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Outline 
•  Motivation for Load Balancing"
•  Recall graph partitioning as static load balancing technique"
•  Overview of load balancing problems, as determined by"

•  Task costs"
•  Task dependencies"
•  Locality needs"

•  Spectrum of solutions"
•  Static - all information available before starting"
•  Semi-Static - some info before starting"
•  Dynamic - little or no info before starting"
•  Or: how rapidly do costs/dependencies/locality needs change?"

•  Survey of solutions"
•  How each one works"
•  Theoretical bounds, if any"
•  When to use it, tools"
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Sources of inefficiency in parallel codes 
• Poor single processor performance "

•  Typically in the memory system (recall matmul homework)"
• Too much parallelism overhead"

•  Thread creation, synchronization, communication"
• Load imbalance"

•  Different amounts of work across processors"
•  Computation and communication"

•  Different speeds (or available resources) for the processors"
•  Possibly due to load on shared machine"
•  Heterogeneous resources (eg CPU + GPU)"

• How to recognize load imbalance"
•  Time spent at synchronization is high and is uneven across 

processors, but not always so simple …"
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Measuring Load Imbalance 
• Challenges:!

•  Can be hard to separate from high synchronization overhead"
•  Especially subtle if not 

bulk-synchronous"
•  “Spin locks” can make 

synchronization look 
like useful work"

• Note that imbalance 
may change over 
phases"

•  Insufficient parallelism 
always leads to load 
imbalance"

•  Tools like IPM,TAU can 
help (acts.nersc.gov)"
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Review of Graph Partitioning – static case 
•  Partition G(N,E) so that"

•  N = N1 U … U Np, with each |Ni| ~ |N|/p"
•  As few edges connecting different Ni and Nk as possible"

•  If N = {tasks}, each unit cost, edge e=(i,j) means task i has to 
communicate with task j, then partitioning means"

•  balancing the load, i.e. each |Ni| ~ |N|/p"
•  minimizing communication volume"

•  Optimal graph partitioning is NP complete, so we use 
heuristics (see earlier lectures)"

•  Spectral, Kernighan-Lin, Multilevel …"
•  Good software available"

•  (Par)METIS, Scotch, Zoltan, …"
•  Speed of partitioner trades off with quality of partition"

•  Better load balance costs more; may or may not be worth it"
•  Need to know tasks, communication pattern before starting"

•  What if you don’t?  Can redo partitioning, but not frequently"
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Load Balancing Overview 
Load balancing differs with properties of the tasks "
• Tasks costs"

•  Do all tasks have equal costs?"
•  If not, when are the costs known?"

•  Before starting, when task created, or only when task ends"

• Task dependencies"
•  Can all tasks be run in any order (including parallel)?"
•  If not, when are the dependencies known?"

•  Before starting, when task created, or only when task ends"
•  One task may prematurely end another task (eg search)"

• Locality (may tradeoff with load balance)"
•  Is it important for some tasks to be scheduled on the same 

processor (or nearby) to reduce communication cost?"
•  When is the information about communication known?"

•  If properties known only when tasks end"
•  Are statistics fixed, change slowly, change abruptly?"
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Task Cost Spectrum 

, search 
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Task Dependency Spectrum 
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Task Locality Spectrum (Communication) 
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Spectrum of Solutions 
A key question is when certain information about the load balancing 

problem is known."
Leads to a spectrum of solutions:"

•  Static scheduling.  All information is available to scheduling algorithm, 
which runs before any real computation starts.  "

•  Off-line algorithms, eg graph partitioning, DAG scheduling "
•  Still might use dynamic approach if too much information"

•  Semi-static scheduling.  Information may be known at program startup, 
or the beginning of each timestep, or at other well-defined points.  
Offline algorithms may be used even though the problem is dynamic. "

•  eg Kernighan-Lin, as in Zoltan"
•  Dynamic scheduling.  Information is not known until mid-execution.  "

•  On-line algorithms – main topic today"
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Dynamic Load Balancing 
• Motivation for dynamic load balancing"

•  Search algorithms as driving example"
• Centralized load balancing"

