
4/21/15

CS267, Yelick 1

CS 267: Applications of Parallel Computers  
 
 

Dynamic Load Balancing"

James Demmel"
www.cs.berkeley.edu/~demmel/cs267_Spr15"

04/21/2015! CS267 Lecture 25! 2!

Outline
•  Motivation for Load Balancing"
•  Recall graph partitioning as static load balancing technique"
•  Overview of load balancing problems, as determined by"

•  Task costs"
•  Task dependencies"
•  Locality needs"

•  Spectrum of solutions"
•  Static - all information available before starting"
•  Semi-Static - some info before starting"
•  Dynamic - little or no info before starting"
•  Or: how rapidly do costs/dependencies/locality needs change?"

•  Survey of solutions"
•  How each one works"
•  Theoretical bounds, if any"
•  When to use it, tools"

04/21/2015! CS267 Lecture 25! 3!

Sources of inefficiency in parallel codes
• Poor single processor performance "

•  Typically in the memory system (recall matmul homework)"
• Too much parallelism overhead"

•  Thread creation, synchronization, communication"
• Load imbalance"

•  Different amounts of work across processors"
•  Computation and communication"

•  Different speeds (or available resources) for the processors"
•  Possibly due to load on shared machine"
•  Heterogeneous resources (eg CPU + GPU)"

• How to recognize load imbalance"
•  Time spent at synchronization is high and is uneven across

processors, but not always so simple …"

04/21/2015! CS267 Lecture 25! 4!

Measuring Load Imbalance
• Challenges:!

•  Can be hard to separate from high synchronization overhead"
•  Especially subtle if not

bulk-synchronous"
•  “Spin locks” can make

synchronization look
like useful work"

• Note that imbalance
may change over
phases"

•  Insufficient parallelism
always leads to load
imbalance"

•  Tools like IPM,TAU can
help (acts.nersc.gov)"

4/21/15

CS267, Yelick 2

04/21/2015! CS267 Lecture 25! 5!

Review of Graph Partitioning – static case
•  Partition G(N,E) so that"

•  N = N1 U … U Np, with each |Ni| ~ |N|/p"
•  As few edges connecting different Ni and Nk as possible"

•  If N = {tasks}, each unit cost, edge e=(i,j) means task i has to
communicate with task j, then partitioning means"

•  balancing the load, i.e. each |Ni| ~ |N|/p"
•  minimizing communication volume"

•  Optimal graph partitioning is NP complete, so we use
heuristics (see earlier lectures)"

•  Spectral, Kernighan-Lin, Multilevel …"
•  Good software available"

•  (Par)METIS, Scotch, Zoltan, …"
•  Speed of partitioner trades off with quality of partition"

•  Better load balance costs more; may or may not be worth it"
•  Need to know tasks, communication pattern before starting"

•  What if you don’t? Can redo partitioning, but not frequently"

04/21/2015! CS267 Lecture 25!

6!

Load Balancing Overview
Load balancing differs with properties of the tasks "
• Tasks costs"

•  Do all tasks have equal costs?"
•  If not, when are the costs known?"

•  Before starting, when task created, or only when task ends"

• Task dependencies"
•  Can all tasks be run in any order (including parallel)?"
•  If not, when are the dependencies known?"

•  Before starting, when task created, or only when task ends"
•  One task may prematurely end another task (eg search)"

• Locality (may tradeoff with load balance)"
•  Is it important for some tasks to be scheduled on the same

processor (or nearby) to reduce communication cost?"
•  When is the information about communication known?"

•  If properties known only when tasks end"
•  Are statistics fixed, change slowly, change abruptly?"

04/21/2015! CS267 Lecture 25! 7!

Task Cost Spectrum

, search

04/21/2015! CS267 Lecture 25! 8!

Task Dependency Spectrum

4/21/15

CS267, Yelick 3

04/21/2015! CS267 Lecture 25! 9!

Task Locality Spectrum (Communication)

04/21/2015! CS267 Lecture 25! 10!

Spectrum of Solutions
A key question is when certain information about the load balancing

problem is known."
Leads to a spectrum of solutions:"

•  Static scheduling. All information is available to scheduling algorithm,
which runs before any real computation starts. "

•  Off-line algorithms, eg graph partitioning, DAG scheduling "
•  Still might use dynamic approach if too much information"

•  Semi-static scheduling. Information may be known at program startup,
or the beginning of each timestep, or at other well-defined points.
Offline algorithms may be used even though the problem is dynamic. "

•  eg Kernighan-Lin, as in Zoltan"
•  Dynamic scheduling. Information is not known until mid-execution. "

•  On-line algorithms – main topic today"

04/21/2015! CS267 Lecture 25! 11!

