CS 267 Applications of Parallel Computers Lecture 13:

Floating Point Arithmetic

James Demmel

http://www.cs.berkeley.edu/~demmel/cs267_Spr99

CS267 L13 Floating Point.1

Demmel Sp 1999

Outline

- ° A little history
- ° IEEE floating point formats
- ° Error analysis
- ° Exception handling
 - Using exception handling to go faster
- ° How to get extra precision cheaply
- ° Cray arithmetic a pathological example
- ° Dangers of Parallel and Heterogeneous Computing

CS267 L13 Floating Point.2

A little history

- ° Von Neumann and Goldstine 1947
 - "Can't expect to solve most big [n>15] linear systems without carrying many decimal digits [d>8], otherwise the computed answer would be completely inaccurate." -WRONG!
- ° Turing 1949
 - "Carrying d digits is equivalent to changing the input data in the d-th place and then solving Ax=b. So if A is only known to d digits, the answer is as accurate as the data deserves."
 - Backward Error Analysis
- ° Rediscovered in 1961 by Wilkinson and publicized
- Starting in the 1960s- many papers doing backward error analysis of various algorithms
- ° Many years where each machine did FP arithmetic slightly differently
 - · Both rounding and exception handling differed
 - · Hard to write portable and reliable software
 - · Motivated search for industry-wide standard, beginning late 1970s
 - First implementation: Intel 8087
- ACM Turing Award 1989 to W. Kahan for design of the IEEE Floating Point Standards 754 (binary) and 854 (decimal)
 - Nearly universally implemented in general purpose machines

CS267 L13 Floating Point.3

Demmel Sp 1999

Defining Floating Point Arithmetic

- ° Representable numbers
 - Scientific notation: +/- d.d...d x rexp
 - sign bit +/-
 - radix r (usually 2 or 10, sometimes 16)
 - · significand d.d...d (how many base-r digits d?)
 - · exponent exp (range?)
 - · others?
- ° Operations:
 - arithmetic: +,-,x,/,...
 - how to round result to fit in format
 - comparison (<, =, >)
 - conversion between different formats
 - short to long FP numbers, FP to integer
 - exception handling
 - what to do for 0/0, 2*largest_number, etc.
 - binary/decimal conversion
 - for I/O, when radix not 10
- ° Language/library support for these operations

IEEE Floating Point Arithmetic Standard 754 - Normalized Numbers

° Normalized Nonzero Representable Numbers: +- 1.d...d x 2exp

- Macheps = Machine epsilon = 2^{-#significand bits} = relative error in each operation
- OV = overflow threshold = largest number
- UN = underflow threshold = smallest number

Format	# bits	#significand bits	macheps	#exponent bits	exponent range
Single	32	23+1	2 ⁻²⁴ (~10 ⁻⁷)	8	2 ⁻¹²⁶ - 2 ¹²⁷ (~10 ⁺³⁸)
Double	64	52+1	2 ⁻⁵³ (~10 ⁻¹⁶)	11	2 ⁻¹⁰²² - 2 ¹⁰²³ (~10 ⁺⁻³⁰⁸)
Double	>=80	>=64	<=2 ⁻⁶⁴ (~10 ⁻¹⁹)	>=15	2 ⁻¹⁶³⁸² - 2 ¹⁶³⁸³ (~10+- ⁴⁹³²)
Extended (80 bits on all Intel machines)					

° +- Zero: +-, significand and exponent all zero

· Why bother with -0 later

Demmel Sp 1999

Rules for performing arithmetic

° As simple as possible:

- Take the exact value, and round it to the nearest floating point number (correct rounding)
- Break ties by rounding to nearest floating point number whose bottom bit is zero (rounding to nearest even)
- Other rounding options too (up, down, towards 0)

° Don't need exact value to do this!