•  Overview"
•  Special case for schedule independent loop iterations"
•  Makes most sense in shared memory environment"
•  Hard to scale to large numbers of processors"

• Distributed load balancing"
•  Overview – randomization often used"
•  Engineering"
•  Theoretical results"

"
"
"
"
"
"
• Example scheduling problem: mixed 

parallelism????"
•  Demonstrate use of coarse performance models"
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Search 
• Search problems are often:"

•  Computationally expensive"
•  Have very different parallelization strategies than physical 

simulations."
•  Require dynamic load balancing"

• Examples:"
•  Optimal layout of VLSI chips"
•  Robot motion planning"
•  Chess and other games (N-queens)"
•  Speech processing"
•  Constructing phylogeny tree from set of genes"
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Example Problem: Tree Search 
•  In Tree Search the tree unfolds dynamically"
• May be a graph if there are common sub-problems 

along different paths"
• Graphs unlike meshes which are precomputed and 

have no ordering constraints"
Terminal node (non-goal) 
Non-terminal node 
Terminal node (goal) 
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Depth vs Breadth First Search (Review) 
•  DFS with Explicit Stack – little parallelism"

•  Put root into Stack"
•  Stack is data structure where items added to and removed from the top only"

•  While Stack not empty"
•  If node on top of Stack satisfies goal of search, return result, else"

–  Mark node on top of Stack as “searched”"
–  If top of Stack has an unsearched child, put child on top of Stack, else 

remove top of Stack"

•  BFS with Explicit Queue – lots of parallelism (depending on graph)"
•  Put root into Queue"

•  Queue is data structure where items added to end, removed from front"
•  While Queue not empty"

•  If node at front of Queue satisfies goal of search, return result, else"
–  Mark node at front of Queue as “searched”"
–  If node at front of Queue has any unsearched children, put them all at end 

of Queue"
–  Remove node at front from Queue"
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Sequential Search Algorithms 
• Depth-first search (DFS)"

•  Simple backtracking "
•  Search to bottom, backing up to last choice if necessary"

•  Depth-first branch-and-bound"
•  Keep track of best solution so far (“bound”)"
•  Cut off sub-trees that are guaranteed to be worse than bound"

•  Iterative Deepening (“in between” DFS and BFS)"
•  Choose a bound d on search depth, and use DFS up to depth d"
•  If no solution is found, increase d and start again"
•  Can use an estimate of cost-to-solution to get bound on d"

• Breadth-first search (BFS)"
•  Search all nodes at distance 1 from the root, then distance 2, 

and so on"
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Parallel Search 
• Consider simple backtracking search"
• Try static load balancing: spawn each new task on 

an idle processor, until all have a subtree"

Load balance on 2 processors Load balance on 4 processors 

• We can and should do better than this … 
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Centralized Scheduling 
• Keep a queue of task waiting to be done"

•  May be done by manager task"
•  Or a shared data structure protected by locks"

Task  
Queue 

 
 

worker 

worker 

worker worker 

worker 

worker 

04/21/2015! CS267 Lecture 25! 18!

Centralized Task Queue: Scheduling Loops 
• When applied to loops, often called self scheduling:"

•  Tasks may be range of loop indices to compute"
•  Assumes independent iterations"
•  Loop body has unpredictable time (branches) or the problem is 

not interesting"
• Originally designed for:"

•  Scheduling loops by compiler (or runtime-system)"
•  Original paper by Tang and Yew, ICPP 1986"

• Properties"
•  Dynamic, online scheduling algorithm"
•  Good for a small number of processors (centralized)"
•  Special case of task graph – independent tasks, known at once"

04/21/2015! CS267 Lecture 25! 19!

