CS 267 Applications of Parallel Computers
Lecture 11:

Sources of Parallelism and Locality
(Part 2)

James Demmel

http://www.cs.berkeley.edu/~demmel/cs267_Spr99
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Recap of last lecture

¢ Simulation models

° A model problem: sharks and fish
° Discrete event systems

° Particle systems

°Lumped systems (Ordinary Differential Equations,
ODEs)
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Outline

° Continuation of (ODESs)
° Partial Differential Equations (PDES)
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Ordinary Differential Equations
ODEs
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Solving ODEs

° Explicit methods to compute solution(t)
« Ex: Euler’'s method
« Simple algorithm: sparse matrix vector multiply
« May need to take very small timesteps, especially if system is stiff (i.e. can change
rapidly)
° Implicit methods to compute solution(t)
« Ex: Backward Euler’s Method
« Larger timesteps, especially for stiff problems
« More difficult algorithm: solve a sparse linear system

° Computing modes of vibration
« Finding eigenvalues and eigenvectors
« Ex: do resonant modes of building match earthquakes?

° All these reduce to sparse matrix problems
« Explicit: sparse matrix-vector multiplication
« Implicit: solve a sparse linear system
- direct solvers (Gaussian elimination)
- iterative solvers (use sparse matrix-vector multiplication)
« Eigenvalue/vector algorithms may also be explicit or implicit
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Solving ODEs - Details

° Assume ODE is x'(t) = f(x) = A*x, where A is a sparse matrix
¢ Try to compute x(i*dt) = x[i] at i=0,1,2,...
« Approximate x’(i*dt) by (x[i+1] - x[i] )/dt

° Euler’s method:
« Approximate x'(t)=A*x by (x[i+1] - x[i] )/dt = A*x[i] and solve for x[i+1]
o x[i+1] = (I+dt*A)*x[i], i.e. sparse matrix-vector multiplication

° Backward Euler’'s method:

« Approximate x’(t)=A*x by (x[i+1] - x[i] )/dt = A*x[i+1] and solve for x[i+1]

e (I-dt*A)*x[i+1] = x[i], i.e. we need to solve a sparse linear system of equations
° Modes of vibration

« Seek solution of x"'(t) = A*x of form x(t) = sin(f*t)*x0, x0 a constant vector

¢ Plug in to get -f 24x0 = A*x0, lL.e. -f 2is an eigenvalue and x0 is an eigenvector of A

« Solution schemes reduce either to sparse-matrix multiplication, or solving sparse
linear systems
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Parallelism in Sparse Matrix-vector multiplication

°y=A*,where Ais sparseand n x n

° Questions
« which processors store
- ylil, x[i], and A[i,j]

« which processors compute
- y[i] =sum (from 1 to n) A[i,j] * x[j]
=(rowiof A).x ... asparse dot product

° Partitioning
¢ Partition index set {1,...,n} =N1u N2 u ... u Np
« For alliin Nk, Processor k stores y[i], x[i], and row i of A
« For alliin Nk, Processor k computes y[i] = (row i of A) . x
“owner computes” rule: Processor k compute the y[i]s it owns

° Goals of partitioning
« balance load (how is load measured?)
« balance storage (how much does each processor store?)
¢ minimize communication (how much is communicated?)
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Graph Partitioning and Sparse Matrices

° Relationship between matrix and graph
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° A “good” partition of the graph has
« equal (weighted) number of nodes in each part (load and storage balance)
« minimum number of edges crossing between (minimize communication)

° Can reorder the rows/columns of the matrix by putting all the
nodes in one partition together
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More on Matrix Reordering via Graph Partitioning

° “Ideal” matrix structure for parallelism: (nearly) block diagonal
¢ p (number of processors) blocks
« few non-zeros outside these blocks, since these require communication

PO
P1

3
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What about implicit methods and eigenproblems?

° Direct methods (Gaussian elimination)
e Called LU Decomposition, because we factor A = L*U
e Future lectures will consider both dense and sparse cases
* More complicated than sparse-matrix vector multiplication

° Iterative solvers
* Will discuss several of these in future

- Jacobi, Successive overrelaxiation (SOR) , Conjugate
Gradients (CG), Multigrid,...

* Most have sparse-matrix-vector multiplication in kernel

° Eigenproblems
e Future lectures will discuss dense and sparse cases

« Also depend on sparse-matrix-vector multiplication, direct
methods

° Graph partitioning
e Algorithms will be discussed in future lectures
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Partial Differential Equations
PDEs
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Continuous Variables, Continuous Parameters

Examples of such systems include

° Heat flow: Temperature(position, time)
° Diffusion: Concentration(position, time)

° Electrostatic or Gravitational Potential:
Potential(position)

° Fluid flow: Velocity,Pressure,Density(position,time)
° Quantum mechanics: Wave-function(position,time)

° Elasticity: Stress,Strain(position,time)
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Example: Deriving the Heat Equation

|

0 x-h X x+h 1
Consider a simple problem

° A bar of uniform material, insulated except at ends
°Let u(x,t) be the temperature at position x at time t
° Heat travels from x-h to x+h at rate proportional to:

du(x,t) c JLux-h,H)-u(x,t))/h - (u(x,)- u(x+h,t))/h

dt h

° As h—0, we get the heat equation:
d u(x,t) d? u(x,t)
— =C* ——
dt dx?
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Explicit Solution of the Heat Equation

° For simplicity, assume C=1
° Discretize both time and position

° Use finite differences with ufj,i] as the heat at
e timet=i*dt (i=0,1,2,...) and position x = j*h (j=0,1,...,N=1/h)
« initial conditions on u[j,0]
* boundary conditions on u[0,i] and u[N,i] .

