CS 267: Applications of Parallel Computers

Lecture 17 - Structured Grids

James Demmel

www.cs.berkeley.edu/~demmel/cs267_Spri5

Topic of this
lecture

Motifs

The Motifs (formerly “Dwarfs”) from
“The Berkeley View” (Asanovic et al.)
Motifs form key computational patterns

Finite State Mach.
Circuits

Structured Grid

dll
Sparse Matrix
Spectral (FFT)
Dynamic Prog
N-Body
Backirack/ B&B
Graphical Models
Unstructured Grid

Outline

° Review of Poisson Equation

° Jacobi’ s method

° Red-Black SOR method

° Conjugate Gradient (topic of Lecture 16)
° Multigrid

° (Later lecture: FFTs)

03/17/2015 8267 Lecture 17 3

Solving PDEs

° Hyperbolic problems (waves):
« Sound wave(position, time)

« Use explicit time-stepping

« Solution at each point depends on neighbors at previous time
° Elliptic (steady state) problems:

« Electrostatic Potential (position)

« Everything depends on everything else

« This means locality is harder to find than in hyperbolic problems
° Parabolic (time-dependent) problems:

« Temperature(position,time)

« Involves an elliptic solve at each time-step
° Focus on elliptic problems

« Canonical example is the Poisson equation

02uldx? + 92uldy? + 02ulgz? = f(x,y,z)

03/17/2015 CS267 Lecture 17 4

Explicit Solution of PDEs

° Often used for hyperbolic PDEs
° Stability limits size of time-step

° Computation corresponds to
» Matrix vector multiply
« Combine nearest neighbors on grid

° Use finite differences with u[j,i] as $he'soliuti<1)n ?t
. time t=*8(=0,1,2,...) and LA
« position x = j*h (j=0,1,...,N=1/h)
« initial conditions on u[j,0]
« boundary conditions on u[0,i] and u[N,i] i=#

t

=5

° At each timestep i = 0,1,2,... i=3
For j=1 to N-1 i=2
ulj,i+11= z*ufj-1,il+ (1-2*2)*ulj,i]
+ z*ufj+1,i] =1 .
where z =C*§/h? i=0 J

5
u[0,0] u[1,0] u[2,0] u[3,0] u[4,0] u[5,0]

Matrix View of Explicit Method for Heat Equation

* ufj,i+1]= z*u[j-1,i]+ (1-2*2)*ulj,i] + z*u[j+1,i]
su[: i+1]=T *u[:, i] where T is tridiagonal:

12z z 2 1
z 12z 2z 14 2 4
z 12z z 14 2 4
T= 2z 122 z |=1—-z*L, L= 42 4
z 1-2z a4 2

Graph and “3 point stencil”

™ a Py a a a P

r4
* L called Laplacian (in 1D)

* For a 2D mesh (5 point stencil) the Laplacian has 5
diagonals

* For a 3D mesh there are 7 diagonals
03/17/2015 CS267 Lecture 17

Poisson’s equation in 1D: d%ulox? = f(x)

Solve Tu =f for uwhere

2 A Graph and “stencil”
1 2 41
r= 1.2 4 2
- 1 2 A
1 2
03/17/2015 CS267 Lecture 17 7

2D Poisson’ s equation

° Similar to the 1D case, but the matrix T is now

Graph and “stencil”

° 3D is analogous

03/17/2015 CS267 Lecture 17

Algorithms for 2D (3D) Poisson Equation (N = n2 (n?) vars)

Algorithm Serial PRAM Memory #Procs
° Dense LU N3 N N2 N2

° Band LU NZ (N7/3) N N3/2 (N5/3) N (N4I3)
° Jacobi N2 (N53) N (N23) N N

° Explicit Inv. N2 log N N2 N2

° Conj.Gradients N32 (N43) N12(13) *|log N N N

° Red/Black SOR N32 (N43) N2 (N1/3) N N

° Sparse LU N3/2 (N2) N2 N*log N (N3) N

° FFT N*log N log N N N

° Multigrid N log? N N N

° Lower bound N log N N

PRAM is an idealized parallel model with zero cost communication

Reference: James Demmel, Applied Numerical Linear Algebra, SIAM, 1997.

03/17/2015 CS267 Lecture 17 9

Algorithms for 2D (3D) Poisson Equation (N = n2 (n3) vars)

Algorithm Serial PRAM Memory #Procs
° Jacobi N2 (N513) N (N23) N N

° Conj.Gradients N32 (N*3) N12(13) *|log N N N

° Red/Black SOR N3¥2 (N*3) N2 (N"3) N N

° Multigrid N log2 N N N

° Lower bound N log N N

PRAM is an idealized parallel model with zero cost communication
Reference: James Demmel, Applied Numerical Linear Algebra, SIAM, 1997.