Variations on Self-Scheduling 

•  When applied to loops, often called self scheduling"
•  Assume independent loop iterations, varying run times"

•  Typically, don’t want to grab smallest unit of 
parallel work, i.e., a single loop iteration"
•  Too much contention at shared queue"

•  Instead, choose a chunk of tasks of size K."
•  If K is large, access overhead for task queue is small"
•  If K is small, we are likely to have even finish times (load 

balance)"
•  (at least) Four Variations:"

1. Use a fixed chunk size"
2. Guided self-scheduling"
3. Tapering"
4. Weighted Factoring"

Centralized Task Queue: Scheduling Loops 
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Variation 1/4: Fixed Chunk Size 
• Kruskal and Weiss give a technique for computing the 

optimal chunk size (IEEE Trans. Software Eng., 1985)"

• Requires a lot of information about the problem 
characteristics"

•  e.g., task costs, number of tasks, cost of scheduling"
•  Probability distribution of runtime of each task (same for all)"
•  Assumes distribution is IFR = “Increasing Failure Rate”"

•  For any t>0, P(X > x+t | X > x) is a decreasing function of x"
•  Kopt = (2½ * #tasks * time_to_access_queue/(σ * p * (log p)½))2/3  !

• Not very useful in practice "
•  Distribution must be known at loop startup time"



4/21/15 

CS267, Yelick 6 

04/21/2015! CS267 Lecture 25! 21!

Variation 2/4: Guided Self-Scheduling 
•  Idea: use larger chunks at the beginning to avoid 

excessive overhead and smaller chunks near the end 
to even out the finish times."

•  The chunk size Ki at the ith access to the task pool is given by "
                        Ki = ceiling(Ri/p)"

•  where Ri is the total number of tasks remaining and"
•  p is the number of processors"

• See Polychronopoulos & Kuck, “Guided Self-
Scheduling: A Practical Scheduling Scheme for 
Parallel Supercomputers,” IEEE Transactions on 
Computers, Dec. 1987."
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Variation 3/4: Tapering 
•  Idea: the chunk size, Ki is a function of not only the 

remaining work, but also the task cost variance"
•  variance is estimated using history information"
•  high variance => small chunk size should be used"
•  low variance => larger chunks OK"

• See S. Lucco, “Adaptive Parallel Programs,”        
PhD Thesis, UCB, CSD-95-864, 1994."

•  Gives analysis (based on workload distribution)"
•  Also gives experimental results -- tapering always works 

at least as well as GSS, although difference is often small"
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Variation 4/4: Weighted Factoring 
•  Idea: similar to self-scheduling, but divide task cost 

by computational power of requesting node"

• Useful for heterogeneous systems"
• Also useful for shared resource clusters, e.g., built 

using all the machines in a building"
•  as with Tapering, historical information is used to predict 

future speed"
•  “speed” may depend on the other loads currently on a 

given processor"
• See Hummel, Schmit, Uma, and Wein, SPAA ‘96"

•  includes experimental data and analysis"
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Summary: When is Self-Scheduling a Good Idea? 
Useful when:"

• A batch (or set) of tasks without dependencies"
•  can also be used with dependencies, but most analysis has 

only been done for task sets without dependencies"

• The cost of each task is unknown"
• Locality is not important"
• Shared memory machine, or at least number of 

processors is small – centralization is OK"
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A C language for programming 
dynamic multithreaded applications on 

shared-memory multiprocessors. 

Cilk: A Language with Built-in Load balancing 

●  virus shell assembly 
●  graphics rendering 
●  n-body simulation 
●  heuristic search 

●  dense and sparse matrix 
computations 

●  friction-stir welding 
simulation 

●  artificial evolution 

Example applications: 

© 2006 Charles E. Leiserson  

CILK (Leiserson et al)  (supertech.lcs.mit.edu/cilk) 
• Created startup company called CilkArts 
• Acquired by Intel 
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Fibonacci Example: Creating Parallelism 

int fib (int n) { 
if (n<2) return (n); 
  else { 
    int x,y; 
    x = fib(n-1); 
    y = fib(n-2); 
    return (x+y); 
  } 
} 

C elision 

cilk int fib (int n) { 
  if (n<2) return (n); 
  else { 
    int x,y; 
    x = spawn fib(n-1); 
    y = spawn fib(n-2); 
    sync; 
    return (x+y); 
  } 
} 

Cilk code 

Cilk is a faithful extension of C.  A Cilk program’s 
serial elision is always a legal implementation of 
Cilk semantics.  Cilk provides no new data types. 

