CS267 Lecture 2

Single Processor Machines:
Memory Hierarchies and Processor Features

Case Study: Tuning Matrix Multiply

James Demmel
http://www.cs.berkeley.edu/~demmel/cs267_Spr16/

Motivation

- Most applications run at < 10% of the “peak” performance of a system
 - Peak is the maximum the hardware can physically execute
- Much of this performance is lost on a single processor, i.e., the code running on one processor often runs at only 10-20% of the processor peak
- Most of the single processor performance loss is in the memory system
 - Moving data takes much longer than arithmetic and logic
- To understand this, we need to look under the hood of modern processors
 - For today, we will look at only a single "core" processor
 - These issues will exist on processors within any parallel computer

Rough List of Topics

- Basics of computer architecture, memory hierarchies, performance
- Parallel Programming Models and Machines
 - Shared Memory and Multithreading
 - Distributed Memory and Message Passing
 - Data parallelism, GPUs
 - Cloud computing
- Parallel languages and libraries
 - Shared memory threads and OpenMP
 - MPI
 - Other Languages, frameworks (UPC, CUDA, Spark, PETSc, “Pattern Language”, …)
- “Seven Dwarfs” of Scientific Computing
 - Dense & Sparse Linear Algebra
 - Structured and Unstructured Grids
 - Spectral methods (FFTs) and Particle Methods
- 6 additional motifs
 - Graph algorithms, Graphical models, Dynamic Programming, Branch & Bound, FSM, Logic
- Applications: climate modeling, materials science, astrophysics … (guest lecturers)

Possible conclusions to draw from today’s lecture

- "Computer architectures are fascinating, and I really want to understand why apparently simple programs can behave in such complex ways!"
- "I want to learn how to design algorithms that run really fast no matter how complicated the underlying computer architecture."
- "I hope that most of the time I can use fast software that someone else has written and hidden all these details from me so I don’t have to worry about them!"
- All of the above, at different points in time
Outline

• Idealized and actual costs in modern processors
• Memory hierarchies
 • Use of microbenchmarks to characterized performance
• Parallelism within single processors
• Case study: Matrix Multiplication
 • Use of performance models to understand performance
 • Attainable lower bounds on communication

Idealized Uniprocessor Model

• Processor names bytes, words, etc. in its address space
 • These represent integers, floats, pointers, arrays, etc.
• Operations include
 • Read and write into very fast memory called registers
 • Arithmetic and other logical operations on registers
• Order specified by program
 • Read returns the most recently written data
 • Compiler and architecture translate high level expressions into "obvious" lower level instructions
 \[A = B + C \Rightarrow \]
 \begin{align*}
 &\text{Read address}(B)\text{ to } R1 \\
 &\text{Read address}(C)\text{ to } R2 \\
 &R3 = R1 + R2 \\
 &\text{Write } R3\text{ to Address}(A)
 &\end{align*}
• Hardware executes instructions in order specified by compiler
• Idealized Cost
 • Each operation has roughly the same cost
 (read, write, add, multiply, etc.)

Uniprocessors in the Real World

• Real processors have
 • registers and caches
 • small amounts of fast memory
 • store values of recently used or nearby data
 • different memory ops can have very different costs
 • parallelism
 • multiple "functional units" that can run in parallel
 • different orders, instruction mixes have different costs
 • pipelining
 • a form of parallelism, like an assembly line in a factory
• Why is this your problem?
 • In theory, compilers and hardware "understand" all this and can optimize your program; in practice they don’t.
 • They won’t know about a different algorithm that might be a much better "match" to the processor

In theory there is no difference between theory and practice.
But in practice there is. - Yogi Berra
Outline

• Idealized and actual costs in modern processors
• Memory hierarchies
 • Temporal and spatial locality
 • Basics of caches
 • Use of microbenchmarks to characterized performance
• Parallelism within single processors
• Case study: Matrix Multiplication
 • Use of performance models to understand performance
 • Attainable lower bounds on communication

Memory Hierarchy

• Most programs have a high degree of locality in their accesses
 • spatial locality: accessing things nearby previous accesses
 • temporal locality: reusing an item that was previously accessed
• Memory hierarchy tries to exploit locality to improve average

Approaches to Handling Memory Latency

• Eliminate memory operations by saving values in small, fast memory (cache) and reusing them
 • need temporal locality in program
• Take advantage of better bandwidth by getting a chunk of memory and saving it in small fast memory (cache) and using whole chunk
 • bandwidth improving faster than latency: 23% vs 7% per year
 • need spatial locality in program
• Take advantage of better bandwidth by allowing processor to issue multiple reads to the memory system at once
 • concurrency in the instruction stream, e.g. load whole array, as in vector processors; or prefetching
• Overlap computation & memory operations
 • prefetching

Processor-DRAM Gap (latency)

• Memory hierarchies are getting deeper
 • Processors get faster more quickly than memory

Memory Hierarchy Diagram

- Speed: 1ns, 10ns, 100ns, 10ms, 10sec
- Size: KB, MB, GB, TB, PB

“Moore’s Law”

