
MATH 110: LINEAR ALGEBRA
HOMEWORK #1

CHU-WEE LIM

(1) Let us suppose x, y, z ∈ F , such that x + z = y + z. There exists an additive inverse
of z, i.e. we can find z′ ∈ F such that z + z′ = z′ + z = 0F . Then

x + z = y + z ⇒ (x + z) + z′ = (y + z) + z′ ⇒ x + (z + z′) = y + (z + z′)

⇒x + 0F = y + 0F ⇒ x = y.

(2) Since Z2 has only 2 elements, to verify the axioms, we can check all possible cases.
E.g. to check distributivity:

0(0 + 0) = 0 · 0 + 0 · 0, since they are both 0;

0(0 + 1) = 0 · 0 + 0 · 1, since they are both 0;

0(1 + 0) = 0 · 1 + 0 · 0, since they are both 0;

0(1 + 1) = 0 · 1 + 0 · 1, since they are both 0;

1(0 + 0) = 1 · 0 + 1 · 0, since they are both 0;

1(0 + 1) = 1 · 0 + 1 · 1, since they are both 1;

1(1 + 0) = 1 · 1 + 1 · 0, since they are both 1;

1(1 + 1) = 1 · 1 + 1 · 1, since they are both 0;

(3) To prove that Zp forms a field, we first have to make sense of what Zp actually is,
and what the addition/product operations are.

Consider the set of integers Z. For i = 0, 1, . . . , p − 1, let Ai be the subset of
Z consisting of all j such that j ≡ i (mod p) (i.e. p|(j − i)). For example, A0

comprises of all multiples of p, while A1 = {. . . , 1, p + 1, 2p + 1, . . . }. Then the
disjoint union of A0, . . . , Ap−1 is Z. In other words, if i �= j, then Ai ∩ Aj = ∅; while
A0 ∪ A1 ∪ · · · ∪ Ap−1 = Z.

Now, Zp is the set {A0, A1, . . . , Ap−1} (that’s right, it’s a set of sets). To add Ai

and Aj, we pick any elements a ∈ Ai and b ∈ Aj . Now Ai + Aj is simply the unique
Ak which contains the integer a+ b. Likewise, Ai ·Aj is the unique Al which contains
the integer a · b. There is a slight caveat here: what if we pick a different a′ ∈ Ai and
b′ ∈ Aj? It turns out that since

a′b′ − ab = a′(b′ − b) + b(a′ − a),

we still have ab ≡ a′b′ (mod p).
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To make sense of the above abstract definition, let us take p = 7. Then we have
A0, A1, . . . , A6:

A0 = {. . . , 0, 7, 14, . . .}, A1 = {. . . , 1, 8, 15, . . .}, etc.

Suppose we want to compute A3 · A4. Let us pick elements from A3 and A4, say
10 ∈ A3 and 18 ∈ A4. Then 18 · 10 = 180 ∈ A5, so we have A3 · A4 = A5.

Now that we’re done with the definition of Zp, associativity and commutativity
becomes clear. These follow immediately from the fact that addition and multi-
plication on integers are associative and commutative. For example, to show that
Ai + Aj = Aj + Ai, let us pick a ∈ Ai and b ∈ Aj . Then Ai + Aj (resp. Aj + Ai)
is the unique Ak which contains a + b (resp. b + a). Since a and b are integers, we
have a + b = b + a.

The tricky part is to verify that A1, . . . , Ap−1 have inverses. Let a ∈ Ai, where
i �= 0. There are two ways we can proceed.

• We can use the fact that if p, q are coprime integers, then there exist integers c, d
such that pc+ qd = 1. Hence since a is not a multiple of p, and p is prime, a and
p must be relatively prime. Thus, we can find c, d ∈ Z, such that ac + pd = 1.
This means ac ≡ 1 (mod p) and so the unique Ak which contains c must be the
multiplicative inverse of Ai.

• Or, if we’re forced to use the hint provided in the problem, consider

a, 2a, . . . , (p − 1)a.

Since p is prime and a is not a multiple of p, none of the above numbers is a
multiple of p. So each of them must belong to some Ak. Now, if none of them
belongs to A1, then we’re left with A2, A3, . . . , Ap−1 (p − 2 sets). By pigeonhole
principle, two of the numbers (say ma and na) must belong to the same set;
whence ma − na = (m − n)a is a multiple of p which contradicts the fact that
m, n are distinct elements of {1, 2, . . . , p−1}. Hence, one of the na’s must belong
to A1, which gives na ≡ 1 (mod p).

§1.2: Vector Spaces

Problem 1.