© 2006 Charles E. Leiserson  CS267 Lecture 25!
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cilk int fib (int n) { 
  if (n<2) return (n); 
  else { 
    int x,y; 
    x = spawn fib(n-1); 
    y = spawn fib(n-2); 
    sync; 
    return (x+y); 
  } 
} 

Dynamic Multithreading 

The computation dag 
unfolds dynamically. 

Example: fib(4) 

4 

3 

2 

2 

1 

1 1 0 

0 

© 2006 Charles E. Leiserson  

processors 
are 

virtualized 
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Algorithmic Complexity Measures 

TP = execution time on P processors 
T1 = work 

LOWER BOUNDS 
• TP ≥ T1/P 
• TP ≥ T∞ 

* Also called critical-path length 
or computational depth. 

T∞ = span* 

© 2006 Charles E. Leiserson  CS267 Lecture 25!
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Speedup 

Definition: T1/TP = speedup on P processors. 
If T1/TP = Θ(P) ≤ P, we have linear speedup; 

 = P, we have perfect linear speedup; 
 > P, we have superlinear speedup, 

which is not possible in our model, because 
of the lower bound TP ≥ T1/P. 
T1/T∞  = available parallelism 

 = the average amount of work per  
               step along the span (critical path). 

© 2006 Charles E. Leiserson  CS267 Lecture 25! 04/21/2015! 30!

Greedy Scheduling 

IDEA: Do as much as possible on every step.!

Complete step  
• ≥ P threads ready. 
• Run any P. 
Incomplete step  
• < P threads ready. 
• Run all of them. 

Definition: A thread is ready 
if all its predecessors have 
executed. 

P = 3 

© 2006 Charles E. Leiserson  CS267 Lecture 25!
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Cilk’s Work-Stealing Scheduler 
Each processor maintains a work deque of 
ready threads, and it manipulates the bottom of 
the deque like a stack. 

P P P P 
When a processor runs out of work, 
it steals a thread from the top of a 
random victim’s deque. 

Steal! 

© 2006 Charles E. Leiserson  CS267 Lecture 25! 04/21/2015! 32!

Performance of Work-Stealing 

Theorem: Cilk’s work-stealing scheduler 
achieves an expected running time of 

TP ≤ T1/P + O(T∞) 
on P processors. 
Pseudoproof. A processor is either working or 
stealing.  The total time all processors spend 
working is T1.  Each steal has a 1/P chance of 
reducing the span by 1.  Thus, the expected cost 
of all steals is O(PT∞).  Since there are P 
processors, the expected time is  

    (T1 + O(PT∞))/P = T1/P + O(T∞) .  ■ 
© 2006 Charles E. Leiserson  CS267 Lecture 25!
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Analysis of work-stealing (WS) with private caches 

Memory 

M 

P

M 

P

M 

P

C: 
Cache 
miss 
time 

Scheduler: Work Stealing [BL’99, ABB’00] 

33 

Program 
 

T1, T∞, 
 Q1(M), H1 

Machine 
 

 params: 
p, M, C, s  

WS 
Scheduler 

Qp<= Q1+O(pT∞ * ceil(C/s) * M) 
Hp <= H1 

Tp <= (T1 + QpC)/p + T∞C 

Observation: 
 Polylog Depth + Good Cache Complexity 
= Good performance on Private Caches 

Source: Harsha Simhadri  

M = cache size 
Q = #cache misses 
H = space in heap 
  

p = # processors 
C = cache miss time 
s = time to steal 
  

Further analyses of Cilk’s Performance 
• Bounds on #cache misses caused by work stealing if 

each processor has private cache, single shared (slow) 
memory!

• Bounds extended to hierarchical memories!
• Space needed (for stacks) by P processors at most P 

times space needed by one processor!
!
• General conclusions: !

• Work stealing good idea if execution DAG not too 
deep, and sequential implementation would not 
generate too many cache misses!

04/04/2013! CS267 Lecture 20! 34!