Dynamic Load Balancing
• Motivation for dynamic load balancing"

•  Search algorithms as driving example"
• Centralized load balancing"

•  Overview"
•  Special case for schedule independent loop iterations"
•  Makes most sense in shared memory environment"
•  Hard to scale to large numbers of processors"

• Distributed load balancing"
•  Overview – randomization often used"
•  Engineering"
•  Theoretical results"

"
"
"
"
"
"
• Example scheduling problem: mixed

parallelism????"
•  Demonstrate use of coarse performance models"

04/21/2015! CS267 Lecture 25! 12!

Search
• Search problems are often:"

•  Computationally expensive"
•  Have very different parallelization strategies than physical

simulations."
•  Require dynamic load balancing"

• Examples:"
•  Optimal layout of VLSI chips"
•  Robot motion planning"
•  Chess and other games (N-queens)"
•  Speech processing"
•  Constructing phylogeny tree from set of genes"

4/21/15

CS267, Yelick 4

04/21/2015! CS267 Lecture 25! 13!

Example Problem: Tree Search
•  In Tree Search the tree unfolds dynamically"
• May be a graph if there are common sub-problems

along different paths"
• Graphs unlike meshes which are precomputed and

have no ordering constraints"
Terminal node (non-goal)
Non-terminal node
Terminal node (goal)

04/21/2015! CS267 Lecture 25! 14!

Depth vs Breadth First Search (Review)
•  DFS with Explicit Stack – little parallelism"

•  Put root into Stack"
•  Stack is data structure where items added to and removed from the top only"

•  While Stack not empty"
•  If node on top of Stack satisfies goal of search, return result, else"

–  Mark node on top of Stack as “searched”"
–  If top of Stack has an unsearched child, put child on top of Stack, else

remove top of Stack"

•  BFS with Explicit Queue – lots of parallelism (depending on graph)"
•  Put root into Queue"

•  Queue is data structure where items added to end, removed from front"
•  While Queue not empty"

•  If node at front of Queue satisfies goal of search, return result, else"
–  Mark node at front of Queue as “searched”"
–  If node at front of Queue has any unsearched children, put them all at end

of Queue"
–  Remove node at front from Queue"

04/21/2015! CS267 Lecture 25! 15!

Sequential Search Algorithms
• Depth-first search (DFS)"

•  Simple backtracking "
•  Search to bottom, backing up to last choice if necessary"

•  Depth-first branch-and-bound"
•  Keep track of best solution so far (“bound”)"
•  Cut off sub-trees that are guaranteed to be worse than bound"

•  Iterative Deepening (“in between” DFS and BFS)"
•  Choose a bound d on search depth, and use DFS up to depth d"
•  If no solution is found, increase d and start again"
•  Can use an estimate of cost-to-solution to get bound on d"

• Breadth-first search (BFS)"
•  Search all nodes at distance 1 from the root, then distance 2,

and so on"

04/21/2015! CS267 Lecture 25! 16!

Parallel Search
• Consider simple backtracking search"
• Try static load balancing: spawn each new task on

an idle processor, until all have a subtree"

Load balance on 2 processors Load balance on 4 processors

• We can and should do better than this …

4/21/15

CS267, Yelick 5

04/21/2015! CS267 Lecture 25! 17!

Centralized Scheduling
• Keep a queue of task waiting to be done"

•  May be done by manager task"
•  Or a shared data structure protected by locks"

Task
Queue

worker

worker

worker worker

worker

worker

04/21/2015! CS267 Lecture 25! 18!

Centralized Task Queue: Scheduling Loops
• When applied to loops, often called self scheduling:"

•  Tasks may be range of loop indices to compute"
•  Assumes independent iterations"
•  Loop body has unpredictable time (branches) or the problem is

not interesting"
• Originally designed for:"

•  Scheduling loops by compiler (or runtime-system)"
•  Original paper by Tang and Yew, ICPP 1986"

• Properties"
•  Dynamic, online scheduling algorithm"
•  Good for a small number of processors (centralized)"
•  Special case of task graph – independent tasks, known at once"

04/21/2015! CS267 Lecture 25! 19!

