1) 
• s comes from recent generalization of Loomis-Whitney (s=3/2) 
• Ex: linear algebra, n-body, database join, … 
• Lots of open questions: deriving s, optimal algorithms …  
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