- µProc 60%/yr.
- DRAM 7%/yr.
Cache Basics

- **Cache** is fast (expensive) memory which keeps copy of data in main memory; it is hidden from software.
- Simplest example: data at memory address xxxxx1101 is stored at cache location 1101.
- **Cache hit**: in-cache memory access—cheap.
- **Cache miss**: non-cached memory access—expensive.
- Need to access next, slower level of cache.
- **Cache line length**: # of bytes loaded together in one entry.
 - Ex: If either xxxxx1100 or xxxxx1101 is loaded, both are loaded at location 1101.
- **Associativity**:
 - Direct-mapped: only 1 address (line) in a given range in cache.
 - Data stored at address xxxxx1101 stored at cache location 1101, in 16 word cache.
 - n-way: n ≥ 2 lines with different addresses can be stored.
 - Up to n ≤ 16 words with addresses xxxxx1101 can be stored at cache location 1101 (so cache can store 16n words).

Why Have Multiple Levels of Cache?

- On-chip vs. off-chip:
 - On-chip caches are faster, but limited in size.
 - A large cache has delays.
 - Hardware to check longer addresses in cache takes more time.
 - Associativity, which gives a more general set of data in cache, also takes more time.
- Some examples:
 - Cray T3E eliminated one cache to speed up misses.
 - IBM uses a level of cache as a "victim cache" which is cheaper.
 - There are other levels of the memory hierarchy:
 - Register, pages (TLB, virtual memory), ...
 - And it isn't always a hierarchy.

Experimental Study of Memory (Membench)

- Microbenchmark for memory system performance.
 - for array A of length L from 4KB to 8MB by 2x
 - for stride s from 4 Bytes (1 word) to L/2 by 2x
 - time the following loop (repeat many times and average)
 - for i from 0 to L-1 by s
 - load A[i] from memory (4 Bytes)

Membench: What to Expect

- Consider the average cost per load:
 - Plot one line for each array length, time vs. stride.
 - Small stride is best: if cache line holds 4 words, at most ¼ miss.
 - If array is smaller than a given cache, all those accesses will hit (after the first run, which is negligible for large enough runs).
 - Picture assumes only one level of cache.
 - Values have gotten more difficult to measure on modern procs.
Memory Hierarchy on a Sun Ultra-2i

- L1: 16 KB
- 2 cycles (6ns)
- L2: 64 byte line
- See www.cs.berkeley.edu/~yelick/arvindk/t3d-isca95.ps for details
- L2: 2 MB
- 12 cycles (36ns)
- Mem: 396 ns (132 cycles)
- 8 K pages
- 32 TLB entries

Memory Hierarchy on a Power3 (Seaborg)

- L1: 32 KB
- 128B line
- .5-2 cycles
- L2: 8 MB
- 128B line
- 9 cycles
- Mem: 396 ns (132 cycles)

Memory Hierarchy on an Intel Core 2 Duo

- L1: 16 B line
- 1 cycle (6ns)
- L2: 54 byte line
- L2: 2 MB
- 12 cycles (26ns)
- Mem: 396 ns (132 cycles)
- 8 K pages
- 32 TLB entries

Stanza Triad

- Even smaller benchmark for prefetching
- Derived from STREAM Triad
- Stanza (L) is the length of a unit stride run
- while i < arraylength
- for each L element stanza
- A[i] = scalar * X[i] + Y[i]
- skip k elements

Source: Kamil et al, MSP05
Stanza Triad Results

- This graph (x-axis) starts at a cache line size (>=16 Bytes)
- If cache locality was the only thing that mattered, we would expect flat lines equal to measured memory peak bandwidth (STREAM) as on Pentium3
- Prefetching gets the next cache line (pipelining) while using the current one
 - This does not "kick in" immediately, so performance depends on L

Lessons

- Actual performance of a simple program can be a complicated function of the architecture
 - Slight changes in the architecture or program change the performance significantly
 - To write fast programs, need to consider architecture
 - True on sequential or parallel processor
 - We would like simple models to help us design efficient algorithms

 - We will illustrate with a common technique for improving cache performance, called blocking or tiling
 - Idea: used divide-and-conquer to define a problem that fits in register/L1-cache/L2-cache

Outline

- Idealized and actual costs in modern processors
- Memory hierarchies
 - Use of microbenchmarks to characterized performance
- Parallelism within single processors
 - Hidden from software (sort of)
 - Pipelining
 - SIMD units
- Case study: Matrix Multiplication
 - Use of performance models to understand performance
 - Attainable lower bounds on communication

What is Pipelining?

