Solutions to Practice Midterm 1

By Chu-Wee Lim

Author's note: I've attempted to be as complete as possible in my solution, hence the wordiness. In the midterm, you can probably miss one or two small steps.
(Question 1): True or False (with justification): If A and B are n-by- n matrices with entries from F, then $A B=0$ if and only $B A=0$.

Solution. False. Counterexample: if $A=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$, then $A B=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ but $B A=$ $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$.
(Question 2): True or False (with justification): If A and B are n-by- n matrices with entries from \mathbb{R}, then $A B=7 I_{n}$ if and only $B A=7 I_{n}$.

Solution. True. First, a general statement. We claim that a linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an isomorphism iff it is one-to-one. Now, \Rightarrow is obvious. For the converse, suppose T is one-to-one. Then $n=\operatorname{dim}\left(\mathbb{R}^{n}\right)=\operatorname{dim} N(T)+\operatorname{dim} R(T)$. Since T is one-to-one, $\operatorname{dim} N(T)=0$, and so $\operatorname{dim} R(T)=n$. Since $R(T) \subseteq \mathbb{R}^{n}$, this implies $R(T)=\mathbb{R}^{n}$.

Now look at L_{A} and L_{B} as linear maps $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. By symmetry, it suffices to prove \Longrightarrow. Since $L_{A} L_{B}=7 \cdot 1_{V}$ is one-to-one, L_{A} is also one-to-one. By the above paragraph, L_{A} is an isomorphism and thus has an inverse U, i.e. $U L_{A}=L_{A} U=1_{V}$. So,

$$
U L_{A} L_{B}=L_{B} \Longrightarrow 7 U=L_{B} \Longrightarrow U=\frac{1}{7} L_{B}
$$

Thus, $\frac{1}{7} L_{B}$ is the inverse of L_{A} and $\frac{1}{7} L_{B} L_{A}=1_{V} \Longrightarrow L_{B} L_{A}=7 \cdot 1_{V}$.
(Question 3): True or False (with justification): If $x, y \in V$ and $a, b \in F$, then $a x+b y=0$ if and only if x is a scalar multiple of y, or y is a scalar multiple of x.

Proof. False. This is a trick question: we can take $a=b=0$ and then x and y can be any vectors, say $(1,0)$ and $(0,1)$ in $V=\mathbb{R}^{2}$.
(Question 4): True or False (with justification): For $A \in M_{m \times n}(F),\left[L_{A}\right]_{\beta}^{\gamma}=A$ if β and γ are the standard bases of F^{n} and F^{m}.

Proof. True, essentially by the definition of L_{A}.
(Question 5): Suppose that $T: V \rightarrow V$ is a linear transformation. Prove that $T^{2}=0$ if and only if the range of T is a subspace of the null space of T.

Proof. Suppose $T^{2}=0$. We wish to prove $R(T) \subseteq N(T)$. To do that, let $v \in R(T)$. Then $v=T\left(v^{\prime}\right)$ for some $v^{\prime} \in V$. But now since $T(v)=T^{2}\left(v^{\prime}\right)=0$, we have $v \in N(T)$. This proves $R(T) \subseteq N(T)$.

Conversely, suppose $R(T) \subseteq N(T)$. To show $T^{2}=0$, we have to show $T(T(v))=0$ for any $v \in V$. But note that $T(v) \in R(T)$, and since $R(T) \subseteq N(T)$, we have $T(v) \in N(T)$. Hence $T(T(v))=0$ as we hoped to prove.
(Question 6): Let $V=P(\mathbb{R})$ be the vector space of polynomials with real coefficients. For each $i \geq 0$, let $f_{i} \in \mathcal{L}(V, \mathbb{R})$ be the linear transformation that maps a polynomial $p(x)$ to the value $p^{(i)}(0)$ of its i-th derivative at 0 . (The 0 -th derivative of p is p itself.) Show that the linear transformations $f_{0}, f_{1}, f_{2}, \ldots$ are linearly independent vectors in the vectors space $\mathcal{L}(V, \mathbb{R})$.

Proof. Suppose not, i.e. assume the f_{i} 's are linearly dependent. Then we can find scalars $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}$, not all zero, such that

$$
a_{0} f_{0}+a_{1} f_{1}+\cdots+a_{n} f_{n}=0
$$

Dropping terms on the right which are zero, we may assume $a_{n} \neq 0$. Let the above linear functional act on $p(x)=x^{n}$. Then we have:

$$
a_{0} f_{0}\left(x^{n}\right)+a_{1} f_{1}\left(x^{n}\right)+\cdots+a_{n} f_{n}\left(x^{n}\right)=0 .
$$

However, $\frac{d^{i}}{d x^{i}}\left(x^{n}\right)=n(n-1) \ldots(n-i+1) x^{n-i}$. So $f_{0}\left(x^{n}\right)=f_{1}\left(x^{n}\right)=\cdots=f_{n-1}\left(x^{n}\right)=0$, but $f_{n}\left(x^{n}\right)=n$!. The above equation then gives $a_{n} n!=0 \Longrightarrow a_{n}=0$ which contradicts our choice of a_{n}.
(Question 7): In the notation of Question 6, show that the linear transformation $g \in \mathcal{L}(V, \mathbb{R})$ where $g(p)=p(1)$ is not in the span of the f_{i}.