• Early implementors worried it might be too expensive, but it isn't

° Applies to

- +,-,*,/
- sqrt
- · conversion between formats
- rem(a,b) = remainder of a after dividing by b
 - a = q*b + rem, q = floor(a/b)
 - cos(x) = cos(rem(x,2*pi)) for |x| >= 2*pi
 - cos(x) is exactly periodic, with period rounded(2*pi)

CS267 L13 Floating Point.6

Error Analysis

- ° Basic error formula
 - fl(a op b) = (a op b)*(1 + d) where
 - op one of +,-,*,/
 - |d| <= macheps
 - assuming no overflow, underflow, or divide by zero
- ° Example: adding 4 numbers

•
$$fl(x_1+x_2+x_3+x_4) = \{[(x_1+x_2)^*(1+d_1) + x_3]^*(1+d_2) + x_4\}^*(1+d_3)$$

= $x_1^*(1+d_1)^*(1+d_2)^*(1+d_3) + x_2^*(1+d_1)^*(1+d_2)^*(1+d_3)$
+ $x_3^*(1+d_2)^*(1+d_3) + x_4^*(1+d_3)$
= $x_1^*(1+e_1) + x_2^*(1+e_2) + x_3^*(1+e_3) + x_4^*(1+e_4)$
where each $|e_i| < 3$ *macheps

- get exact sum of slightly changed summands x_i*(1+e_i)
- Backward Error Analysis algorithm called numerically stable if it gives the exact result for slightly changed inputs
- · Numerical Stability is an algorithm design goal

CS267 L13 Floating Point.7

Demmel Sp 1999

Example: polynomial evaluation using Horner's rule

- ° Horner's rule to evaluate $p = \sum_{k=0}^{n} c_k * x^k$
 - p = c_n , for k=n-1 downto 0, p = $x*p + c_k$
- ° Numerically Stable
- ° Apply to $(x-2)^9 = x^9 18*x^8 + ... 512$

CS267 L13 Floating Point.8

Example: polynomial evaluation (continued)

- $^{\circ}$ (x-2)⁹ = x⁹ 18*x⁸ + ... 512
- ° We can compute error bounds using
 - fl(a op b)=(a op b)*(1+d)

CS267 L13 Floating Point.9

Demmel Sp 1999

What happens when the "exact value" is not a real number, or is too small or too large to represent accurately?

You get an "exception"

CS267 L13 Floating Point.10

Exception Handling

° What happens when the "exact value" is not a real number, or too small or too large to represent accurately?

° 5 Exceptions:

- Overflow exact result > OV, too large to represent
- Underflow exact result nonzero and < UN, too small to represent
- Divide-by-zero nonzero/0
- Invalid 0/0, sqrt(-1), ...
- Inexact you made a rounding error (very common!)

° Possible responses

- · Stop with error message (unfriendly, not default)
- Keep computing (default, but how?)

CS267 L13 Floating Point.11

Demmel Sp 1999

IEEE Floating Point Arithmetic Standard 754 - "Denorms"

- ° Denormalized Numbers: +-0.d...d x 2^{min_exp}
 - · sign bit, nonzero significand, minimum exponent
 - Fills in gap between UN and 0

° Underflow Exception

- · occurs when exact nonzero result is less than underflow threshold UN
- Ex: UN/3
- · return a denorm, or zero

° Why bother?

 Necessary so that following code never divides by zero if (a != b) then x = a/(a-b)

CS267 L13 Floating Point.12

IEEE Floating Point Arithmetic Standard 754 - +- Infinity

- ° +- Infinity: Sign bit, zero significand, maximum exponent
- Overflow Exception
 - · occurs when exact finite result too large to represent accurately
 - Ex: 2*OV
 - return +- infinity
- ° Divide by zero Exception
 - return +- infinity = 1/+-0
 - · sign of zero important!
- ° Also return +- infinity for
 - 3+infinity, 2*infinity, infinity*infinity
 - Result is exact, not an exception!