Dave Patterson’s Laundry example: 4 people doing laundry
wash (30 min) + dry (40 min) + fold (20 min) = 90 min

- In this example:
 - Sequential execution takes 4 * 90min = 6 hours
 - Pipelined execution takes 30+4*40+20 = 3.5 hours
 - Bandwidth = loads/hour
 - BW = 4/6 l/h w/o pipelining
 - BW = 4/3.5 l/h w pipelining
 - BW = 1.5 l/h w pipelining, more total loads
 - Pipelining helps bandwidth but not latency (90 min)
 - Bandwidth limited by slowest pipeline stage
 - Potential speedup = Number of pipe stages
Example: 5 Steps of MIPS Datapath
Figure 3.4, Page 134, CA: AQA 2e by Patterson and Hennessy

- Pipelining is also used within arithmetic units
 - A fp multiply may have latency 10 cycles, but throughput of 1/cycle

SIMD: Single Instruction, Multiple Data

- Scalar processing
 - Traditional mode
 - One operation produces one result
- SIMD processing
 - With SSE / SSE2
 - SSE = streaming SIMD extensions
 - One operation produces multiple results

- SIMD on Intel
 - SSE2 data types: anything that fits into 16 bytes, e.g.,
 - 4x floats
 - 2x doubles
 - 16x bytes
 - Instructions perform add, multiply etc. on all the data in this 16-byte register in parallel
- Challenges:
 - Need to be contiguous in memory and aligned
 - Some instructions to move data around from one part of register to another
 - Similar on GPUs, vector processors (but many more simultaneous operations)

- What does this mean to you?
 - In addition to SIMD extensions, the processor may have other special instructions
 - Fused Multiply-Add (FMA) instructions: \(x = y + c \times z \)
 - Is so common some processor execute the multiply/add as a single instruction, at the same rate (bandwidth) as + or * alone
 - In theory, the compiler understands all of this
 - When compiling, it will rearrange instructions to get a good "schedule" that maximizes pipelining, uses FMAs and SIMD
 - It works with the mix of instructions inside an inner loop or other block of code
 - But in practice the compiler may need your help
 - Choose a different compiler, optimization flags, etc.
 - Rearrange your code to make things more obvious
 - Using special functions ("intrinsics") or write in assembly ©
Outline

- Idealized and actual costs in modern processors
- Memory hierarchies
 - Use of microbenchmarks to characterize performance
- Parallelism within single processors
- Case study: Matrix Multiplication
 - Use of performance models to understand performance
 - Attainable lower bounds on communication
 - Simple cache model
 - Warm-up: Matrix-vector multiplication
- Naïve vs optimized Matrix-Matrix Multiply
 - Minimizing data movement
 - Beating $O(n^3)$ operations
 - Practical optimizations (continued next time)

Why Matrix Multiplication?

- An important kernel in many problems
 - Appears in many linear algebra algorithms
 - Bottleneck for dense linear algebra, including Top500
 - One of the 7 dwarfs / 13 motifs of parallel computing
 - Closely related to other algorithms, e.g., transitive closure on a graph using Floyd-Warshall
- Optimization ideas can be used in other problems
- The best case for optimization payoffs
- The most-studied algorithm in high performance computing

What do commercial and CSE applications have in common?

Motif/Dwarf: Common Computational Methods

(Red Hot → Blue Cool)

1. Finite State Machine
2. Combinational
3. Graph Traversal
4. Structured Grid
5. Dense Matrix
6. Sparse Matrix
7. Spectral (FFT)
8. Dynamic Prog
9. N-Body
10. MapReduce
11. Backtrack/ B&B
12. Graphical Models
13. Unstructured Grid

Matrix-multiply, optimized several ways

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops
Note on Matrix Storage

• A matrix is a 2-D array of elements, but memory addresses are “1-D”

• Conventions for matrix layout
 • by column, or “column major” (Fortran default): A(i,j) at A+i+j*n
 • by row, or “row major” (C default) A(i,j) at A+i*n+j
 • recursive (later)

• Column major (for now)

<table>
<thead>
<tr>
<th>Column major</th>
<th>Row major</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 6 7</td>
<td>0 1 2 3</td>
</tr>
<tr>
<td>8 9 10 11 12 13 14 15</td>
<td>4 5 6 7</td>
</tr>
<tr>
<td>16 17 18 19</td>
<td>8 9 10 11</td>
</tr>
<tr>
<td>12 13 14 15</td>
<td>12 13 14 15</td>
</tr>
<tr>
<td>16 17 18 19</td>
<td>16 17 18 19</td>
</tr>
</tbody>
</table>

Blue row of matrix is stored in red cachelines

Figure source: Larry Carter, UCSD

Using a Simple Model of Memory to Optimize

• Assume just 2 levels in the hierarchy, fast and slow
• All data initially in slow memory
 • m = number of memory elements (words) moved between fast and slow memory
 • t_m = time per slow memory operation
 • f = number of arithmetic operations
 • t_f = time per arithmetic operation << t_m
 • q = f / m average number of flops per slow memory access
• Minimum possible time = f * t_f when all data in fast memory
• Actual time
 • f * t_f + m * t_m = f * t_f * (1 + m / f)
 • Larger q means time closer to minimum f * t_f
 • q ≥ t_f / t_m needed to get at least half of peak speed