03/17/2015 CS267 Lecture 17 10

Jacobi’ s Method

° To derive Jacobi’ s method, write Poisson as:
u(i,j) = (u(i-1,j) + u(i+1,j) + u(i,j-1) + u(i,j+1) + b(i,j))/4
° Let u(i,j,m) be approximation for u(i,j) after m steps
u(i,j,m+1) = (u(i-1,j,m) + u(i+1,j,m) + u(i,j-1,m) +
u(i,j+1,m) + b(i,j)) / 4
° L.e., u(i,j,m+1) is a weighted average of neighbors

° Motivation: u(i,j,m+1) chosen to exactly satisfy
equation at (i,j)

° Steps to converge proportional to problem size, N=n?
° Therefore, serial complexity is O(N?)

03/17/2015 CS267 Lecture 17 11

Convergence of Nearest Neighbor Methods

° Jacobi’ s method |nvolves nearest neighbor
computation on nxn grid (N = n2)

« So it takes O(n) = O(sqrt(N)) iterations for information to propagate
° E.g., consider a rhs (b) that is 0, except the center is 1
° The exact solution looks like:

03/17/2015 12

Convergence of Nearest Neighbor Methods

Right Hand Side True Solution

Takes O(n) steps to propagate information across an nxn grid |,

Parallelizing Jacobi’ s Method

° Reduces to sparse-matrix-vector multiply by (nearly) T
U(m+1) = (T/4 -1) * U(m) + B/4

° Each value of U(m+1) may be updated independently
 keep 2 copies for iterations m and m+1

° Requires that boundary values be communicated
« if each processor owns n?/p elements to update
+ amount of data communicated, n/p'’2 per neighbor, relatively small if n>>p

Want to take s>>1 iterations

All the communication-avoiding
techniques for Matrix-powers kernel
(i.e. repeated SpMVs)

from Lecture 16 may be used

Reduce communication cost of
03/17/2015 s iterations to 1 iteration 14

mmunication Avoidin i

+ Replace k iterations of y = A-x with [Ax, A%x, ..., Ax]

A3:X® ® © o 0 0 0o 0 0 0 0 0 0 0 0 0 0 0 00 0 000000 00
A2:x® ® o o o o o 0 ¢ 0 0 0 0 0 0 0 0 0 0 0 0 0 00 00 0 00 o0
AX® ® ® 0 0 0 0 0 00 0 0.0 0000000000000 00000

X 0 0 0 0 0 0 0.0 0 0.0 0.0 0 0.0 0000000000000 00

123 4 ..

+ Example: A tridiagonal, n=32, k=3

» Like Matrix-Powers Kernel, but simpler:
« Don’ t need to store A explicitly (it's Jacobi)
+ Only need to save Ax

mmunication Avoidin i:

+ Replace k iterations of y = A-x with [Ax, A%x, ..., A¥]

A3:X® ® o 0 o o 0 0 0 0 0 0 0 0 0 0 0 0 00 000000 0

AZ'X' ® 0 9 0 9 0 0 0 0 P 0 0 0 O P 0 P OO O P P O P O O O OO 00

A'X " 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 00 000N

X [A e 0 0 0 0 0 0 0 0 0 0 0 0 00 000NN
12 3 4 32

* Example: A tridiagonal, n=32, k=3

» Like Matrix-Powers Kernel, but simpler:

« Don’ t need to store A explicitly (it" s Jacobi)
+ Only need to save A*x

mmunication Avoidin i

+ Replace k iterations of y = A-x with [Ax, A%x, ..., Akx]
+ Sequential Algorithm

mmunication Avoidin i

+ Replace k iterations of y = Ax with [Ax, A%x, ..., A]
« Sequential Algorithm

Step 1 Step 2
A3-x L T T S S S S S S T S S S S S Sy T
AZ.X @ 06 6 0 0 0 0 0 0 0.0 0.0 0 0 0 00
A'X ® 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X R R R R T R R S N
123 4.. ... 32

* Example: A tridiagonal, n=32, k=3
» Like Matrix-Powers Kernel, but simpler:
- Don’ t need to store A explicitly (it’ s Jacobi)
+ Only need to save A*x — move O(n) words instead of ®(kn)

Step 1

A3.X e 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0
AZ.X © 0 o0
AX ® 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PO 00O P
X e 0 0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0000

123 4. .32
+ Example: A tridiagonal, n=32, k=3
» Like Matrix-Powers Kernel, but simpler:

- Don’t need to store A explicitly (it" s Jacobi)

+ Only need to save A*x 17

mmunication Avoidin i:

+ Replace k iterations of y = A-x with [Ax, A%x, ..., Ax]
+ Parallel Algorithm

Proc 1
A3-x © ¢ 0 0|0 s e 0 0 0 0 00 e e 0 e s s
A2-x o o 0 0|0 0 0 0 0 0 0 elo e e 0 0 e s
A'X ® 0 0 0|0 0 0 0 0 0 0 0|0 0 0 0 0 0 00
X ® 0 0 0l0 0 0 0 0 0 0 00 0 0 0 0 0 0 0
123 4. ... 32

+ Example: A tridiagonal, n=32, k=3
» Like Matrix-Powers Kernel, but simpler:
- Don’t need to store A explicitly (it" s Jacobi)
+ Only need to save Ax 19

mmunication Avoidin i:

+ Replace k iterations of y = A-x with [Ax, A%x, ..., A¥]
+ Parallel Algorithm

Proc 2

A3-Xllllllll 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0
A2:xe o o o o 0 @ O S R R R R A)
A.Xllllll O 0 0 0 00 0 0 0 0 0 0

12 3 4.. ... 32
* Example: A tridiagonal, n=32, k=3
* Like Matrix-Powers Kernel, but simpler:

« Don’t need to store A explicitly (it’ s Jacobi)

+ Only need to save Ax 2

mmunication Avoidin i

+ Replace k iterations of y = A-x with [Ax, A%x, ..., Akx]
+ Parallel Algorithm
A3.X| ® & 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S S N N 00 0o

A2:-x¢ o o 6 o o o 006 0 0 6 0 0 0. 0(0 0 0 0 0 00 0/ 0 000 0 00

AX® ® ® 0 o 0 o 00 0000 00 0(0 000 0000/ 00 00000

12 3 4. ... 32

» Example: A tridiagonal, n=32, k=3
» Like Matrix-Powers Kernel, but simpler:
- Don’t need to store A explicitly (it" s Jacobi)
+ Only need to save A*x 21

mmunication Avoidin i

+ Replace k iterations of y = Ax with [Ax, A%x, ..., A]
» Parallel Algorithm

A3:-X® © ¢ o 0 0 0 010 0 0 0 0 0 0 010 0 0 0 000 0 0 e 0 e e e
A2:-x® © 6 o o o 0 o]0 0 5 0 0 0 0 00 0 0 0 0 0 0 .00 000 00 0o

AX® ® o 0 o o 0 00 0 0 0 0 0 0 0/0 0 000 0 000000 oo

12 3 4.. ... 32

* Example: A tridiagonal, n=32, k=3
» Like Matrix-Powers Kernel, but simpler:
- Don’ t need to store A explicitly (it’ s Jacobi)
+ Only need to save A*x 2

mmunication Avoidin i

+ Replace k iterations of y = A-x with [Ax, A%x, ..., Akx]
+ Parallel Algorithm

Proc 1 Proc 2

A3-x

A2-x

A-x
X

123 4. ... 32

» Example: A tridiagonal, n=32, k=3
+ Entries in overlapping regions (triangles) computed
redundantly

+ Send O(1) messages instead of O(k)

23

Remotely Dependent Entries for [x,Ax,A2x,A%x], 2D Laplacian

03/17/2015 CS267 Lecture 17 24

References for Optimizing Stencils (1/2)

° Bebop.cs.berkeley.edu

« “Autotuning Stencil Codes for Cache-Based Multicore Platforms”,
K. Datta, UCB PhD thesis, 2009,

“Avoiding Communication in Computing Krylov Subspaces,”
J. Demmel, M. Hoemmen, M. Mohiyuddin, K. Yelick, 2007

“Optimization and Performance Modeling of Stencil Computations on

Modern Microprocessors”, K. Datta, S. Kamil, S. Williams, L. Oliker,

J.Shalf, K. Yelick, SIAM Review, 2008

° SEJITS - sejits.org (Armando Fox et al @ UCB)
“Bringing parallel performance to python with domain-
specific selective embedded just-in-time specialization”

° Pochoir — stencil compiler (Charles Leiserson @ MIT)
people.csail.mit.edu/yuantang/

° Autotuning stencils and multigrid (Mary Hall @ Utah)
super-scidac.org/

° Polyhedral tiling (Michelle Strout @ Colorado)
www.cs.colostate.edu/~mstrout/Papers/pubs-poly.php

References for Optimizing Stencils (2/2)

° lan Foster et al, on grids (SC2001)

° “Efficient out-of-core algorithms for linear relaxation

using blocking covers,” C. Leiserson, S. Rao, S. Toledo,

FOCS, 1993

° “Data flow and stora%e allocation for the PDQ-5 program
on the Philco-2000,” C. Pfeifer, CACM, 1963

Improvements to Jacobi

° Similar to Jacobi: u(i,j,m+1) will be computed as a
linear combination of neighbors
* Numeric coefficients and update order are different

o

2 improvements

« Use “most recent values” of u that are available, since these are
probably more accurate

