
1

CS267 L4 Shared Memory.1 Demmel Sp 1999

CS 267 Applications of Parallel Computers

Lecture 4:

More about
Shared Memory Processors

and Programming

Jim Demmel

http://www.cs.berkeley.edu/~demmel/cs267_Spr99

CS267 L4 Shared Memory.2 Demmel Sp 1999

Recap of Last Lecture

° There are several standard programming models (plus
variations) that were developed to support particular kinds of
architectures

• shared memory
• message passing
• data parallel

° The programming models are no longer strictly tied to
particular architectures, and so offer portability of correctness

° Portability of performance still depends on tuning for each
architecture

° In each model, parallel programming has 4 phases
• decomposition into parallel tasks
• assignment of tasks to threads
• orchestration of communication and synchronization among threads
• mapping threads to processors

2

CS267 L4 Shared Memory.3 Demmel Sp 1999

Outline

° Performance modeling and tradeoffs

° Shared memory architectures

° Shared memory programming

CS267 L4 Shared Memory.4 Demmel Sp 1999

Cost Modeling
and

 Performance
Tradeoffs

3

CS267 L4 Shared Memory.5 Demmel Sp 1999

Example

° s = f(A[1]) + … + f(A[n])f(A[1]) + … + f(A[n])

°° DecompositionDecomposition
•• computing each f(A[j])computing each f(A[j])
•• n-fold parallelism, where n may be >> pn-fold parallelism, where n may be >> p
•• computing sum scomputing sum s

°° AssignmentAssignment
•• thread k sums thread k sums sksk = f(A[k*n/p]) + … + f(A[(k+1)*n/p-1]) = f(A[k*n/p]) + … + f(A[(k+1)*n/p-1])
•• thread 1 sums s = s1+ … +thread 1 sums s = s1+ … + sp sp

-- for simplicity of this example, will be improvedfor simplicity of this example, will be improved
•• thread 1 communicates s to other threadsthread 1 communicates s to other threads

°° OrchestrationOrchestration
• starting up threads
• communicating, synchronizing with thread 1

° Mapping
• processor j runs thread j

CS267 L4 Shared Memory.6 Demmel Sp 1999

Identifying enough Concurrency

° Amdahl’s law bounds speedup
• let s = the fraction of total work done sequentially

Simple Decomposition:
 f (A[i]) is the parallel task

 sum is sequential

C
on

cu
rr

en
cy

Time

1 x time(sum(n))

Speedup P
s

s
P

s
() ≤

+ − ≤
1
1

1

C
on

cu
rr

en
cy

p x n/p x time(f)
0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

Processors

S
P

ee
du

p

S=0%
S=1%

S=5%
S=10%

n x time(f)
° Parallelism profile

• area is total work done

After mapping

n

p

4

CS267 L4 Shared Memory.7 Demmel Sp 1999

Algorithmic Trade-offs

° Parallelize partial sum of the f’s
• what fraction of the computation is “sequential”

• what does this do for communication? locality?
• what if you sum what you “own”

C
on

cu
rr

en
cy

p x n/p x time(f)

p x time(sum(n/p))

1 x time(sum(p))

CS267 L4 Shared Memory.8 Demmel Sp 1999

Problem Size is Critical

° Total work= n + P

° Serial work: P

° Parallel work: n

° s = serial fraction

 = P/ (n+P)

° Speedup(P)=n/(n/P+P)

° Speedup decreases for

 large P if n small
0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

Processors

S
pe

ed
up

1000

10000
1000000

Amdahl’s Law Bounds

In general seek to exploit a fraction of the peak parallelism
in the problem.

n

5

CS267 L4 Shared Memory.9 Demmel Sp 1999

Algorithmic Trade-offs

° Parallelize the final summation (tree sum)
• Generalize Amdahl’s law for arbitrary “ideal” parallelism profile

C
on

cu
rr

en
cy

p x n/p x time(f)

p x time(sum(n/p))

log_2 p x time(sum(2))