° At each timestep i=0,1,2,...

t=4

For j=0to N t=3

ulj,i+1]= z*ufj-1,i]+ (1-2*z)*u[j.i]+ t=2
z*u[j+1,i]

t=1

where z = dt/h2
° This corresponds to =0

u[0,0] u[1,0] u[2,0] u[3,0] u[4,0] u[5,0]

e matrix vector multiply (what is matrix?)

* nearest neighbors on grid
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Parallelism in Explicit Method for PDEs

° Partitioning the space (x) into p largest chunks
« good load balance (assuming large number of points relative to p)
* minimized communication (only p chunks)

e

° Generalizes to
* multiple dimensions
« arbitrary graphs (= sparse matrices)

° Problem with explicit approach
e numerical instability
« solution blows up eventually if z = dt/h?> .5
* need to make the timesteps very small when h is small: dt < 5*h?
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Instability in solving the heat equation explicitly

Explick Seludon of Heat aquation, z=0 42

ima{m) x{)
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Implicit Solution

° As with many (stiff) ODEs, need an implicit method
° This turns into solving the following equation

(I'+ (z/2)*T) * u[:,i+1]= (I - (z/2)*T) *u[:,i]
°Here | is the identity matrix and T is:

2 -1
Graph and “ stencil”
1 2 1
T= ] ]
1 2 1 1 2 1
1 2

°l.e., essentially solving Poisson’s equation in 1D
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2D Implicit Method

° Similar to the 1D case, but the matrix T is now

4 4 4 Graph and “ stencil
1 4 1
11
-1 4 -1
1 4 1 et
T= -1 1 4 41 1
1
1 4 1
1 4 1
1 1 4 -1
-1 -1 4

° Multiplying by this matrix (as in the explicit case) is
simply nearest neighbor computation on 2D grid

°To solve this system, there are several techniques
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Algorithms for 2D Poisson Equation with N unknowns

Algorithm Serial PRAM Memory #Procs
° Dense LU N3 N N2 N2
° Band LU N2 N N3/2 N
° Jacobi N2 N N N
° Explicit Inv. N2 log N N2 N2
° Conj.Grad. N 372 N ¥2*log N N N
° RB SOR N 312 N 112 N N
° Sparse LU N 372 N 12 N*log N N
° FFT N*log N log N N N
° Multigrid N log2N N N
° Lower bound N log N N

PRAM is an idealized parallel model with zero cost communication

(see next slide for explanation)
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Short explanations of algorithms on previous slide

Sorted in two orders (roughly):
« from slowest to fastest on sequential machines
« from most general (works on any matrix) to most specialized (works on matrices “like” T)

o

o

Dense LU: Gaussian elimination; works on any N-by-N matrix

o

Band LU: exploit fact that T is nonzero only on sqrt(N) diagonals nearest main
diagonal, so faster

o

Jacobi: essentially does matrix-vector multiply by T in inner loop of iterative
algorithm

o

Explicit Inverse: assume we want to solve many systems with T, so we can
precompute and store inv(T) “for free”, and just multiply by it

« It's still expensive!

ConIJu_gate Gradients: uses matrix-vector multiplication, like Jacobi, but
exploits mathematical properies of T that Jacobi does not

o

o

Red-Black SOR (Successive Overrelaxation): Variation of Jacobi that exploits
yet different mathematical properties of T

* Used in Multigrid

o

Sparse LU: Gaussian elimination exploiting particular zero structure of T

o

FFT (Fast Fourier Transform): works only on matrices very like T

o

Multigrid: also works on matrices like T, that come from elliptic PDEs

o

Lower Bound: serial (time to print answer); parallel (time to combine N inputs)

o

Details in class notes and www.cs.berkeley.edu/~demmel/ma221
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Relation of Poisson’s equation to Gravity, Electrostatics

° Force on particle at (x,y,z) due to particle at O is
-(x,y,z)/r"3, where r = sqrt(x °+y” +z7)

° Force is also gradient of potential V =-1/r
=-(d/dx V, d/dy V, d/dz V) = -grad V

°V satisfies Poisson’s equation (try it!)

Ralatianship af Potaniad ¥ and Farce -grad ¥V in 20

grad

Viex)
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Comments on practical meshes

° Regular 1D, 2D, 3D meshes

e Important as building blocks for more complicated meshes

° Practical meshes are often irregular

» Composite meshes, consisting of multiple “bent” regular meshes
joined at edges

* Unstructured meshes, with arbitrary mesh points and
connectivities

» Adaptive meshes, which change resolution during solution
process to put computational effort where needed
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Composite mesh from a mechanical structure

-2

2.5
5

Mechanical Structure with Mesh

— -3
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Converting the mesh to a matrix
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Effects of Ordering Rows and Columns on Gaussian Elimination
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Irregular mesh: NASA Airfoil in 2D (direct solution)
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Irregular mesh: Tapered Tube (multigrid)

Example of Promethens meshes
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Adaptive Mesh Refinement (AMR)

°Adaptive mesh around an explosion

°John Bell and Phil Colella at LBL (see class web page for URL)

°Goal of Titanium is to make these algorithms easier to implement
in parallel
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Challenges of irregular meshes (and a few solutions)

° How to generate them in the first place
e Triangle, a 2D mesh partitioner by Jonathan Shewchuk

° How to partition them
« ParMetis, a parallel graph partitioner

° How to design iterative solvers
« PETSc, a Portable Extensible Toolkit for Scientific Computing

* Prometheus, a multigrid solver for finite element problems on
irregular meshes

e Titanium, a language to implement Adaptive Mesh Refinement

° How to design direct solvers
e SuperLU, parallel sparse Gaussian elimination

° These are challenges to do sequentially, the more so
in parallel
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