Warm up: Matrix-vector multiplication

```plaintext
{implements y = y + A*x}
for i = 1:n
  for j = 1:n
    y(i) = y(i) + A(i,j)*x(j)
```

• m = number of slow memory refs = 3n + n^2
• f = number of arithmetic operations = 2n^2
• q = f / m = 2

• Matrix-vector multiplication limited by slow memory speed
Modeling Matrix-Vector Multiplication

• Compute time for \(nxn = 1000 \times 1000 \) matrix

• Time
 \[f \times t_f + m \times t_m = f \times t_f \times (1 + t_m / t_f \times q) \]
 \[-2 \times n^2 \times t_m \times (1 + t_m / t_f) \]

• For \(t_f \) and \(t_m \), using data from R. Vuduc’s PhD (pp 351-3)

 \[\text{http://bebop.cs.berkeley.edu/pubs/vuduc2003-dissertation.pdf} \]

 • For \(t_m \) use minimum-memory-latency / words-per-cache-line

<table>
<thead>
<tr>
<th>Machine</th>
<th>Clock MHz</th>
<th>Peak MFlop/s</th>
<th>Mem Lat (Min, Max) cycles</th>
<th>Linesize Bytes</th>
<th>(t_m/t_f) balance (q must be at least this for 1/2 peak speed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultra 2i</td>
<td>333</td>
<td>671</td>
<td>36</td>
<td>66</td>
<td>16 24.8</td>
</tr>
<tr>
<td>Ultra 3</td>
<td>900</td>
<td>1800</td>
<td>28</td>
<td>200</td>
<td>32 14.0</td>
</tr>
<tr>
<td>Pentium 3</td>
<td>500</td>
<td>500</td>
<td>55</td>
<td>60</td>
<td>32 6.3</td>
</tr>
<tr>
<td>Pentium3M</td>
<td>800</td>
<td>800</td>
<td>40</td>
<td>60</td>
<td>32 10.0</td>
</tr>
<tr>
<td>Power3</td>
<td>375</td>
<td>1500</td>
<td>35</td>
<td>139</td>
<td>128 8.8</td>
</tr>
<tr>
<td>Power4</td>
<td>1300</td>
<td>5200</td>
<td>60</td>
<td>10000</td>
<td>128 15.0</td>
</tr>
<tr>
<td>Itanium1</td>
<td>900</td>
<td>3200</td>
<td>36</td>
<td>85</td>
<td>32 36.0</td>
</tr>
<tr>
<td>Itanium2</td>
<td>900</td>
<td>3600</td>
<td>11</td>
<td>60</td>
<td>64 5.5</td>
</tr>
</tbody>
</table>

Simplifying Assumptions

• What simplifying assumptions did we make in this analysis?

 • Ignored parallelism in processor between memory and arithmetic within the processor

 • Sometimes drop arithmetic term in this type of analysis

 • Assumed fast memory was large enough to hold three vectors

 • Reasonable if we are talking about any level of cache

 • Not if we are talking about registers (~32 words)

 • Assumed the cost of a fast memory access is 0

 • Reasonable if we are talking about registers

 • Not necessarily if we are talking about cache (1-2 cycles for L1)

 • Memory latency is constant

 • Could simplify even further by ignoring memory operations in X and Y vectors

Validating the Model

• How well does the model predict actual performance?

 • Actual DGEMV: Most highly optimized code for the platform

 • Model sufficient to compare across machines

 • But under-predicting on most recent ones due to latency estimate

Naïve Matrix Multiply

\(\{ \text{implements } C = C + A \times B \} \)

for \(i = 1 \) to \(n \)

for \(j = 1 \) to \(n \)

for \(k = 1 \) to \(n \)

\(C(i,j) = C(i,j) + A(i,k) \times B(k,j) \)

Algorithm has \(2 \times n^2 = O(n^2) \) Flops and operates on \(3 \times n^2 \) words of memory

\(q \) potentially as large as \(2 \times n^2 / 3 \times n^2 = O(n) \)
Naïve Matrix Multiply

{implements $C = C + A^t B$}
for $i = 1$ to n
{read row i of A into fast memory}
for $j = 1$ to n
{read $C(i,j)$ into fast memory}
{read column j of B into fast memory}
for $k = 1$ to n
$C(i,j) = C(i,j) + A(i,k) \times B(k,j)$
{write $C(i,j)$ back to slow memory}

Number of slow memory references on unblocked matrix multiply
$m = n^3$
to read each column of B
n^2 times
$+ n^2$ to read each row of A once
$+ 2n^2$ to read and write each element of C once
$= n^3 + 3n^2$
So $q = f / m = 2n^3 / (n^3 + 3n^2)$
> 2 for large n, no improvement over matrix-vector multiply

Inner two loops are just matrix-vector multiply, of row i of A times B
Similar for any other order of 3 loops

Matrix-multiply, optimized several ways

Performance looks like $O(N^{4.7})$
Size 2000 took 5 days
12000 would take 1095 years

O(N^3) performance would have constant cycles/flop
Naïve Matrix Multiply on RS/6000