Extensions/variations on work stealing 
• Parallel-Depth First Schedule!

•  Assume Depth First order of tasks known, prioritize in this order!
•  Greedy work schedule where “ready tasks” executed in priority 

order!
•  Better bounds on parallel space, locality on shared caches!

• Space Bounded schedulers!
•  Anchor tasks to preserve locality!
•  Do not allow tasks to move, once assigned!
•  Assignments must not allow caches to overflow!

04/04/2013! CS267 Lecture 20! 35! 04/21/2015! 36!

Space Bounds 

Theorem.  Let S1 be the stack space required 
by a serial execution of a Cilk program.  
Then, the space required by a P-processor 
execution is at most SP = PS1 . 
Proof (by induction). The 
work-stealing algorithm 
maintains the busy-leaves 
property: every extant 
procedure frame with no 
extant descendents has a 
processor working on it.  ■  

P 
P 

P 

S1 

P = 3 

© 2006 Charles E. Leiserson  CS267 Lecture 25!
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DAG Scheduling software 

• QUARK (U. Tennessee)!
•  Library developed to support PLASMA for pipelining 

(“synchronization avoiding”) dense linear algebra!
• SMPss (Barcelona)!

•  Compiler based; Data usage expressed via pragmas; Proposal to 
be in OpenMP; Recently added GPU support!

• StarPU (INRIA)!
•  Library based; GPU support; Distributed data management; 

Codelets=tasks (map CPU, GPU versions)!
• DAGUE/DPLASMA (MPI group work)!

•  Needs a compact DAG representation; Distributed memory; 
Designed to be very, very scalable!

• Other tools (e.g., fork-join graphs only)!
•  Cilk, Intel Threaded Building Blocks (TBB); Microsoft CCR, …!37!

04/19/2012! CS267 Lecture 26!

Pipelining: Cholesky Inversion 

38!

POTRF+TRTRI+LAUUM: 25=(7t-3) 
Cholesky Factorization alone: 3t-2 

Pipelined: 18=(3t+6) 

Source: Julien Langou: ICL presentation 2011/02/04 

Go to Henricus Bouwmeester M: MS97 Thu 9:30 AM  04/19/2012! CS267 Lecture 26!

Simplified QUARK architecture 

39!

Scheduling is done using a combination of task assignment to workers (via 
locality reuse, etc ) and work stealing. 

04/21/2015! CS267 Lecture 25!

Basic QUARK API 

40!

Setup QUARK data structures 
QUARK_New [standalone]  or  
QUARK_Setup [part of external library] 
 
For each kernel routine, insert into QUARK runtime 
QUARK_Insert_Task(quark, function, task_flags,  
                                  arg_size, arg_ptr, arg_flags, 
                                  ..., ..., ..., 0); 
 
When done, exit QUARK  
QUARK_Delete[standalone] or  
QUARK_Waitall [return to external library] 
 
Other basic calls 
QUARK_Barrier 
QUARK_Cancel_Task 
QUARK_Free (used after QUARK_Waitall) 

04/19/2012! CS267 Lecture 26!
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Scalability of DAG Schedulers 

41!

•  How many tasks are there in DAG for dense linear algebra 
operation on an n x n matrix with b x b blocks? 

•  O((n/b)3 ) = 1M, for n=10,000 and b = 100 
•  Creating, scheduling entire DAG does not scale 
•  PLASMA: static scheduling of entire DAG 
•  QUARK: dynamic scheduling of  “frontier” of DAG at any 

one time  

04/19/2012! CS267 Lecture 26!