Proof. Suppose g is in the span of f_{i} 's. Then g can be expressed as a finite linear combination of the f_{i} 's, i.e.

$$
g=a_{0} f_{0}+a_{1} f_{1}+\cdots+a_{n} f_{n}, \quad \text { for some scalars } a_{0}, \ldots, a_{n} \in \mathbb{R}
$$

Now put in $p(x)=x^{n+1}$ on both sides. As we have proven in question $6, f_{0}\left(x^{n+1}\right)=f_{1}\left(x^{n+1}\right)=$ $\cdots=f_{n}\left(x^{n+1}\right)=0$. This gives 1 on the left hand side, and 0 on the right hand side - an absurd conclusion.
(Question 8): Let $T: V \rightarrow W$ be a linear transformation. Suppose that x_{1}, \ldots, x_{r} are linearly independent elements of $N(T)$ and that v_{1}, \ldots, v_{s} are vectors in V such that $T\left(v_{1}\right), \ldots, T\left(v_{s}\right)$ are linearly independent. Show that the $r+s$ vectors $x_{1}, \ldots, x_{r}, v_{1}, \ldots, v_{s}$ are linearly independent. Proof. The proof is rather standard: suppose we have scalars $a_{1}, \ldots, a_{r}, b_{1}, \ldots, b_{s}$ such that

$$
a_{1} x_{1}+\cdots+a_{r} x_{r}+b_{1} v_{1}+\cdots+b_{s} v_{s}=0
$$

Applying T to both sides, and noting that each $x_{i} \in N(T)$, we have $b_{1} T\left(v_{1}\right)+\cdots+b_{s} T\left(v_{s}\right)=0$. Since the $T\left(v_{i}\right)$'s are linearly independent, all b_{i} 's must be zero. Substituting $b_{i}=0$, we get

$$
a_{1} x_{1}+\cdots+a_{r} x_{r}=0
$$

Since the x_{i} 's are linearly independent, all the a_{i} 's must also be zero. Thus $x_{1}, \ldots, x_{r}, v_{1}, \ldots, v_{s}$ are linearly independent.
(Question 9): Construct a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $T(T(T(v)))=0$ for all $v \in V$ but $T(T(v))$ is nonzero for some v. Do not forget to show that T is a linear transformation.

Proof. Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be the standard basis of \mathbb{R}^{3}. Let T be the linear map defined by:

$$
T\left(e_{1}\right)=e_{2}, \quad T\left(e_{2}\right)=e_{3}, \quad T\left(e_{3}\right)=0
$$

Explicitly, we must have $T(a, b, c)=T\left(a e_{1}+b e_{2}+c e_{3}\right)=a e_{2}+b e_{3}=(0, a, b)$. Thus T corresponds to the matrix $\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$. An easy computation shows that $T^{2} \neq 0$ but $T^{3}=0$.
(Question 10): Let $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{m}\right)$ be given nonzero tuples with rational entries, and define the matrix $A \in M_{m \times n}(\mathcal{Q})$ by $A_{i j}=y_{i} \cdot x_{j}$. Let $L_{A}: \mathcal{Q}^{n} \rightarrow \mathcal{Q}^{m}$ be the linear transformation defined by multiplying a vector in \mathcal{Q}^{n} by the matrix A. Compute the rank and nullity of L_{A}. Justify your answers.

Proof. Write x and y as column vectors. Then

$$
A=\left(\begin{array}{cccc}
y_{1} x_{1} & y_{1} x_{2} & \ldots & y_{1} x_{n} \\
y_{2} x_{1} & y_{2} x_{2} & \ldots & y_{2} x_{n} \\
\vdots & \vdots & \ddots & \vdots \\
y_{m} x_{1} & y_{m} x_{2} & \ldots & y_{m} x_{n}
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right)\left(\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{n}
\end{array}\right)=y x^{t} .
$$

Writing vectors in \mathcal{Q}^{n} as column vectors, we see that L_{A} is simply left multiplication by the matrix $A=y x^{t}$, i.e. $v \mapsto\left(y x^{t}\right) v=y\left(x^{t} v\right)$. Since $x^{t} v$ is a scalar, $y\left(x^{t} v\right)$ must be a multiple of y. Hence $R\left(L_{A}\right) \subseteq \operatorname{span}(\{y\})$. On the other hand, since $x \neq 0$, the map $v \mapsto x^{t} v$ is not the zero map. Hence, $R\left(L_{A}\right)=\operatorname{span}(\{y\})$, which is of dimension 1 because $y \neq 0$. Having known the rank, the nullity is a direct consequence of the dimension theorem: $\operatorname{dim} N(T)=n-1$.