Blocked (Tiled) Matrix Multiply

Consider A, B, C to be N-by-N matrices of b-by-b subblocks where \(b = n / N \) is called the block size

for \(i = 1 \) to \(N \)
 for \(j = 1 \) to \(N \)
 (read block \(C(i,j) \) into fast memory)
 for \(k = 1 \) to \(N \)
 (read block \(A(i,k) \) into fast memory)
 (read block \(B(k,j) \) into fast memory)
 \(C(i,j) = C(i,j) + A(i,k) \times B(k,j) \) (do a matrix multiply on blocks)
 (write block \(C(i,j) \) back to slow memory)

Using Analysis to Understand Machines

The blocked algorithm has computational intensity \(q = b \)

- The larger the block size, the more efficient our algorithm will be
- Limit: All three blocks from A, B, C must fit in fast memory (cache), so we cannot make these blocks arbitrarily large
- Assume your fast memory has size \(M_{\text{fast}} \)

\[
3b^2 = M_{\text{fast}}, \quad \text{so} \quad q \sim b \leq \left(\frac{M_{\text{fast}}}{3}\right)^{1/2}
\]

- To build a machine to run matrix multiply at 1/2 peak arithmetic speed of the machine, we need a fast memory of size

\[
M_{\text{fast}} = 3b^2 = 3q^2 = 3(t_{\text{m}}/t_{\text{f}})^2
\]

- This size is reasonable for L1 cache, but not for register sets
- Note: analysis assumes it is possible to schedule the instructions perfectly

<table>
<thead>
<tr>
<th>Processor</th>
<th>t_{\text{m}}/t_{\text{f}}</th>
<th>KB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultra 2i</td>
<td>24.8</td>
<td>14.8</td>
</tr>
<tr>
<td>Ultra 3</td>
<td>14</td>
<td>4.7</td>
</tr>
<tr>
<td>Pentium 3</td>
<td>6.25</td>
<td>0.9</td>
</tr>
<tr>
<td>Pentium3M</td>
<td>10</td>
<td>2.4</td>
</tr>
<tr>
<td>Power3</td>
<td>8.75</td>
<td>1.8</td>
</tr>
<tr>
<td>Power4</td>
<td>15</td>
<td>5.4</td>
</tr>
<tr>
<td>Itanium1</td>
<td>36</td>
<td>31.1</td>
</tr>
<tr>
<td>Itanium2</td>
<td>5.5</td>
<td>0.7</td>
</tr>
</tbody>
</table>
Limits to Optimizing Matrix Multiply

• The blocked algorithm changes the order in which values are accumulated into each $C[i,j]$ by applying commutativity and associativity.
• The previous analysis showed that the blocked algorithm has computational intensity:

$$q = b = (M_{real}/3)^{1/2}$$

• There is a lower bound result that says we cannot do any better than this (using only associativity, so still doing n^3 multiplications).
• Theorem (Hong & Kung, 1981): Any reorganization of this algorithm (that uses only associativity) is limited to $q = O((M_{fast})^{1/2})$.
 • $\#$ words moved between fast and slow memory = $\Omega(n^3 / (M_{fast})^{1/2})$.

Communication lower bounds for Matmul

• Hong/Kung theorem is a lower bound on amount of data communicated by matmul.
• Number of words moved between fast and slow memory (cache and DRAM, or DRAM and disk, or ...) = $\Omega(n^3 / M_{fast}^{1/2})$.
• Cost of moving data may also depend on the number of "messages" into which data is packed:
 • $\#messages = O(n^3 / M_{fast}^{3/2})$.
• Lower bounds extend to anything "similar enough" to nested loops:
 • Rest of linear algebra (solving linear systems, least squares...)
 • Dense and sparse matrices
 • Sequential and parallel algorithms, ...
• More recent: extends to any nested loops accessing arrays.
• Need (more) new algorithms to attain these lower bounds...

Review of lecture 2 so far (and a look ahead)

• Applications
 • How to decompose into well-understood algorithms (and their implementations).
• Algorithms (matmul as example)
 • Need simple model of hardware to guide design, analysis: minimize accesses to slow memory.
 • If lucky, theory describing “best algorithm”
 • For $O(n^3)$ sequential matmul, must move $\Omega(n^3 / M_{real})$ words.
• Software tools
 • How do I implement my applications and algorithms in most efficient and productive way?
• Hardware
 • Even simple programs have complicated behaviors.
 • “Small” changes make execution time vary by orders of magnitude.