CS267 L13 Floating Point.13

Demmel Sp 1999

IEEE Floating Point Arithmetic Standard 754 - NAN (Not A Number)

- ° NAN: Sign bit, nonzero significand, maximum exponent
- Invalid Exception
 - occurs when exact result not a well-defined real number
 - 0/0
 - sqrt(-1)
 - infinity-infinity, infinity/infinity, 0*infinity
 - NAN + 3
 - NAN > 3?
 - · Return a NAN in all these cases
- ° Two kinds of NANs
 - Quiet propagates without raising an exception
 - · Signaling generate an exception when touched
 - good for detecting uninitialized data

CS267 L13 Floating Point.14

Exception Handling User Interface

° Each of the 5 exceptions has the following features

- · A sticky flag, which is set as soon as an exception occurs
- The sticky flag can be reset and read by the user reset overflow_flag and invalid_flag perform a computation

test overflow_flag and invalid_flag to see if any exception occurred

- · An exception flag, which indicate whether a trap should occur
 - Not trapping is the default
 - Instead, continue computing returning a NAN, infinity or denorm
 - On a trap, there should be a user-writable exception handler with access to the parameters of the exceptional operation
 - Trapping or "precise interrupts" like this are rarely implemented for performance reasons.

CS267 L13 Floating Point.15

Demmel Sp 1999

Exploiting Exception Handling to Design Faster Algorithms

- ° Paradigm:
 - 1) Try fast, but possibly "risky" algorithm
 - 2) Quickly test for accuracy of answer (use exception handling)
 - 3) In rare case of inaccuracy, rerun using slower "low risk" algorithm
- ° Quick with high probability
 - · Assumes exception handling done quickly
- ° Ex 1: Solving triangular system Tx=b
 - · Part of BLAS2 highly optimized, but risky
 - If T "nearly singular", expect very large x, so scale inside inner loop: slow but low risk
 - Use paradigm with sticky flags to detect nearly singular T
 - · Up to 9x faster on Dec Alpha
- ° Ex 2: Computing eigenvalues, up to 1.5x faster on CM-5

```
For k= 1 to n d = a_k - s - b_k^2/d vs. if |d| < tol, d = -tol if d < 0, count++ For k= 1 to n d = a_k - s - b_k^2/d \dots ok to divide by 0 count += signbit(d)
```

° Demmel/Li (www.cs.berkeley.edu/~xiaoye)

CS267 L13 Floating Point.16

Summary of Values Representable in IEEE FP

- ° +- Zero
- ° Normalized nonzero numbers
- ° Denormalized numbers
- ° +-Infinity
- ° NANs
 - · Signaling and quiet
 - · Many systems have only quiet

+- 00	00			
+- Not 0 or all 1s	anything			
+- 00	nonzero			
+ 11 00				
+ 11	nonzero			

CS267 L13 Floating Point.17

Demmel Sp 1999

Simulating extra precision

- ° What if 64 or 80 bits is not enough?
 - · Very large problems on very large machines may need more
 - · Sometimes only known way to get right answer (mesh generation)
 - Sometimes you can trade communication for extra precision
- ° Can simulate high precision efficiently just using floating point
- $^{\circ}$ Each extended precision number s is represented by an array $(s_1,s_2,...,s_n)$ where
 - each sk is a FP number
 - $s = s_1 + s_2 + ... + s_n$ in exact arithmetic
 - S₁ >> S₂ >> ... >> S_n
- ° Ex: Computing $(s_1,s_2) = a + b$

```
if |a| < |b|, swap them

s_1 = a + b ... roundoff may occur

s_2 = (a - s_1) + b ... no roundoff!
```

- s1 contains leading bits of a+b, s2 contains trailing bits
- ° Systematic algorithms for arbitrary precision
 - Priest / Shewchuk (www.cs.berkeley.edu/~jrs)
- ° Current effort to define extra precise BLAS this way
 - www.netlib.org/cgi-bin/checkout/blast/blast.pl

CS267 L13 Floating Point.18

Cray Arithmetic

- ° Historically very important
 - · Crays among the fastest machines
 - · Other fast machines emulated it (Fujitsu, Hitachi, NEC)
- ° Sloppy rounding
 - fl(a + b) not necessarily (a + b)(1+d) but instead fl(a + b) = $a^*(1+d_a) + b^*(1+d_b)$ where $|d_a|, |d_b| \le macheps$
 - Means that fl(a+b) could be either 0 when should be nonzero, or twice too large when a+b "cancels"
 - · Sloppy division too
- ° Some impacts:
 - arccos(x/sqrt(x² + y²)) can yield exception, because x/sqrt(x² + y²) >1
 - not on any other computer
 - · Best available eigenvalue algorithm fails
 - Need Pk (ak bk) accurately
 - Need to preprocess by setting each $a_k = 2*a_k a_k$ (kills bottom bit)
- Latest Cray (=SGI) machine partially adopt IEEE (but SV1?)