CS267 L4 Shared Memory.10 Demmel Sp 1999

Shared Memory Architectures

6

CS267 L4 Shared Memory.11 Demmel Sp 1999

Recap Basic Shared Memory Architecture

P1 P2 Pn

network

$ $ $

memory

° Processors all connected to a large shared memory

° Local caches for each processor

° Cost: much cheaper to cache than main memory

°° Simplest to program, but hard to build with many processors Simplest to program, but hard to build with many processors
°° Now take a closer look at structure, costs, limits Now take a closer look at structure, costs, limits

CS267 L4 Shared Memory.12 Demmel Sp 1999

Limits of using Bus as Network

I/O MEM MEM° ° °

PROC

 cache

PROC

 cache

° ° °

Assume 100 MB/s bus

50 MIPS processor w/o cache

=> 200 MB/s inst BW per processor

=> 60 MB/s data BW at 30% load-store

Suppose 98% inst hit rate and 95%
data hit rate (16 byte block)

=> 4 MB/s inst BW per processor

=> 12 MB/s data BW per processor

=> 16 MB/s combined BW

∴ 8 processors will saturate bus

Cache provides bandwidth filter
 – as well as reducing average access time

260 MB/s

16 MB/s

7

CS267 L4 Shared Memory.13 Demmel Sp 1999

Cache Coherence: The Semantic Problem
° p1 and p2 both have cached copies of x (as 0)

° p1 writes x=1 and then the flag, f=1, as a signal to other processors that it has
updated x

• writing f pulls it into p1’s cache
• both of these writes “write through” to memory

° p2 reads f (bringing it into p2’s cache) to see if it is 1, which it is

° p2 therefore reads x, expecting the value written by p1, but gets the “stale”
cached copy

x 1
f 1

x 0
f 1

x = 1
f = 1

p1 p2

°° SMPs SMPs have complicated caches to enforce coherence have complicated caches to enforce coherence

CS267 L4 Shared Memory.14 Demmel Sp 1999

Programming SMPs

° Coherent view of shared memory

° All addresses equidistant
• don’t worry about data partitioning

° Caches automatically replicate shared data close to processor

° If program concentrates on a block of the data set that no one
else updates => very fast

° Communication occurs only on cache misses
• cache misses are slow

° Processor cannot distinguish communication misses from
regular cache misses

° Cache block may introduce unnecessary communication
• two distinct variables in the same cache block
• false sharing

8

CS267 L4 Shared Memory.15 Demmel Sp 1999

Where are things going

° High-end
• collections of almost complete workstations/SMP on high-speed

network (Millennium)
• with specialized communication assist integrated with memory

system to provide global access to shared data

° Mid-end
• almost all servers are bus-based CC SMPs
• high-end servers are replacing the bus with a network

- Sun Enterprise 10000, IBM J90, HP/Convex SPP
• volume approach is Pentium pro quadpack + SCI ring

- Sequent, Data General

° Low-end
• SMP desktop is here

° Major change ahead
• SMP on a chip as a building block

CS267 L4 Shared Memory.16 Demmel Sp 1999

° Creating parallelism in shared memory models

° Synchronization

° Building shared data structures

° Performance programming (throughout)

Programming Shared Memory MachinesProgramming Shared Memory Machines

9

CS267 L4 Shared Memory.17 Demmel Sp 1999

Programming with Threads

° Several Threads Libraries

° PTHREADS is the Posix Standard
• Solaris threads are very similar
• Relatively low level
• Portable but possibly slow

° P4 (Parmacs) is a widely used portable package
• Higher level than Pthreads
• http://www.netlib.org/p4/index.html

° OpenMP is new proposed standard
• Support for scientific programming on shared memory
• Currently a Fortran interface
• Initiated by SGI, Sun is not currently supporting this
• http://www.openMP.org

CS267 L4 Shared Memory.18 Demmel Sp 1999

Creating Parallelism

10

CS267 L4 Shared Memory.19 Demmel Sp 1999

Language Notions of Thread Creation

° cobegin/coend

° fork/join

° cobegin cleaner, but fork is more general

cobegin
 job1(a1);
 job2(a2);
coend

•Statements in block may run in parallel

•cobegins may be nested

•Scoped, so you cannot have a missing coend

tid1 = fork(job1, a1);
job2(a2);
join tid1; •Forked function runs in parallel with current