Basic Linear Algebra Subroutines (BLAS)

• Industry standard interface (evolving).
 • www.netlib.org/blas, www.netlib.org/blas/blast--forum
• Vendors, others supply optimized implementations.
• History
 • BLAS1 (1970s): 15 different operations:
 • vector operations: dot product, saxpy (y=α*x+y), etc
 • $m=2^i, n=2^j, q=imn$ = computational intensity ~1 or less
 • BLAS2 (mid 1980s): 25 different operations:
 • matrix-vector operations: matrix vector multiply, etc
 • $m=n^2, f=2n^2, q=2$, less overhead.
 • somewhat faster than BLAS1.
 • BLAS3 (late 1980s): 9 different operations:
 • matrix-matrix operations: matrix multiply, etc
 • $m \leq 3n^2$, $f=O(n^3)$, so $q=imn$ can possibly be as large as n, so BLAS3 is potentially much faster than BLAS2.
• Good algorithms use BLAS3 when possible (LAPACK & ScaLAPACK).
 • See www.netlib.org/(lapack,scalapack).
 • More later in course.
BLAS speeds on an IBM RS6000/590

BLAS 3 (n-by-n matrix matrix multiply) vs BLAS 2 (n-by-n matrix vector multiply) vs BLAS 1 (saxpy of n vectors)

Peak speed = 266 Mflops

Dense Linear Algebra: BLAS2 vs. BLAS3

• BLAS2 and BLAS3 have very different computational intensity, and therefore different performance

BLAS3 (MatrixMatrix) vs. BLAS2 (MatrixVector)

Data source: Jack Dongarra

What if there are more than 2 levels of memory?

• Need to minimize communication between all levels
 - Between L1 and L2 cache, cache and DRAM, DRAM and disk…
 - The tiled algorithm requires finding a good block size
 - Machine dependent
 - Need to “block” b x b matrix multiply in inner most loop
 - 1 level of memory ⇒ 3 nested loops (naïve algorithm)
 - 2 levels of memory ⇒ 6 nested loops
 - 3 levels of memory ⇒ 9 nested loops …

• Cache Oblivious Algorithms offer an alternative
 - Treat n x n matrix multiply as a set of smaller problems
 - Eventually, these will fit in cache
 - Will minimize # words moved between every level of memory hierarchy – at least asymptotically
 - “Oblivious” to number and sizes of levels

Recursive Matrix Multiplication (RMM) (1/2)

• True when each \(A_{ij} \) etc 1x1 or n/2 x n/2
 • For simplicity: square matrices with n = 2^m
 • Extends to general rectangular case

```
func C = RMM(A, B, n)
if n = 1, C = A * B, else
{ C_{11} = RMM(A_{11}, B_{11}, n/2) + RMM(A_{12}, B_{21}, n/2)
  C_{12} = RMM(A_{11}, B_{12}, n/2) + RMM(A_{12}, B_{22}, n/2)
  C_{21} = RMM(A_{21}, B_{11}, n/2) + RMM(A_{21}, B_{22}, n/2)
  C_{22} = RMM(A_{21}, B_{12}, n/2) + RMM(A_{22}, B_{22}, n/2) 
}
return
```
Recursive Matrix Multiplication (2/2)

```plaintext
func C = RMM (A, B, n)
if n=1, C = A * B, else
    {  C11 = RMM (A11, B11, n/2) + RMM (A12, B21, n/2)
       C12 = RMM (A11, B12, n/2) + RMM (A12, B22, n/2)
       C21 = RMM (A21, B11, n/2) + RMM (A22, B21, n/2)
       C22 = RMM (A21, B12, n/2) + RMM (A22, B22, n/2)  }
return
```

A(n) = # arithmetic operations in RMM(. . . , n)
= 8 · A(n/2) + 4(n/2)^2 if n > 1, else 1
= 2n^3 ... same operations as usual, in different order

W(n) = # words moved between fast, slow memory by RMM(. . . , n)
= 8 · W(n/2) + 4 · 3(n/2)^2 if 3n^2 > M_{fast}, else 3n^2
= O(n^3 / (M_{fast})^{1/2} + n^2) ... same as blocked matmul
Don't need to know M_{fast} for this to work!

Recursion: Cache Oblivious Algorithms

• The tiled algorithm requires finding a good block size
• Cache Oblivious Algorithms offer an alternative
 • Treat n×n matrix multiply set of smaller problems
 • Eventually, these will fit in cache
• Cases for A (nxm) * B (mxp)
 • Case 1: m >= max{n,p}: split A horizontally:
 • Case 2: n >= max{m,p}: split A vertically and B horizontally
 • Case 3: p >= max{m,n}: split B vertically
• Attains lower bound in O() sense

Experience with Cache-Oblivious Algorithms

• In practice, need to cut off recursion well before 1x1 blocks
 • Call “micro-kernel” on small blocks
• Implementing high-performance Cache-Oblivious code not easy
 • Careful attention to micro-kernel is needed
• Using fully recursive approach with highly optimized recursive micro-kernel, Pingali et al report that they never got more than 2/3 of peak. (unpublished, presented at LACSI’06)
• Issues with Cache Oblivious (recursive) approach
 • Recursive Micro-Kernels yield less performance than iterative ones using same scheduling techniques
 • Pre-fetching is needed to compete with best code: not well-understood in the context of Cache-Oblivious codes
• More recent work on CARMA (UCB) uses recursion for parallelism, but aware of available memory, very fast (later)
 • Up to 6.6x faster than Intel MKL for some matrix shapes, 17% for square