Variations on Self-Scheduling

•  When applied to loops, often called self scheduling"
•  Assume independent loop iterations, varying run times"

•  Typically, don’t want to grab smallest unit of
parallel work, i.e., a single loop iteration"
•  Too much contention at shared queue"

•  Instead, choose a chunk of tasks of size K."
•  If K is large, access overhead for task queue is small"
•  If K is small, we are likely to have even finish times (load

balance)"
•  (at least) Four Variations:"

1. Use a fixed chunk size"
2. Guided self-scheduling"
3. Tapering"
4. Weighted Factoring"

Centralized Task Queue: Scheduling Loops

04/21/2015! CS267 Lecture 25! 20!

Variation 1/4: Fixed Chunk Size
• Kruskal and Weiss give a technique for computing the

optimal chunk size (IEEE Trans. Software Eng., 1985)"

• Requires a lot of information about the problem
characteristics"

•  e.g., task costs, number of tasks, cost of scheduling"
•  Probability distribution of runtime of each task (same for all)"
•  Assumes distribution is IFR = “Increasing Failure Rate”"

•  For any t>0, P(X > x+t | X > x) is a decreasing function of x"
•  Kopt = (2½ * #tasks * time_to_access_queue/(σ * p * (log p)½))2/3 !

• Not very useful in practice "
•  Distribution must be known at loop startup time"

4/21/15

CS267, Yelick 6

04/21/2015! CS267 Lecture 25! 21!

Variation 2/4: Guided Self-Scheduling
•  Idea: use larger chunks at the beginning to avoid

excessive overhead and smaller chunks near the end
to even out the finish times."

•  The chunk size Ki at the ith access to the task pool is given by "
 Ki = ceiling(Ri/p)"

•  where Ri is the total number of tasks remaining and"
•  p is the number of processors"

• See Polychronopoulos & Kuck, “Guided Self-
Scheduling: A Practical Scheduling Scheme for
Parallel Supercomputers,” IEEE Transactions on
Computers, Dec. 1987."

04/21/2015! CS267 Lecture 25! 22!

Variation 3/4: Tapering
•  Idea: the chunk size, Ki is a function of not only the

remaining work, but also the task cost variance"
•  variance is estimated using history information"
•  high variance => small chunk size should be used"
•  low variance => larger chunks OK"

• See S. Lucco, “Adaptive Parallel Programs,”
PhD Thesis, UCB, CSD-95-864, 1994."

•  Gives analysis (based on workload distribution)"
•  Also gives experimental results -- tapering always works

at least as well as GSS, although difference is often small"

04/21/2015! CS267 Lecture 25! 23!

Variation 4/4: Weighted Factoring
•  Idea: similar to self-scheduling, but divide task cost

by computational power of requesting node"

• Useful for heterogeneous systems"
• Also useful for shared resource clusters, e.g., built

using all the machines in a building"
•  as with Tapering, historical information is used to predict

future speed"
•  “speed” may depend on the other loads currently on a

given processor"
• See Hummel, Schmit, Uma, and Wein, SPAA ‘96"

•  includes experimental data and analysis"

04/21/2015! CS267 Lecture 25! 24!

Summary: When is Self-Scheduling a Good Idea?
Useful when:"

• A batch (or set) of tasks without dependencies"
•  can also be used with dependencies, but most analysis has

only been done for task sets without dependencies"

• The cost of each task is unknown"
• Locality is not important"
• Shared memory machine, or at least number of

processors is small – centralization is OK"

4/21/15

CS267, Yelick 7

04/21/2015! 25!

A C language for programming
dynamic multithreaded applications on

shared-memory multiprocessors.

Cilk: A Language with Built-in Load balancing

●  virus shell assembly
●  graphics rendering
●  n-body simulation
●  heuristic search

●  dense and sparse matrix
computations

●  friction-stir welding
simulation

●  artificial evolution

Example applications:

© 2006 Charles E. Leiserson

CILK (Leiserson et al) (supertech.lcs.mit.edu/cilk)
• Created startup company called CilkArts
• Acquired by Intel

CS267 Lecture 25! 04/21/2015! 26!