« Update value of u(m+1) “more aggressively” at each step

° First, note that while evaluating sequentially
* u(i,j,m+1) = (u(i-1,j,m) + u(i+1,j,m) ...

some of the values for m+1 are already available
* u(ij,m+1) = (u(i-1,j,latest) + u(i+1,j,latest) ...

where latest is either m or m+1

03/17/2015 CS267 Lecture 17 27

Gauss-Seidel
¢ Updating left-to-right row-wise order, we get the
Gauss-Seidel algorithm
fori=1ton
forj=1ton
u(inj,m+1) = (u(i-1,j,m+1) + u(i+1,j,m) + u(i,j-1,m+1) + u(i,j+1,m)
+b(ij) / 4
j

Updated
m+1

i 0

Not updated
m

° Cannot be parallelized, because of dependencies

Gauss-Seidel

° Updating left-to-right row-wise order, we get the
Gauss-Seidel algorithm

fori=1ton
forj=1ton
u(i,j,m+1) = (u(i-1,j,m+1) + u(i+1,j,m) + u(i,j-1,m+1) + u(i,j+1,m)
+b(i,j) /4
° Cannot be parallelized, because of dependencies, so
instead we use a “red-black” order
forall black points u(i,j)
u(i,j,m+1) = (u(i-1,j,m) + ... red neighbors
forall red points u(i,j)
u(i,j,m+1) = (u(i-1,j,m+1) + ... black neighbors

° For general graph, use “graph coloring”
°Can use repeated Maximal Independent Sets to color
> Graph(T) is bipartite => 2 colorable (red and black)

* Nodes for each color can be updated simultaneously

° Same optimizations, using submatrices 29

Successive Overrelaxation (SOR)

° Red-black Gauss-Seidel converges twice as fast as Jacobi, but
there are twice as many parallel steps, so the same in practice

° To motivate next improvement, write basic step in algorithm as:
u(i,j,m+1) = u(i,j,m) + correction(i,j,m)

° If “correction” is a good direction to move, then one should move
even further in that direction by some factor w>1

u(i,j,m+1) = u(i,j,m) + w * correction(i,j,m)

° Called successive overrelaxation (SOR)
° Parallelizes like Jacobi

° Can prove w = 2/(1+sin(n/(n+1))) for best convergence for Poisson

+ Number of steps to converge = parallel complexity = O(n), instead of O(n?) for
Jacobi

- Serial complexity O(n3) = O(N®2), instead of O(n%) = O(N?) for Jacobi

03/17/2015 CS267 Lecture 17 30

Conjugate Gradient Algorithm for Solving Ax=b

° Initial guess x
°r=b - A*x, j=1
° Repeat

« rho=r"™r ... dot product

« If j=1, p =r, else beta = rho/old_rho, p = r + beta*p, endif ... saxpy
* q = A*p ... sparse matrix vector multiply, or stencil

+ alpha=rho/pT*q ... dot product

« x=x+alpha*p ... saxpy

sr=r—alpha*q ...saxpy

+ old_rho =rho; j=j+1

¢ Until rho small enough

« Converges in O(n) = O(N'?2) steps, like SOR, but more general
« Can be reorganized to use matrix powers kernel [Ax,A2x,...,Akx]
» “Communication Avoiding Krylov Subspace Methods,”
M. Hoemmen, UCB PhD Thesis, bebop.cs.berkeley.edu, 2010

2D Poisson’ s equation

° Similar to the 1D case, but the matrix T is now

4 A 4 Graph and “stencil”
14 4 A - I
4 4 -
K 4 A (I
T= -1 1 4 4 El
- 1 4 1 1
-1 4 A
- 4 4 -
1 1 4

° 3D is analogous

03/17/2015 CS267 Lecture 17 32

Algorithms for 2D (3D) Poisson Equation (N = n2 (n?) vars)

Algorithm Serial PRAM Memory #Procs
° Dense LU N3 N N2 N2

° Band LU NZ (N7/3) N N3/2 (N5/3) N (N4/3)
° Jacobi N2 (N553) N (N23) N N

° ExplicitInv. N2 log N N2 N2

° Conj.Gradients N32 (N43) N12(13) *|log N N N

° Red/Black SOR N32 (N43) N2 (N1/3) N N

° Sparse LU N3/2 (N2) N2 N*log N (N3) N

° FFT N*log N log N N N

° Multigrid N log? N N N

° Lower bound N log N N

PRAM is an idealized parallel model with zero cost communication
Reference: James Demmel, Applied Numerical Linear Algebra, SIAM, 1997.