Recursive Data Layouts

• A related idea is to use a recursive structure for the matrix
 • Improve locality with machine-independent data structure
 • Can minimize latency with multiple levels of memory hierarchy
• There are several possible recursive decompositions depending on the order of the sub-blocks
• This figure shows Z-Morton Ordering (“space filling curve”)
• See papers on “cache oblivious algorithms” and “recursive layouts”

Advantages:
• the recursive layout works well for any cache size
Disadvantages:
• The index calculations to find A[i,j] are expensive
• Implementations switch to column-major for small sizes
Strassen’s Matrix Multiply

- The traditional algorithm (with or without tiling) has $O(n^3)$ flops
- Strassen discovered an algorithm with asymptotically lower flops
 - $O(n^{2.81})$
- Consider a 2x2 matrix multiply, normally takes 8 multiplies, 4 adds
- Strassen does it with 7 multiplies and 18 adds

Strassen’s Matrix Multiply (continued)

Let $M = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$

\[p_1 = (a_{12} - a_{22}) \cdot (b_{21} + b_{22}) \]
\[p_2 = (a_{11} + a_{22}) \cdot (b_{11} + b_{22}) \]
\[p_3 = (a_{11} - a_{21}) \cdot (b_{11} + b_{12}) \]
\[p_4 = (a_{11} + a_{12}) \cdot b_{22} \]
\[p_5 = a_{11} \cdot (b_{12} - b_{22}) \]
\[p_6 = a_{22} \cdot (b_{21} - b_{11}) \]
\[p_7 = (a_{21} + a_{22}) \cdot b_{11} \]

Then:
\[m_{11} = p_1 + p_2 - p_4 + p_6 \]
\[m_{12} = p_4 + p_5 \]
\[m_{21} = p_6 + p_7 \]
\[m_{22} = p_2 - p_3 + p_5 - p_7 \]

Extends to n x n by divide & conquer

Other Fast Matrix Multiplication Algorithms

- World’s record was $O(n^{2.37548...})$
 - Coppersmith & Winograd, 1987
- New Record! 2.37548 reduced to 2.37293
 - Virginia Vassilevska Williams, UC Berkeley & Stanford, 2011
- Newer Record! 2.37293 reduced to 2.37286
 - Francois Le Gall, 2014
- Lower bound on #words moved can be extended to (some) of these algorithms (2015 thesis of Jacob Scott)
- Possibility of $O(n^{2+\epsilon})$ algorithm!
- Cohn, Umans, Kleinberg, 2003
- Can show they all can be made numerically stable
 - D., Dumitrul, Holtz, Kleinberg, 2007
- Can do rest of linear algebra (solve $Ax=b$, $Ax=\lambda x$, etc) as fast, and numerically stably
 - D., Dumitrul, Holtz, 2008
- Fast methods (besides Strassen) may need unrealistically large n

Tuning Code in Practice

- Tuning code can be tedious
 - Lots of code variations to try besides blocking
 - Machine hardware performance hard to predict
 - Compiler behavior hard to predict
- Response: "Autotuning"
 - Let computer generate large set of possible code variations, and search them for the fastest ones
 - Used with CS267 homework assignment in mid 1990s
 - PHIPAC, leading to ATLAS, incorporated in Matlab
 - We still use the same assignment
 - We (and others) are extending autotuning to other dwarfs / motifs, eg FFT
 - Sometimes all done “off-line”, sometimes at run-time
- Still need to understand how to do it by hand
 - Not every code will have an autotuner
 - Need to know if you want to build autotuners
Search Over Block Sizes

- Performance models are useful for high level algorithms
 - Helps in developing a blocked algorithm
 - Models have not proven very useful for block size selection
 - too complicated to be useful
 - See work by Sid Chatterjee for detailed model
 - too simple to be accurate
 - Multiple multidimensional arrays, virtual memory, etc.
- Speed depends on matrix dimensions, details of code, compiler, processor

ATLAS (DGEMM n = 500)

- ATLAS is faster than all other portable BLAS implementations and it is comparable with machine-specific libraries provided by the vendor.

What the Search Space Looks Like

A 2-D slice of a 3-D register-tile search space. The dark blue region was pruned.
(Platform: Sun Ultra-IIi, 333 MHz, 667 Mflop/s peak, Sun cc v5.0 compiler)

Optimizing in Practice

- Tiling for registers
 - loop unrolling, use of named "register" variables
- Tiling for multiple levels of cache and TLB
- Exploiting fine-grained parallelism in processor
 - superscalar; pipelining
- Complicated compiler interactions (flags)
 - Hard to do by hand (but you’ll try)
- Automatic optimization an active research area
 - ASPIRE: aspire.eecs.berkeley.edu
 - BeBOP: bebop.cs.berkeley.edu
 - Weekly group meeting Mondays 1pm
 - PHIPAC: www.icsi.berkeley.edu/~bilmes/phipac
 - in particular tr-98-035.ps.gz
 - ATLAS: www.netlib.org/atlas
Removing False Dependencies