Fibonacci Example: Creating Parallelism

int fib (int n) {
if (n<2) return (n);
 else {
 int x,y;
 x = fib(n-1);
 y = fib(n-2);
 return (x+y);
 }
}

C elision

cilk int fib (int n) {
 if (n<2) return (n);
 else {
 int x,y;
 x = spawn fib(n-1);
 y = spawn fib(n-2);
 sync;
 return (x+y);
 }
}

Cilk code

Cilk is a faithful extension of C. A Cilk program’s
serial elision is always a legal implementation of
Cilk semantics. Cilk provides no new data types.

© 2006 Charles E. Leiserson CS267 Lecture 25!

04/21/2015! 27!

cilk int fib (int n) {
 if (n<2) return (n);
 else {
 int x,y;
 x = spawn fib(n-1);
 y = spawn fib(n-2);
 sync;
 return (x+y);
 }
}

Dynamic Multithreading

The computation dag
unfolds dynamically.

Example: fib(4)

4

3

2

2

1

1 1 0

0

© 2006 Charles E. Leiserson

processors
are

virtualized

CS267 Lecture 25! 04/21/2015! 28!

Algorithmic Complexity Measures

TP = execution time on P processors
T1 = work

LOWER BOUNDS
• TP ≥ T1/P
• TP ≥ T∞

* Also called critical-path length
or computational depth.

T∞ = span*

© 2006 Charles E. Leiserson CS267 Lecture 25!

4/21/15

CS267, Yelick 8

04/21/2015! 29!

Speedup

Definition: T1/TP = speedup on P processors.
If T1/TP = Θ(P) ≤ P, we have linear speedup;

 = P, we have perfect linear speedup;
 > P, we have superlinear speedup,

which is not possible in our model, because
of the lower bound TP ≥ T1/P.
T1/T∞ = available parallelism

 = the average amount of work per
 step along the span (critical path).

© 2006 Charles E. Leiserson CS267 Lecture 25! 04/21/2015! 30!

Greedy Scheduling

IDEA: Do as much as possible on every step.!

Complete step
• ≥ P threads ready.
• Run any P.
Incomplete step
• < P threads ready.
• Run all of them.

Definition: A thread is ready
if all its predecessors have
executed.

P = 3

© 2006 Charles E. Leiserson CS267 Lecture 25!

04/21/2015! 31!

Cilk’s Work-Stealing Scheduler
Each processor maintains a work deque of
ready threads, and it manipulates the bottom of
the deque like a stack.

P P P P
When a processor runs out of work,
it steals a thread from the top of a
random victim’s deque.

Steal!

© 2006 Charles E. Leiserson CS267 Lecture 25! 04/21/2015! 32!

Performance of Work-Stealing

Theorem: Cilk’s work-stealing scheduler
achieves an expected running time of

TP ≤ T1/P + O(T∞)
on P processors.
Pseudoproof. A processor is either working or
stealing. The total time all processors spend
working is T1. Each steal has a 1/P chance of
reducing the span by 1. Thus, the expected cost
of all steals is O(PT∞). Since there are P
processors, the expected time is

 (T1 + O(PT∞))/P = T1/P + O(T∞) . ■
© 2006 Charles E. Leiserson CS267 Lecture 25!

4/21/15

CS267, Yelick 9

Analysis of work-stealing (WS) with private caches

Memory

M

P

M

P

M

P

C:
Cache
miss
time

Scheduler: Work Stealing [BL’99, ABB’00]

33

Program

T1, T∞,
 Q1(M), H1

Machine

 params:
p, M, C, s

WS
Scheduler

Qp<= Q1+O(pT∞ * ceil(C/s) * M)
Hp <= H1

Tp <= (T1 + QpC)/p + T∞C

Observation:
 Polylog Depth + Good Cache Complexity
= Good performance on Private Caches

Source: Harsha Simhadri

M = cache size
Q = #cache misses
H = space in heap

p = # processors
C = cache miss time
s = time to steal

Further analyses of Cilk’s Performance
• Bounds on #cache misses caused by work stealing if

each processor has private cache, single shared (slow)
memory!

• Bounds extended to hierarchical memories!
• Space needed (for stacks) by P processors at most P

times space needed by one processor!
!
• General conclusions: !

• Work stealing good idea if execution DAG not too
deep, and sequential implementation would not
generate too many cache misses!

04/04/2013! CS267 Lecture 20! 34!

Extensions/variations on work stealing
• Parallel-Depth First Schedule!