Performance – 12 core 

42!
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Performance of LU factorization (DGETRF)
 Starting from standard layout, PLASMA static, PLASMA QUARK, MKL

 Platform: 48 core (8 x 6-core) 2.8GHz Opteron; 128GB; peak 538 GFlop/s [ig]

PLASMA Static (12 threads)
QUARK (12 threads)

MKL (12 threads)

MKL is really good when there are a few cores 
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Performance – 24 core 
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Performance of LU factorization (DGETRF)
 Starting from standard layout, PLASMA static, PLASMA QUARK, MKL
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QUARK (24 threads)

MKL (24 threads)

43!QUARK is pretty close to static PLASMA 
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Performance – 48 core 
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Performance of LU factorization (DGETRF)
 Starting from standard layout, PLASMA static, PLASMA QUARK, MKL

 Platform: 48 core (8 x 6-core) 2.8GHz Opteron; 128GB; peak 538 GFlop/s [ig]

PLASMA Static (48 threads)
QUARK (48 threads)

MKL (48 threads)

44!QUARK is approx 10% less than static; MKL scales up more slowly. 

04/19/2012!
CS267 Lecture 26!
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Limitations: Future Work 
• VERY sensitive to task size!

• For PLASMA, small tile sizes 
 give bad performance, need  
NB around 180!

• Overhead kills performance  
for small tasks.!

• Master handles serial task insertion!
• This is a hurdle for large scale scalability!
• Some work may be delegated in future versions!

• Scalability!
• Largest tests are for 48 cores!
• Large scale scalability is untested !
• For ongoing work see icl.cs.utk.edu/iclprojects/! 45!
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Performance of QR Factorization
 Looking at effect of NB; 48 cores

 48 cores (8 x 6-core) 2.8GHz Opteron; 128GB; peak 538 GFlop/s [ig]

PLASMA static (N=10000)
QUARK (N=10000)
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Trace: LU factorization 

46!

LU factorization (dgetrf) of N=5000 on 48 cores using dynamic QUARK runtime 

Trace created using EZTrace and visualized using ViTE 

04/19/2012! CS267 Lecture 26!
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Distributed Task Queues 

• The obvious extension of task queue to distributed 
memory is:"

•  a distributed task queue (or “bag”)"
•  Idle processors can “pull” work, or busy processors “push” work"

• When are these a good idea?"
•  Distributed memory multiprocessors"
•  Or, shared memory with significant synchronization overhead"
•  Locality is not (very) important"
•  Tasks may be:"

•  known in advance, e.g., a bag of independent ones"
•  dependencies exist, i.e., being computed on the fly"

•  The costs of tasks is not known in advance"

04/21/2015! CS267 Lecture 25! 48!

Distributed Dynamic Load Balancing 
• Dynamic load balancing algorithms go by other names:"

•  Work stealing, work crews, …"
• Basic idea, when applied to tree search:"

•  Each processor performs search on disjoint part of tree"
•  When finished, get work from a processor that is still busy"
•  Requires asynchronous communication"

Service pending 
messages 

Do fixed amount 
of work 

Select a processor 
and request work 

Service pending  
messages 

No work found 

Got work 

busy idle 
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How to Select a Donor/Acceptor Processor 
•  Three basic techniques:"

1.  Asynchronous round robin"
•  Each processor k, keeps a variable “targetk”"
•  When a processor runs out of work, requests work from targetk"
•  Set  targetk = (targetk +1) mod procs"

2.  Global round robin"
•  Proc 0 keeps a single variable “target”"
•  When a processor needs work, gets target, requests work from target"
•  Proc 0 sets target = (target + 1) mod procs"

3.  Random polling/stealing"
•  When a processor needs work, select a random processor and 

request work from it"
4.  Random distribution of work"

•   When a processor has too much work, select a random processor to  
take it"

•  Repeat if no work is found"
04/21/2015! CS267 Lecture 25! 50!

How to Split Work 
• First parameter is number of tasks to give when asked"

•  Related to the self-scheduling variations, but total number of 
tasks is now unknown"

• Second question is which one(s)"
•  Send tasks near the bottom of the stack (oldest)"
•  Execute from the top (most recent)"
•  May be able to do better with information about task costs"

Top of stack 

Bottom of stack 

04/21/2015! CS267 Lecture 25! 51!