CS267 L13 Floating Point.19

Demmel Sp 1999

Hazards of Parallel and Heterogeneous Computing

- ° What new bugs arise in parallel floating point programs?
- ° Ex 1: Nonrepeatability
 - Makes debugging hard!
- ° Ex 2: Different exception handling
 - Can cause programs to hang
- ° Ex 3: Different rounding (even on IEEE FP machines)
 - Can cause hanging, or wrong results with no warning
- ° See www.netlib.org/lapack/lawns/lawn112.ps

CS267 L13 Floating Point.20

Hazard #1: Nonrepeatability due to nonassociativity

- ° Consider s= all_reduce(x,"sum") = x1 + x2 + ... + xp
- ° Answer depends on order of FP evaluation
 - All answers differ by at most p*macheps*(|x1| + ... + |xp|)
 - · Some orders may overflow/underflow, others not!

° How can order of evaluation change?

- · Change number of processors
- In reduction tree, have each node add first available child sum to its own value
 - order of evaluation depends on race condition, unpredictable!

° Options

- · Live with it, since difference likely to be small
- Build slower version of all_reduce that guarantees evaluation order independent of #processors, use for debugging

CS267 L13 Floating Point.21

Demmel Sp 1999

Hazard #2: Heterogeneity: Different Exception Defaults

Not all processors implement denorms fast

- DEC Alpha 21164 in "fast mode" flushes denorms to zero
 - in fast mode, a denorm operand causes a trap
 - slow mode, to get underflow right, slows down all operations significantly, so rarely used
- SUN Ultrasparc in "fast mode" handles denorms correctly
 - handles underflow correctly at full speed
 - flushing denorms to zero requires trapping, slow

Imagine a NOW built of DEC Alphas and SUN Ultrasparcs

- Suppose the SUN sends a message to a DEC containing a denorm: the DEC will trap
- Avoiding trapping requires running either DEC or SUN in slow mode
- Good news: most machines converging to fast and correct underflow handling

CS267 L13 Floating Point.22

Hazard #3: Heterogeneity: Data Dependent Branches

- ° Mixed Cray/IEEE machines may round differently
- ° Different "IEEE machines" may round differently
 - · Intel uses 80 bit FP registers for intermediate computations
 - IBM RS6K has MAC = Multiply-ACcumulate instruction
 - d = a*b+c with one rounding error, i.e. a*b good to 104 bits
 - · SUN has neither "extra precise" feature
 - · Different compiler optimizations may round differently (yuck)
- Impact: same expression can yield different values on different machines

```
Compute s redundantly
or
s = reduce_all(x,min)
if (s > 0) then
compute and return a
else
communicate
compute and return b
```

- ° Taking different branches can yield nonsense, or deadlock
 - · How do we fix this example? Does it always work?

CS267 L13 Floating Point.23

Demmel Sp 1999

Further References on Floating Point Arithmetic

- ° Notes for Prof. Kahan's CS267 lecture from 1996
 - www.cs.berkeley.edu/~wkahan/ieee754status/cs267fp.ps
 - Note for Kahan 1996 cs267 Lecture
- ° Prof. Kahan's "Lecture Notes on IEEE 754"
 - www.cs.berkeley.edu/~wkahan/ieeestatus/ieee754.ps
- Prof. Kahan's "The Baleful Effects of Computer Benchmarks on Applied Math, Physics and Chemistry
 - www.cs.berkeley/~wkahan/ieee754status/baleful.ps
- Notes for Demmel's CS267 lecture from 1995
 - www.cs.berkeley.edu/~demmel/cs267/lecture21/lecture21.html

CS267 L13 Floating Point.24