•  Assume Depth First order of tasks known, prioritize in this order!
•  Greedy work schedule where “ready tasks” executed in priority

order!
•  Better bounds on parallel space, locality on shared caches!

• Space Bounded schedulers!
•  Anchor tasks to preserve locality!
•  Do not allow tasks to move, once assigned!
•  Assignments must not allow caches to overflow!

04/04/2013! CS267 Lecture 20! 35! 04/21/2015! 36!

Space Bounds

Theorem. Let S1 be the stack space required
by a serial execution of a Cilk program.
Then, the space required by a P-processor
execution is at most SP = PS1 .
Proof (by induction). The
work-stealing algorithm
maintains the busy-leaves
property: every extant
procedure frame with no
extant descendents has a
processor working on it. ■

P
P

P

S1

P = 3

© 2006 Charles E. Leiserson CS267 Lecture 25!

4/21/15

CS267, Yelick 10

DAG Scheduling software

• QUARK (U. Tennessee)!
•  Library developed to support PLASMA for pipelining

(“synchronization avoiding”) dense linear algebra!
• SMPss (Barcelona)!

•  Compiler based; Data usage expressed via pragmas; Proposal to
be in OpenMP; Recently added GPU support!

• StarPU (INRIA)!
•  Library based; GPU support; Distributed data management;

Codelets=tasks (map CPU, GPU versions)!
• DAGUE/DPLASMA (MPI group work)!

•  Needs a compact DAG representation; Distributed memory;
Designed to be very, very scalable!

• Other tools (e.g., fork-join graphs only)!
•  Cilk, Intel Threaded Building Blocks (TBB); Microsoft CCR, …!37!

04/19/2012! CS267 Lecture 26!

Pipelining: Cholesky Inversion

38!

POTRF+TRTRI+LAUUM: 25=(7t-3)
Cholesky Factorization alone: 3t-2

Pipelined: 18=(3t+6)

Source: Julien Langou: ICL presentation 2011/02/04

Go to Henricus Bouwmeester M: MS97 Thu 9:30 AM 04/19/2012! CS267 Lecture 26!

Simplified QUARK architecture

39!

Scheduling is done using a combination of task assignment to workers (via
locality reuse, etc) and work stealing.

04/21/2015! CS267 Lecture 25!

Basic QUARK API

40!

Setup QUARK data structures
QUARK_New [standalone] or
QUARK_Setup [part of external library]

For each kernel routine, insert into QUARK runtime
QUARK_Insert_Task(quark, function, task_flags,
 arg_size, arg_ptr, arg_flags,
 ..., ..., ..., 0);

When done, exit QUARK
QUARK_Delete[standalone] or
QUARK_Waitall [return to external library]

Other basic calls
QUARK_Barrier
QUARK_Cancel_Task
QUARK_Free (used after QUARK_Waitall)

04/19/2012! CS267 Lecture 26!

4/21/15

CS267, Yelick 11

Scalability of DAG Schedulers

41!

•  How many tasks are there in DAG for dense linear algebra
operation on an n x n matrix with b x b blocks?

•  O((n/b)3) = 1M, for n=10,000 and b = 100
•  Creating, scheduling entire DAG does not scale
•  PLASMA: static scheduling of entire DAG
•  QUARK: dynamic scheduling of “frontier” of DAG at any

one time

04/19/2012! CS267 Lecture 26!

Performance – 12 core

42!

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

G
F

lo
p

s

N

Performance of LU factorization (DGETRF)
 Starting from standard layout, PLASMA static, PLASMA QUARK, MKL

 Platform: 48 core (8 x 6-core) 2.8GHz Opteron; 128GB; peak 538 GFlop/s [ig]

PLASMA Static (12 threads)
QUARK (12 threads)

MKL (12 threads)

MKL is really good when there are a few cores

04/19/2012! CS267 Lecture 26!

Performance – 24 core

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

G
F

lo
p
s

N

Performance of LU factorization (DGETRF)
 Starting from standard layout, PLASMA static, PLASMA QUARK, MKL

 Platform: 48 core (8 x 6-core) 2.8GHz Opteron; 128GB; peak 538 GFlop/s [ig]

PLASMA Static (24 threads)
QUARK (24 threads)

MKL (24 threads)

43!QUARK is pretty close to static PLASMA

04/19/2012! CS267 Lecture 26!