Theoretical Results (1) 
Main result:  Simple randomized algorithms are optimal 

with high probability"
•  Others show this for independent, equal sized tasks"

•  “Throw n balls into n random bins”: Θ ( log n / log log n ) in fullest bin"
•  Throw d times and pick the emptiest bin: log log n / log d  [Azar]"
•  Extension to parallel throwing [Adler et all 95]"
•  Shows  p log p  tasks leads to “good” balance"

•  Karp and Zhang show this for a tree of unit cost (equal size) tasks "
•  Parent must be done before children"
•  Tree unfolds at runtime"
•  Task number/priorities not known a priori"
•  Children “pushed” to random processors"
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Theoretical Results (2) 
Main result:  Simple randomized algorithms are optimal 

with high probability"
•  Blumofe and Leiserson [94] show this for a fixed task tree of 

variable cost tasks"
•  their algorithm uses task pulling (stealing) instead of pushing, which is 

good for locality"
•  I.e., when a processor becomes idle, it steals from a random processor"
•  also have (loose) bounds on the total memory required"
•  Used in Cilk"
•  “better to receive than to give”"

•  Chakrabarti et al [94] show this for a dynamic tree of variable cost 
tasks"

•  works for branch and bound, i.e. tree structure can depend on 
execution order"

•  uses randomized pushing of tasks instead of pulling, so worse locality"
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Distributed Task Queue References 
•  Introduction to Parallel Computing by Kumar et al (text)"
• Multipol library (See C.-P. Wen, UCB PhD, 1996.)"

•  Part of Multipol (www.cs.berkeley.edu/projects/multipol)"
•  Try to push tasks with high ratio of cost_to_compute/cost_to_push"

•  Ex: for matmul, ratio = 2n3 cost(flop) / 2n2 cost(send a word) "

• Goldstein, Rogers, Grunwald, and others (independent 
work) have all shown "

•  advantages of integrating into the language framework"
•  very lightweight thread creation"
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Diffusion-Based Load Balancing 
•  In the randomized schemes, the machine is treated 

as fully-connected."
• Diffusion-based load balancing takes topology into 

account"
•  Send some extra work to a few nearby processors"

•  Average work with nearby neighbors "
•  Analogy to diffusion (Jacobi for solving Poisson equation)"

•  Locality properties better than choosing random processor"
•  Load balancing somewhat slower than randomized"
•  Cost of tasks must be known at creation time"
•  No dependencies between tasks"

• See Ghosh et al, SPAA96 for a second order 
diffusive load balancing algorithm"

•  takes into account amount of work sent last time"
•  avoids some oscillation of first order schemes"
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Diffusion-based load balancing 
• The machine is modeled as a graph"
• At each step, we compute the weight of task 

remaining on each processor"
•  This is simply the number if they are unit cost tasks"

• Each processor compares its weight with its 
neighbors and performs some averaging"

•  Analysis using Markov chains"
• See Ghosh et al, SPAA96 for a second order 

diffusive load balancing algorithm"
•  takes into account amount of work sent last time"
•  avoids some oscillation of first order schemes"

• Note: locality is still not a major concern, although 
balancing with neighbors may be better than random"

Charm++  
Load balancing based on Overdecomposition 

• Context: “Iterative Applications”!
•  Repeatedly execute similar set of tasks!

•  Idea: decompose work/data into chunks (chares in    
Charm++) , and migrate chares for balancing loads!

•  Chares  can be split or merged, but typically less frequently (or 
unnecessary in many cases)!

• How to predict the computational load and communication 
between objects?!

•  Could rely on user-provided info, or based on simple metrics !
•  (e.g. number of elements)!

•  Alternative: principle of persistence!
•  Statistics change slowly, can rebalance occasionally!

• Software, documentation at charm.cs.uiuc.edu!
•  Many applications: NAMD, LeanMD, OpenAtom, ChaNGa, ...!
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Measurement Based Load Balancing in Charm++ 
• Principle of persistence (A Heuristic)!

•  Object communication patterns and computational loads tend to 
persist over time, so recent past good predictor of future!

•  In spite of dynamic behavior!
•  Abrupt but infrequent changes!
•  Slow and small changes!

•  Only a heuristic, but applies on many applications!
• Measurement based load balancing!

•  Runtime system (in Charm++) schedules objects and mediates 
communication between them, so can measure load!