•join waits for completion (may be in different function)

CS267 L4 Shared Memory.20 Demmel Sp 1999

Forking Threads in Solaris

° start_fun defines the thread body

° start_fun takes one argument of type void* and returns void*

° an argument can be passed as arg
• j-th thread gets arg=j so it knows who it is

° stack_base and stack_size give the stack
• standard default values

° flags controls various attributes
• standard default values for now

° new_tid thread id (for thread creator to identify threads)
° http://www.sun.com/workshop/threads/doc/MultithreadedProgrammingGuide_Solaris24.pdf

int thr_create(void *stack_base, size_t stack_size,
 void *(* start_ func)(void *),
 void *arg, long flags, thread_t *new_ tid)

thr_create(NULL, NULL, start_func, arg, NULL, &tid)
Example:

Signature:

11

CS267 L4 Shared Memory.21 Demmel Sp 1999

Synchronization

CS267 L4 Shared Memory.22 Demmel Sp 1999

Barrier -- global synchronization
• fork multiple copies of the same function “work”

- SPMD “Single Program Multiple Data”
• simple use of barriers -- a threads hit the same one

• more complicated -- barriers on branches

• or in loops -- need equal number of barriers executed
• barriers are not provided in many thread libraries

- need to build them

Basic Types of Synchronization: Barrier

work_on_my_subgrid();
barrier;
read_neighboring_values();
barrier;

if (tid % 2 == 0) {
 work1();
 barrier
} else { barrier }

12

CS267 L4 Shared Memory.23 Demmel Sp 1999

Basic Types of Synchronization: Mutexes

Mutexes -- mutual exclusion aka locks
• threads are working mostly independently
• need to access common data structure

• Java and other languages have lexically scoped synchronization
- similar to cobegin/coend vs. fork and join

• Semaphores give guarantees on “fairness” in getting the lock, but
the same idea of mutual exclusion

• Locks only affect processors using them:
- pair-wise synchronization

lock *l = alloc_and_init(); /* shared */
acquire(l);
 access data
release(l);

CS267 L4 Shared Memory.24 Demmel Sp 1999

#define _REENTRANT
#include <synch.h>

/* Data Declarations */

typedef struct {
 int maxcnt; /* maximum number of runners */
 struct _sb {
 cond_t wait_cv; /* cv for waiters at barrier */
 mutex_t wait_lk; /* mutex for waiters at barrier */
 int runners; /* number of running threads */
 } sb[2];
 struct _sb *sbp; /* current sub-barrier */
} barrier_t;

int barrier_init(... int count, ...) {
……

bp->maxcnt = count;
……

}}

Barrier Implementation ExampleBarrier Implementation Example

13

CS267 L4 Shared Memory.25 Demmel Sp 1999

int barrier_wait(register barrier_t *bp) {
. . .
 mutex_lock(&sbp->wait_lk);

 if (sbp->runners == 1) { /* last thread to reach barrier */
 if (bp->maxcnt != 1) {
 /* reset runner count and switch sub-barriers */
 sbp->runners = bp->maxcnt;
 bp->sbp = (bp->sbp == &bp->sb[0])? &bp->sb[1] : &bp->sb[0];

 /* wake up the waiters */
 cond_broadcast(&sbp->wait_cv);
 }
 } else {
 sbp->runners--; /* one less runner */
 while (sbp->runners != bp->maxcnt)
 cond_wait(&sbp->wait_cv, &sbp->wait_lk);
 }
 mutex_unlock(&sbp->wait_lk);
}}

Barrier Implementation Example (Barrier Implementation Example (ContCont))

CS267 L4 Shared Memory.26 Demmel Sp 1999

Sharks and FishSharks and Fish

http://www.cs.berkeley.edu/~demmel/cs267/Sharks_and_Fish/