Performance – 48 core

 0

 50

 100

 150

 200

 250

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

G
F

lo
p

s

N

Performance of LU factorization (DGETRF)
 Starting from standard layout, PLASMA static, PLASMA QUARK, MKL

 Platform: 48 core (8 x 6-core) 2.8GHz Opteron; 128GB; peak 538 GFlop/s [ig]

PLASMA Static (48 threads)
QUARK (48 threads)

MKL (48 threads)

44!QUARK is approx 10% less than static; MKL scales up more slowly.

04/19/2012!
CS267 Lecture 26!

4/21/15

CS267, Yelick 12

Limitations: Future Work
• VERY sensitive to task size!

• For PLASMA, small tile sizes 
 give bad performance, need  
NB around 180!

• Overhead kills performance  
for small tasks.!

• Master handles serial task insertion!
• This is a hurdle for large scale scalability!
• Some work may be delegated in future versions!

• Scalability!
• Largest tests are for 48 cores!
• Large scale scalability is untested !
• For ongoing work see icl.cs.utk.edu/iclprojects/! 45!

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

G
Fl

op
s

NB

Performance of QR Factorization
 Looking at effect of NB; 48 cores

 48 cores (8 x 6-core) 2.8GHz Opteron; 128GB; peak 538 GFlop/s [ig]

PLASMA static (N=10000)
QUARK (N=10000)

04/19/2012! CS267 Lecture 26!

Trace: LU factorization

46!

LU factorization (dgetrf) of N=5000 on 48 cores using dynamic QUARK runtime

Trace created using EZTrace and visualized using ViTE

04/19/2012! CS267 Lecture 26!

04/21/2015! CS267 Lecture 25! 47!

Distributed Task Queues

• The obvious extension of task queue to distributed
memory is:"

•  a distributed task queue (or “bag”)"
•  Idle processors can “pull” work, or busy processors “push” work"

• When are these a good idea?"
•  Distributed memory multiprocessors"
•  Or, shared memory with significant synchronization overhead"
•  Locality is not (very) important"
•  Tasks may be:"

•  known in advance, e.g., a bag of independent ones"
•  dependencies exist, i.e., being computed on the fly"

•  The costs of tasks is not known in advance"

04/21/2015! CS267 Lecture 25! 48!

Distributed Dynamic Load Balancing
• Dynamic load balancing algorithms go by other names:"

•  Work stealing, work crews, …"
• Basic idea, when applied to tree search:"

•  Each processor performs search on disjoint part of tree"
•  When finished, get work from a processor that is still busy"
•  Requires asynchronous communication"

Service pending
messages

Do fixed amount
of work

Select a processor
and request work

Service pending
messages

No work found

Got work

busy idle

4/21/15

CS267, Yelick 13

04/21/2015! CS267 Lecture 25!

49!

How to Select a Donor/Acceptor Processor
•  Three basic techniques:"

1.  Asynchronous round robin"
•  Each processor k, keeps a variable “targetk”"
•  When a processor runs out of work, requests work from targetk"
•  Set targetk = (targetk +1) mod procs"

2.  Global round robin"
•  Proc 0 keeps a single variable “target”"
•  When a processor needs work, gets target, requests work from target"
•  Proc 0 sets target = (target + 1) mod procs"

3.  Random polling/stealing"
•  When a processor needs work, select a random processor and

request work from it"
4.  Random distribution of work"

•  When a processor has too much work, select a random processor to
take it"

•  Repeat if no work is found"
04/21/2015! CS267 Lecture 25! 50!

How to Split Work
• First parameter is number of tasks to give when asked"

•  Related to the self-scheduling variations, but total number of
tasks is now unknown"

• Second question is which one(s)"
•  Send tasks near the bottom of the stack (oldest)"
•  Execute from the top (most recent)"
•  May be able to do better with information about task costs"

Top of stack

Bottom of stack

04/21/2015! CS267 Lecture 25! 51!

Theoretical Results (1)
Main result: Simple randomized algorithms are optimal

with high probability"
•  Others show this for independent, equal sized tasks"

•  “Throw n balls into n random bins”: Θ (log n / log log n) in fullest bin"
•  Throw d times and pick the emptiest bin: log log n / log d [Azar]"
•  Extension to parallel throwing [Adler et all 95]"
•  Shows p log p tasks leads to “good” balance"

•  Karp and Zhang show this for a tree of unit cost (equal size) tasks "
•  Parent must be done before children"
•  Tree unfolds at runtime"
•  Task number/priorities not known a priori"
•  Children “pushed” to random processors"

04/21/2015! CS267 Lecture 25! 52!