- Using local variables, reorder operations to remove false dependencies

```c
a[i] = b[i] + c;  // false read-after-write hazard between a[i] and b[i+1]

a[i+1] = b[i+1] * d;
```

```c
float f1 = b[i];
float f2 = b[i+1];
a[i] = f1 + c;
a[i+1] = f2 * d;
```

With some compilers, you can declare `a` and `b` unaliased.
- Done via "restrict pointers," compiler flag, or pragma

Exploit Multiple Registers

- Reduce demands on memory bandwidth by pre-loading into local variables

```c
while( ... ) {
  *res++ = filter[0]*signal[0] + filter[1]*signal[1] + filter[2]*signal[2];
  signal++;
}
```

```c
float f0 = filter[0];
float f1 = filter[1];
float f2 = filter[2];
while( ... ) {
  *res++ = f0*signal[0] + f1*signal[1] + f2*signal[2];
  signal++;
}
```

Also:
- register float f0 = ...;

Example is a convolution

Loop Unrolling

- Expose instruction-level parallelism

```c
float f0 = filter[0], f1 = filter[1], f2 = filter[2];
float s0 = signal[0], s1 = signal[1], s2 = signal[2];
*res++ = f0*s0 + f1*s1 + f2*s2;
```

```c
do {
  signal += 3;
s0 = signal[0];
res[0] = f0*s1 + f1*s2 + f2*s0;
s1 = signal[1];
res[1] = f0*s2 + f1*s0 + f2*s1;
s2 = signal[2];
res[2] = f0*s0 + f1*s1 + f2*s2;
res += 3;
} while( ... );
```

Expose Independent Operations

- Hide instruction latency
 - Use local variables to expose independent operations that can execute in parallel or in a pipelined fashion
 - Balance the instruction mix (what functional units are available?)

```c
f1 = f5 * f9;
f2 = f6 + f10;
f3 = f7 * f11;
f4 = f8 + f12;
```
Copy optimization

• Copy input operands or blocks
 • Reduce cache conflicts
 • Constant array offsets for fixed size blocks
 • Expose page-level locality
• Alternative: use different data structures from start (if users willing)
 • Recall recursive data layouts

Original matrix (numbers are addresses)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>11</td>
<td>15</td>
</tr>
</tbody>
</table>

Reorganized into 2x2 blocks

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>

Locality in Other Algorithms

• The performance of any algorithm is limited by \(q \)
 • \(q = \text{"computational intensity"} = \frac{\#\text{arithmetic ops}}{\#\text{words moved}} \)
• In matrix multiply, we increase \(q \) by changing computation order
 • increased temporal locality
• For other algorithms and data structures, even hand-transformations are still an open problem
 • Lots of open problems, class projects

Summary of Lecture 2

• Details of machine are important for performance
 • Processor and memory system (not just parallelism)
 • Before you parallelize, make sure you’re getting good serial performance
 • What to expect? Use understanding of hardware limits
 • There is parallelism hidden within processors
 • Pipelining, SIMD, etc
• Machines have memory hierarchies
 • 100s of cycles to read from DRAM (main memory)
 • Caches are fast (small) memory that optimize average case
• Locality is at least as important as computation
 • Temporal: re-use of data recently used
 • Spatial: using data nearby to recently used data
• Can rearrange code/data to improve locality
 • Goal: minimize communication = data movement

Class Logistics

• Homework 0 posted on web site
 • Find and describe interesting application of parallelism
 • Due Friday Jan 29
 • Could even be your intended class project
• Please fill in on-line class survey by midnight Jan 28
 • We need this to assign teams for Homework 1
 • Teams will be announced Friday morning Jan 29, when HW 1 is posted
• Please fill out on-line request for Stampede account
 • Needed for GPU part of assignment 2
 • Also has Intel Xeon-Phi
Some reading for today (see website)

- Sourcebook Chapter 3, (note that chapters 2 and 3 cover the material of lecture 2 and lecture 3, but not in the same order).
- Web pages for reference:
 - BeBOP Homepage
 - ATLAS Homepage
 - BLAS (Basic Linear Algebra Subroutines), Reference for (unoptimized) implementations of the BLAS, with documentation.
 - LAPACK (Linear Algebra PACKage), a standard linear algebra library optimized to use the BLAS effectively on uniprocessors and shared memory machines (software, documentation and reports)
 - ScalAPACK (Scalable LAPACK), a parallel version of LAPACK for distributed memory machines (software, documentation and reports)
 - Tuning Strassen's Matrix Multiplication for Memory Efficiency
 Mithuna S. Thottethodi, Siddhartha Chatterjee, and Alvin R. Lebeck
 in Proceedings of Supercomputing '98, November 1998
 "postscript"
 - Recursive Array Layouts and Fast Parallel Matrix Multiplication
 by Chatterjee et al., IEEE TPDS November 2002.
 - Many related papers at bebop.cs.berkeley.edu