•  Use the instrumented data-base periodically to make new 
decisions, and migrate objects accordingly!

• Charm++ provides a suite of strategies, and plug-in 
capability for user-defined ones!

•  Also, a meta-balancer for deciding how often to balance, and 
what type of strategy to use!

!
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Periodic Load Balancing Strategies 
• Many alternative strategies can use the same database!

•  OCG: Object communication graph!
•  Or simply #loads of each object, if communication unimportant!

• Centralized strategies: collect data on one processor!
•  Feasible on up to a few thousand cores, because number of 

objects is typically small (10-100 per core?)!
•  Use Graph partitioners, or greedy strategies !
•  Or refinement strategies: mandated to keep most objects on the 

same processors!
•  Charm++ provides a suite of strategies, and plug-in capability 

for user-defined ones!
•  Also, a meta-balancer for deciding how often to balance, and 

what type of strategy to use!
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Load Balancing Steps 

Regular 
Timesteps 

Instrumented 
Timesteps 

Detailed, aggressive Load 
Balancing 

Refinement Load 
Balancing 

Time 
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Periodic Load Balancing for Large machines 
• Two Challenges:!
• Object communication graph cannot be brought to one 

processor!
•  A solution : Hierarchical load balancer (next slide)!

•  Interconnection topology must be taken into account!
•  Limited bisection bandwidth (on Torus networks, for example)!
•  Solution: topology-aware balancers (later slides)!
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Charm++ Hierarchical Load Balancer Scheme 

0 … 1023 65535 64512 … 1024 … 2047 64511 63488 … …... 

0 1024 63488 64512 

1 

Load Data (OCG) 

Refinement-based Load balancing 

OCG-based Load balancing 

Load Data 

token 

object 

Source: Laxmikant Kale 

Topology-aware load balancing 
• With wormhole routing, the number of hops a message 

takes has very little impact on transit time!
•  But: On an unloaded network!!

• But bandwidth is a problem!
•  Especially on torus networks!
•  More hops each message takes, more bandwidth they occupy!
•  Leading to contention and consequent delays!

• So, we should place communicating objects nearby!
•  Many current systems are “in denial” (no topo-aware allocation)!

•  Partly because some applications do well!
•  Lot of research in the 1980’s !

•  But not very relevant because of technological assumptions and 
topologies considered!

•  Ex: Take advantage of physical proximity (domain decomp.)!
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Topology aware load balancing (2/2) 
• Metric: Average dilation (equivalently, sum of hop-bytes)!
• Object-based over-decomposition helps balancing!
• When (almost) near-neighbor communication dominates!

•  And geometric information available !
•  Simplest case, but challenges: Aspect ratios, load variations, !
•  Strategies: ORB, many heuristic placement strategies !

•  (A. Bhatele Phd. Thesis)!
•  Variation: A set of pairwise interactions (e.g. Molecular 

dynamics) among geometrically placed primary objects:!
•  Strategy: place within the “brick” formed by the two primary objs!

• When application has multiple phases:!
•  Strategy: often blocking helps. Alternatively, optimize one 

phase (better than optimizing neither)!
•  Example: OpenAtom for Quantum Chemistry!
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Efficacy of Topology aware load balancing 
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NAMD biomolecular simulation 
running on BG/P 

Multi-phase application: 
 OpenAtom for Quantum Chemistry 
Redcued execution time form 9 s to 
5 s 

Source: Laxmikant Kale 
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Summary and Take-Home Messages 
• There is a fundamental trade-off between locality and 

load balance!
• Many algorithms, papers, & software for load balancing!
• Key to understanding how and what to use means 

understanding your application domain and their target!
•  Shared vs. distributed memory machines!
•  Dependencies among tasks, tasks cost, communication!
•  Locality oblivious vs locality “encouraged” vs locality optimized!

Computational intensity: ratio of computation to data movement cost!
•  When you know information is key (static, semi, dynamic)!

• Open question: will future architectures lead to so much 
load imbalance that even “regular” problems need 
dynamic balancing?!
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