03/17/2015 CS267 Lecture 17 33

Algorithms for 2D (3D) Poisson Equation (N = n? (n®) vars)

Algorithm Serial PRAM Memory #Procs
=) ° Multigrid N log? N N N
° Lower bound N log N N

PRAM is an idealized parallel model with zero cost communication
Reference: James Demmel, Applied Numerical Linear Algebra, SIAM, 1997.

03/17/2015 CS267 Lecture 17 34

Multigrid Motivation

° Recall that Jacobi, SOR, CG, or any other sparse-
matrix-vector-multiply-based algorithm can only
move information one grid cell at a time

+ Take at least n steps to move information across n x n grid
° Therefore, converging in O(1) steps requires moving

information across grid faster than to one
neighboring grid cell per step

* One step can’t just do sparse-matrix-vector-multiply

03/17/2015 CS267 Lecture 17 35

__Multigrid Motivation

Right Hand Side True Solution

00

5 steps of Jacobi Best 5 step solution

00 0o
Takes O(n) steps to propagate information across an nxn grid 36

Big Idea used in multigrid and elsewhere

° If you are far away, problem looks simpler
< For gravity: approximate earth, distant galaxies, ... by point masses

° Can solve such a coarse approximation to get an
approximate solution, iterating if necessary

< Solve coarse approximation problem by using an even coarser
approximation of it, and so on recursively

° Ex: Graph Partitioning (used to parallelize SpMV)

« Replace graph to be partitioned by a coarser graph

¢ Ex: Multigrid for solving PDE in O(n) time

- Use coarser mesh to get approximate solution of Poisson’ s Eq.

° Ex: Fast Multipole Method, Barnes-Hut for computing
gravitational forces on n particles in O(n log n) time:

« Approximate particles in box by total mass, center of gravity

03/17/2015 CS267 Lecture 17 37

Fine and Coarse Approximations

03/17/2015 CS267 Lecture 17 38

Multigrid Overview

° Basic Algorithm:
* Replace problem on fine grid by an approximation on a coarser grid

» Solve the coarse grid problem approximately, and use the solution
as a starting guess for the fine-grid problem, which is then
iteratively updated

» Solve the coarse grid problem recursively, i.e. by using a still
coarser grid approximation, etc.

° Success depends on coarse grid solution being a
good approximation to the fine grid

03/17/2015 8267 Lecture 17 39

Multigrid Sketch in 1D

» Consider a 2m+1 grid in 1D for simplicity

« Let P() be the problem of solving the discrete Poisson equation
on a 2+1 grid in 1D (2'-1 unknowns plus 2 boundaries)
« Write linear system as T(i) * x(i) = b(i)

« pm pm1) - p()js sequence of problems from finest to
coarsest
2 2 2 2 2 1 1 1
P(s): 1D grid of 9 points P(z): 1D grid of 5 points P(D: 1D grid of 3 points
7 unknowns 3 unknowns 1 unknown
Points labeled 2 are Points labeled 1 are
part of next coarser grid part of next coarser grid
03/17/2015 CS267 Lecture 17 40

10

Multigrid Sketch in 2D

* Consider a 2™+1 by 2™+1 grid in 2D

« Let P() be the problem of solving the discrete Poisson equation
on a 2'+1 by 2'+1 grid in 2D

« Write linear system as T(i) * x(i) = b(i)

« pm pm1) - P is sequence of problems from finest to
coarsest

2

2

W

2

2

b

D

D

W)

1

1

1

P 9 by 9 grid of points

7 by 7 grid of unknowns
Pointslabeled 2 are
part of next coarser grid

03/17/2015

(2)

P2 by 5 grid of points
3by 3 grid of unknowns
Pointslabeled 1 are

part of next coarser grid

CS267 Lecture 17

1
PP 3 by 3 grid of points
1by 1 grid of unknowns

41

Multigrid Operators

For problem P() at varying coarsening levels (i, grid size grows with i):
+ b(i) is the Right Hand Side (RHS) and

. . . both live on grids of size 2'-1
« x(i) is the current estimated solution

All the following operators just average values on neighboring grid
points (so information moves fast on coarse grids)

03/17/2015 CS267 Lecture 17 42

Multigrid Operators

For problem P() at varying coarsening levels (i, grid size grows with i):
« b(i) is the Right Hand Side (RHS) and
+ x(i) is the current estimated solution

} both live on grids of size 2-1

All the following operators just average values on neighboring grid
points (so information moves fast on coarse grids)

The restriction operator R(i) maps P to P(i-1)

+ Restricts problem on fine grid P() to coarse grid p(-1)

+ Uses sampling or averaging

* b(i-1)=R(i) (b(i))

03/17/2015

CS267 Lecture 17

43

Multigrid Operators

For problem P() at varying coarsening levels (i, grid size grows with i):
« b(i) is the Right Hand Side (RHS) and