Theoretical Results (2)
Main result: Simple randomized algorithms are optimal

with high probability"
•  Blumofe and Leiserson [94] show this for a fixed task tree of

variable cost tasks"
•  their algorithm uses task pulling (stealing) instead of pushing, which is

good for locality"
•  I.e., when a processor becomes idle, it steals from a random processor"
•  also have (loose) bounds on the total memory required"
•  Used in Cilk"
•  “better to receive than to give”"

•  Chakrabarti et al [94] show this for a dynamic tree of variable cost
tasks"

•  works for branch and bound, i.e. tree structure can depend on
execution order"

•  uses randomized pushing of tasks instead of pulling, so worse locality"

4/21/15

CS267, Yelick 14

04/21/2015! CS267 Lecture 25! 53!

Distributed Task Queue References
•  Introduction to Parallel Computing by Kumar et al (text)"
• Multipol library (See C.-P. Wen, UCB PhD, 1996.)"

•  Part of Multipol (www.cs.berkeley.edu/projects/multipol)"
•  Try to push tasks with high ratio of cost_to_compute/cost_to_push"

•  Ex: for matmul, ratio = 2n3 cost(flop) / 2n2 cost(send a word) "

• Goldstein, Rogers, Grunwald, and others (independent
work) have all shown "

•  advantages of integrating into the language framework"
•  very lightweight thread creation"

04/21/2015! CS267 Lecture 25!

54!

Diffusion-Based Load Balancing
•  In the randomized schemes, the machine is treated

as fully-connected."
• Diffusion-based load balancing takes topology into

account"
•  Send some extra work to a few nearby processors"

•  Average work with nearby neighbors "
•  Analogy to diffusion (Jacobi for solving Poisson equation)"

•  Locality properties better than choosing random processor"
•  Load balancing somewhat slower than randomized"
•  Cost of tasks must be known at creation time"
•  No dependencies between tasks"

• See Ghosh et al, SPAA96 for a second order
diffusive load balancing algorithm"

•  takes into account amount of work sent last time"
•  avoids some oscillation of first order schemes"

04/21/2015! CS267 Lecture 25! 55!

Diffusion-based load balancing
• The machine is modeled as a graph"
• At each step, we compute the weight of task

remaining on each processor"
•  This is simply the number if they are unit cost tasks"

• Each processor compares its weight with its
neighbors and performs some averaging"

•  Analysis using Markov chains"
• See Ghosh et al, SPAA96 for a second order

diffusive load balancing algorithm"
•  takes into account amount of work sent last time"
•  avoids some oscillation of first order schemes"

• Note: locality is still not a major concern, although
balancing with neighbors may be better than random"

Charm++
Load balancing based on Overdecomposition

• Context: “Iterative Applications”!
•  Repeatedly execute similar set of tasks!

•  Idea: decompose work/data into chunks (chares in
Charm++) , and migrate chares for balancing loads!

•  Chares can be split or merged, but typically less frequently (or
unnecessary in many cases)!

• How to predict the computational load and communication
between objects?!

•  Could rely on user-provided info, or based on simple metrics !
•  (e.g. number of elements)!

•  Alternative: principle of persistence!
•  Statistics change slowly, can rebalance occasionally!

• Software, documentation at charm.cs.uiuc.edu!
•  Many applications: NAMD, LeanMD, OpenAtom, ChaNGa, ...!

! 04/21/2015! CS267 Lecture 25!

56!
Source: Laxmikant Kale

4/21/15

CS267, Yelick 15

57!

Measurement Based Load Balancing in Charm++
• Principle of persistence (A Heuristic)!

•  Object communication patterns and computational loads tend to
persist over time, so recent past good predictor of future!

•  In spite of dynamic behavior!
•  Abrupt but infrequent changes!
•  Slow and small changes!

•  Only a heuristic, but applies on many applications!
• Measurement based load balancing!

•  Runtime system (in Charm++) schedules objects and mediates
communication between them, so can measure load!

•  Use the instrumented data-base periodically to make new
decisions, and migrate objects accordingly!

• Charm++ provides a suite of strategies, and plug-in
capability for user-defined ones!

•  Also, a meta-balancer for deciding how often to balance, and
what type of strategy to use!