L . . both live on grids of size 2'-1
« x(i) is the current estimated solution

All the following operators just average values on neighboring grid
points (so information moves fast on coarse grids)

The interpolation operator In(i-1) maps approx. solution x(i-1) to x(i)
« Interpolates solution on coarse grid P01 to fine grid pl)

« x(i) = In(i-1)(x(i-1))

03/17/2015 CS267 Lecture 17 44

11

Multigrid Operators

For problem P() at varying coarsening levels (i, grid size grows with i):

+ b(i) is the Right Hand Side (RHS) and

L . . both live on grids of size 2-1
+ x(i) is the current estimated solution

All the following operators just average values on neighboring grid
points (so information moves fast on coarse grids)

The solution operator S(i) takes P() and improves solution x(i)
« Uses “weighted” Jacobi or SOR on single level of grid
* Ximproved (i) = S(i) (b(i), x(i))

Overall algorithm, then details of operators

03/17/2015 CS267 Lecture 17

45

Multigrid V-Cycle Algorithm

Function MGV (b(i), x(i))

... Solve T(i)*x(i) = b(i) given b(i) and an initial guess for x(i)

... return an improved x(i)

if(i=1)
compute exact solution x(1) of P(") only 1 unknown
return x(1)

else solve recursively
x(i) = S(i) (b(i), x(i)) improve solution by damping
high frequency error

r(i) = T(i)*x(i) - b(i) compute residual

d(i) = In(i-1) (MGV(R(i) (r(i)), 0)) solve T(i)*d(i) = r(i) recursively

x(i) = x(i) - d(i) correct fine grid solution
x(i) = S(i) (b(i), x(i)) improve solution again
return x(i)
03/17/2015 €S267 Lecture 17 46

This is called a V-Cycle

° Just a picture of the call graph
° In time a V-cycle looks like the following

Multigrid V-eycle

time

03/17/2015 CS267 Lecture 17

47

Complexity of a V-Cycle

° On a serial machine
* Work at each point in a V-cycle is O(the number of unknowns)
« Cost of Level i is (2-1)2= O(4) for a 2D grid
« If finest grid level is m, total time is:
Z, 0(4)=0(4™) fora 2D grid
= O(# unknowns) in general

° On an ideal parallel machine (PRAM)

« with one processor per grid point and free communication, each
step in the V-cycle takes constant time

« Total V-cycle time is O(m) = O(log #unknowns)

03/17/2015 CS267 Lecture 17 48

12

Full Multigrid (FMG)

° Intuition:
« improve solution by doing multiple V-cycles
+ avoid expensive fine-grid (high frequency) cycles
« analysis of why this works is beyond the scope of this class

Function FMG (b(m), x(m))

... return improved x(m) given initial guess

compute the exact solution x(1) of P(1)
fori=2tom ... from coarse to fine mesh
x(i) = MGV (b(i), In (i-1) (x(i-1)))

° In other words:
« Solve the problem with 1 unknown

« Given a solution to the coarser problem, pl-1) | map it to starting guess for
pli)

+ Solve the finer problem using the Multigrid V-cycle

03/17/2015 CS267 Lecture 17 49

Full Multigrid Cost Analysis

Full Multigrid Cyele
i

time

° One V for each call to FMG

« people also use Ws and other compositions

° Serial time: 2 _ O(4') = O(4 ™) = O(# unknowns)

° PRAM time: 2:21 O(i) = O(m?2) = O(log? # unknowns)

03/17/2015 CS267 Lecture 17 50

Complexity of Solving Poisson’ s Equation

» Theorem: error after one call to multigrid
« error_after < .5* error_before
» independent of # unknowns
+ At least 1 bit each time

+ Corollary: We can make the error < any fixed
tolerance in a fixed number of steps, independent of
size of finest grid

* This is the most important convergence property of
MG, distinguishing it from all other methods, which
converge more slowly for large grids

03/17/2015 CS267 Lecture 17 51

Complexity of Solving Poisson’ s Equation

» Theorem: error after one FMG call
« error_after < .5* error_before
« independent of # unknowns
« At least 1 bit each time

» Corollary: We can make the error < any fixed
tolerance in a fixed number of steps, independent of
size of finest grid

« This is the most important convergence property of
MG, distinguishing it from all other methods, which
converge more slowly for large grids

03/17/2015 CS267 Lecture 17 52

13

The Solution Operator S(i) - Details

° The solution operator, S(i), is a weighted Jacobi

¢ Consider the 1D problem
o6 o oo

° At level i, pure Jacobi replaces:
x(j) := 1/2 (x(j-1) + x(j+1) + b(j))
° Weighted Jacobi uses:
x(j) == 13 (x(j-1) + x(j) + x(j+1) + b(j))

°In 2D, similar average of nearest neighbors

03/17/2015 CS267 Lecture 17 53

__Weighted Jacobi chosen to damp high frequency error

Solution afer 0 steps Error Eror n Freq ordines

Multigrid as Divide and Conquer Algorithm

° Each level in a V-Cycle reduces the error in one part
of the frequency domain
Schematie Deseription of Mul tigrid

Error
Component
alpha(j)

Freguency j
P(1) Upper Upper Upper half of
half of half of frequencies on P(4)
fregs. fregs.
onP(2) onP(3)
03/17/2015 CS267 Lecture 17 55

| g
AT nM Initial error
foh AT “Rough”
. J I V‘ W Lots of high frequency components
i W Norm = 1.65
)
o
B : 4 Error after 1 weighted Jacobi step
. 7 Mf\ L | “Smoother”
| W\WW W Less high frequency component
N w Norm = 1.06
S N e G
ey
. i?\\ Error after 2 weighted Jacobi steps
1] AAVA i M, “Smooth”
P \ f \‘ W f Little high frequency component
B K Norm =.92,
. B B won’ t decrease much more
Nom 28176 s
03/17/2015 CS267 Lecture 17
The Restriction Operator R(i) - Details
° The restriction operator, R(i), takes
- a problem P() with RHS b(i) and
- maps it to a coarser problem P(-1) with RHS b(i-1)
° In 1D, average values of neighbors
* Xcoarse(i) = 1/4 * Xfine(i-1) + 1/2* Xfine(i) + 1/4 ™ Xfine(i+1)
Restrcton by Samping
o o s
- G
40 2 4 & 8 10 12 14 16
Restricon by Averaging
o4 o -
- T
40 r 4 & 8 10 12 14 16
° In 2D, average with all 8 neighbors (N,S,E,W,NE,NW,SE,SW)
03/17/2015 CS267 Lecture 17 56

14

Interpolation Operator In(i-1): details Convergence Picture of Multigrid in 1D
° The interpolation operator In(i-1), takes a function on a coarse
grid P(-1) | and produces a function on a fine grid P()

° In 1D, linearly interpolate nearest coarse neighbors

True Solution Right Hand Side
1

Error of each iteration
* Xfine(i) = Xcoarse(i) if the fine grid point i is also a coarse one, else ! W et
* Xfine(i) = 1/2* Xcoarse(left of i) + 1/2 * Xcoarse(right of i) L g]
Conee G Fancion w

r % 0 50 100 0 50 100 10

EW T :
A TV Al A

o
up normirestm+1))inormfrestm)) 5 normirestm)) ﬁh__,,/
o 2 4 6 8 10 12 14 1% ¥ 10°
Interpolated Fine Grid Function e b !
! 1074 N
os .
o 107 .
-05 —— 107 * i
” coe e et e © T m www w W
° In 2D, interpolation requires averaging with 4 nearest
neighbors (NW,SW,NE,SE)
03/17/2015 CS267 Lecture 17 57 03/17/2015 CS267 Lecture 17 58
Convergence Picture of Multigrid in 2D Parallel 2D Multigrid
3
| 4
True Solution Right Hand Side : n 3l
5|
5| 4
° Multigrid on 2D 3 :

requires nearest

neighbor (up to 8)

computation at each

level of the grid

5|
13
5|
145
o H — 5|
normires{m-+1))normirestm)) 5 normires{m)) Stal‘t Wlth n—2m+1 bg las
i i i 1 i i i 2m+1 grid (here m=5) g :
p
r 3
3|
o
Useansbys
E)rocessor grid .] 2
here 8_4) Communication pattern for Multigrid on 33 by 33 mesh with by 4 processor grid
0 H 1 O-E i In top proeessor row, grid points labeled m are updated in problem P(m) of mul tigrid
5 10 15 20 [} 5 10 15 20 Pink pmcexmrwwm!rﬂpvmfi inside pink box .
s nipasm e L In lower half of gvph.gnlpnm labeled m need to be communicated to pink processor

in problem P(m) of rultigrid
03/17/2015 C8267 Lecture 17 59 03/17/2015

Performance Model of parallel 2D Multigrid (V-cycle)

° Assume 2™+1 by 2™+1 grid of points, n= 2m-1, N=n2

° Assume p = 4X processors, arranged in 2K by 2k grid
+ Processors start with 2™k by 2K subgrid of unknowns

° Consider V-cycle starting at level m

+ At levels m through k of V-cycle, each processor does some work

- At levels k-1 through 1, some processors are idle, because a 2k-1 by 2k-1 grid of
unknowns cannot occupy each processor

° Cost of one level in V-cycle
« If level j >= k, then cost =

O(4k) ... Flops, proportional to the number of grid points/processor
+0(1)aSend a constant # messages to neighbors
+0O(Zj'k) g ... Number of words sent
« If level j <k, then cost =
o(1) Flops, proportional to the number of grid points/processor
+0(1)a Send a constant # messages to neighbors
+0(1)p Number of words sent

° Sum over all levels in all V-cycles to get complexity
03/17/2015 CS267 Lecture 17

61

Comparison of Methods (in O(.) sense)

Flops # Messages # Words sent
MG N/p + (log N)2 (N/p)V2 +
logp*logN logp *logN
FFT NlogN/p | p12 N/p
SOR N3/2 1p N1/2 N/p

° SOR is slower than others on all counts
° Flops for MG depends on accuracy of MG
° MG communicates less total data (bandwidth)

° Total messages (latency) depends ...