!
04/21/2015! CS267 Lecture 25!

Source: Laxmikant Kale

Periodic Load Balancing Strategies
• Many alternative strategies can use the same database!

•  OCG: Object communication graph!
•  Or simply #loads of each object, if communication unimportant!

• Centralized strategies: collect data on one processor!
•  Feasible on up to a few thousand cores, because number of

objects is typically small (10-100 per core?)!
•  Use Graph partitioners, or greedy strategies !
•  Or refinement strategies: mandated to keep most objects on the

same processors!
•  Charm++ provides a suite of strategies, and plug-in capability

for user-defined ones!
•  Also, a meta-balancer for deciding how often to balance, and

what type of strategy to use!

04/21/2015! CS267 Lecture 25! 58!Source: Laxmikant Kale

59!

Load Balancing Steps

Regular
Timesteps

Instrumented
Timesteps

Detailed, aggressive Load
Balancing

Refinement Load
Balancing

Time

04/21/2015! CS267 Lecture 25! Source: Laxmikant Kale

Periodic Load Balancing for Large machines
• Two Challenges:!
• Object communication graph cannot be brought to one

processor!
•  A solution : Hierarchical load balancer (next slide)!

•  Interconnection topology must be taken into account!
•  Limited bisection bandwidth (on Torus networks, for example)!
•  Solution: topology-aware balancers (later slides)!

04/21/2015! CS267 Lecture 25! 60!Source: Laxmikant Kale

4/21/15

CS267, Yelick 16

61!

Charm++ Hierarchical Load Balancer Scheme

0 … 1023 65535 64512 … 1024 … 2047 64511 63488 … …...

0 1024 63488 64512

1

Load Data (OCG)

Refinement-based Load balancing

OCG-based Load balancing

Load Data

token

object

Source: Laxmikant Kale

Topology-aware load balancing
• With wormhole routing, the number of hops a message

takes has very little impact on transit time!
•  But: On an unloaded network!!

• But bandwidth is a problem!
•  Especially on torus networks!
•  More hops each message takes, more bandwidth they occupy!
•  Leading to contention and consequent delays!

• So, we should place communicating objects nearby!
•  Many current systems are “in denial” (no topo-aware allocation)!

•  Partly because some applications do well!
•  Lot of research in the 1980’s !

•  But not very relevant because of technological assumptions and
topologies considered!

•  Ex: Take advantage of physical proximity (domain decomp.)!
04/21/2015! CS267 Lecture 25! 62!Source: Laxmikant Kale

Topology aware load balancing (2/2)
• Metric: Average dilation (equivalently, sum of hop-bytes)!
• Object-based over-decomposition helps balancing!
• When (almost) near-neighbor communication dominates!

•  And geometric information available !
•  Simplest case, but challenges: Aspect ratios, load variations, !
•  Strategies: ORB, many heuristic placement strategies !

•  (A. Bhatele Phd. Thesis)!
•  Variation: A set of pairwise interactions (e.g. Molecular

dynamics) among geometrically placed primary objects:!
•  Strategy: place within the “brick” formed by the two primary objs!

• When application has multiple phases:!
•  Strategy: often blocking helps. Alternatively, optimize one

phase (better than optimizing neither)!
•  Example: OpenAtom for Quantum Chemistry!

04/21/2015! CS267 Lecture 25! 63!Source: Laxmikant Kale

Efficacy of Topology aware load balancing

04/21/2015! CS267 Lecture 25! 64!

NAMD biomolecular simulation
running on BG/P

Multi-phase application:
 OpenAtom for Quantum Chemistry
Redcued execution time form 9 s to
5 s

Source: Laxmikant Kale

4/21/15

CS267, Yelick 17

Summary and Take-Home Messages
• There is a fundamental trade-off between locality and

load balance!
• Many algorithms, papers, & software for load balancing!
• Key to understanding how and what to use means

understanding your application domain and their target!
•  Shared vs. distributed memory machines!
•  Dependencies among tasks, tasks cost, communication!
•  Locality oblivious vs locality “encouraged” vs locality optimized!

Computational intensity: ratio of computation to data movement cost!
•  When you know information is key (static, semi, dynamic)!

• Open question: will future architectures lead to so much
load imbalance that even “regular” problems need
dynamic balancing?!

04/21/2015! CS267 Lecture 25! 65!