« This coarse analysis can’ t say whether MG or FFT is better when
a>>
03/17/2015 €S267 Lecture 17 62

Practicalities
° In practice, we don’t go all the way to P(")

° In sequential code, the coarsest grids are negligibly
cheap, but on a parallel machine they are not.

« Consider 1000 points per processor, so flops = O(1000)
« In 2D, the surface to communicate is 4 x 1000"2 ~= 128, or 13%
« In 3D, the surface is 1000-83 ~= 500, or 50%

° See Tuminaro and Womble, SIAM J. Sci. Comé).,
v14, n5, 1993 for analysis of MG on 1024 nCUBE?2

« on 64x64 grid of unknowns, only 4 per processor

- efficiency of 1 V-cycle was .02, and on FMG .008
« on 1024x1024 grid

- efficiencies were .7 (MG Vcycle) and .42 (FMG)

- although worse parallel efficiency, FMG is 2.6 times faster
than V-cycles alone

+ nCUBE had fast communication, slow processors

° Today: Same problem in Chombo @ LBL

« Communication of coarsest meshes

63

Multigrid on an Adaptive Mesh

° For problems with very
large dynamic range,
another level of
refinement is needed

° Build adaptive mesh
and solve multigrid
(typically) at each level

ADAPTIVE DISCRETIZATION of C20H20 (Kohn, Baden, Wearo, Kawai)

° Can’t afford to use finest mesh everywhere

03/17/2015 CS267 Lecture 17 64

16

Multiblock Applications

° Solve system of equations on a union of rectangles
* subproblem of AMR

Adaptive Mesh Refinement

° Data structures in AMR

° Usual parallelism is to assign grids on each level to
processors

° Load balancing is a problem

Fine

Temp / Average

Copy

Coarse L

66
03/17/2015 CS267 Lecture 17

h E' m
03/17/2015 CS267 Lecture 17 65
Support for AMR

° Domains in Titanium designed for this problem
° Kelp, Boxlib, and AMR++ are libraries for this
° Primitives to help with boundary value updates, etc.

GHOST CELLS

INTERIOR

03/17/2015 CS267 Lecture 17 67

Multigrid on an Unstructured Mesh

° Another approach to
variable activity is to
use an unstructured
mesh that is more
refined in areas of
interest

° Adaptive rectangular
or unstructured?

* Numerics easier on
rectangular

» Supposedly easier to
implement (arrays without
indirection) but boundary
cases tend to dominate

code
Up to 39M unknowns on 960 processors,
With 50% efficiency (Source: M. Adams)
03/17/2015 CS267 Lecture 17 68

17

Multigrid on an Unstructured Mesh

° Need to partition graph for parallelism
° What does it mean to do Multigrid anyway?

° Need to be able to coarsen grid (hard problem)
« Can’ t just pick “every other grid point” anymore
+ Use “maximal independent sets” again
* How to make coarse graph approximate fine one

° Need to define R() and In()

* How do we convert from coarse to fine mesh and back?

° Need to define S()

* How do we define coarse matrix (no longer formula, like Poisson)

° Dealing with coarse meshes efficiently
+ Should we switch to using fewer processors on coarse meshes?

» Should we switch to another solver on coarse meshes?
03/17/2015 CS267 Lecture 17 69

Irregular mesh: Tapered Tube (multigrid)

Example of Prometheus meshes

£

=
>

St

wgoe Sample input grid and coarse grids
3/21113 70

Source of Unstructured Finite Element Mesh: Vertebra

Study failure modes of trabecular bone under stress

Source: M. Adams, H. Bayraktar, T. Keaveny, P. Papadopoulos, A. Gupta
03/17/2015 CS267 Lecture 17 71

Multigrid for nonlinear elastic analysis of bone

Gordon Bell Prize, 2004 .
Mechanical testing Source: M. Adams et al

for material properties 3D image

WFE mesh
2.5 mm3
44 um elements

Micro Computed
Tomography @
22 pm resolution

Up to
537M unknowns

03/17/2015 CS267 Lecture 17 70% parallel efficiency 72

4088 Processors (ASCI White)

18