(a) True. This is one of the axioms.
(b) False. Corollary 1 to Theorem 1.1.
(c) False. E.g. a = b = 1, and x = 0V is the zero vector.
(d) False. E.g. a = 0, and x, y can be any two distinct vectors.
(e) True. We may regard a vector as a column vector.
(f) False. It should have m rows and n columns.
(g) False. E.g. x2 and x + 3 can be added to give x2 + x + 3.
(h) False. E.g. x2 + x and −x2 (of degree 2) can be added to give x (of degree 1).
(i) True. The leading coefficient (of xn) is still nonzero, after mutiplying with a nonzero

scalar.
(j) True, since c �= 0 can be written as c · x0 and x0 = 1.
(k) True. That’s the definition of F(S, F ) on page 9, example 3.



MATH 110: HOMEWORK #1 3

Problem 7. The function f ∈ F(S, R) takes 0 �→ 1, 1 �→ 3; while the function g takes
0 �→ 1, 1 �→ 3. Hence f + g takes 0 �→ 1 + 1 = 2 and 1 �→ 3 + 3 = 6. Since h takes 0 �→ 2
and 1 �→ 6 as well, we see that f + g = h.

Problem 9. To prove corollary 1, let’s suppose 0 and 0′ are both additive identities of V ,
i.e. 0 + x = 0′ + x = x for all x ∈ V . Now, if we let x = 0′, we get 0 + 0′ = 0′. And if we let
x = 0, we get 0 = 0′ + 0 = 0 + 0′. Hence this shows that 0 = 0′.

For corollary 2, suppose y and y′ are both additive inverses of x, i.e. x + y = x + y′ = 0.
Then by cancellation law, y = y′.

For theorem 1.2c, we have a0 + a0 = a(0 + 0) = a0 = a0 + 0. By cancellation law, a0 = 0.

Problem 12. An easy shortcut is to “cheat” and apply the results in §1.3 here. The set W
of odd functions is a subset of V = F(R, R). Let us prove that W is in fact a subspace of
V . First, the 0 function is clearly odd since it takes −t to 0 = −0. Now to show that W is
closed under addition and scalar multiplication, let f, g ∈ W and c ∈ R be a scalar.

(f + g)(−t) = f(−t) + g(−t) = (−f(t)) + (−g(t)) = −(f(t) + g(t)) = −(f + g)(t),

(c · f)(−t) = c · (f(−t)) = c · (−f(t)) = −c · f(t) = −(c · f)(t).

Hence, f + g and c · f are odd and hence in W as well.

Problem 15. No, it is not a vector space over R. For instance, if (0, 1) ∈ V and i =
√−1 ∈

C, then i(0, 1) = (0, i) �∈ V .

Problem 16. Yes, it is a vector space over Q, because multiplying a real number by a
rational number gives us a real number. Hence, multiplying an element of V by a rational
number gives us an element of V . The rest of the axioms are easy to verify.

Problem 19. No, distributivity fails. E.g. we have 1(1, 1) = (1, 1) but 2(1, 1) = (2, 1
2
).

Hence, this gives 1(1, 1) + 1(1, 1) �= (1 + 1)(1, 1).

§1.3: Subspaces

Problem 1.

(a) False. This is rather pedantic though. What happens if W is a subset of V that is a
vector space, under some other operations?

(b) False. That’s why we need the axiom 0 ∈ W .
(c) True. We can always take the zero subspace {0} � V .
(d) False. It would be true for any two subspaces though.
(e) True, since there are only n diagonal entries and all other entries are 0.
(f) False. It’s the sum.
(g) False. It’s not equal to R2 per se, although it certainly is isomorphic (as you’ll learn

in a few weeks’ time).

Problem 2d. The transpose is

⎛
⎝ 10 2 −5

0 −4 7
−8 3 6

⎞
⎠ while the trace is 10 + (−4) + 6 = 12.

Problem 5. The ij-th entry of the matrix At is aji. Hence, the ij-th entry of A + At is
aij + aji. This shows that the ij-th entry and the ji-th entry of A + At are the same. Thus
A + At is symmetric.



4 CHU-WEE LIM

Problem 8.

(a) Yes, it contains (0, 0, 0) since 0 = 3(0) and 0 = −0. Also, suppose (a1, a2, a3) and
(b1, b2, b3) are in W1, and c ∈ R is a scalar. Then a1 = 3a2, a3 = −a2 and b1 = 3b2,
b3 = −b2. So this gives: a1 + b1 = 3(a2 + b2) and a3 + b3 = −(a2 + b2) which shows
that (a1 + b1, a2 + b2, a3 + b3) ∈ W1 as well.

Finally, ca1 = c(3a2) and ca3 = −(ca2), so (ca1, ca2, ca3) = c(a1, a2, a3) is in W1.
This shows that W1 is closed under addition and scalar multiplication.

(b) No, it does not contain 0.
(c) Yes, it contains (0, 0, 0) since 2(0) − 7(0) + 0 = 0. Next, if (a1, a2, a3) and (b1, b2, b3)

are in W1, c ∈ R, then 2a1−7a2+a3 = 2b1−7b2+b3 = 0. Adding these two equations
give 2(a1 + b1)− 7(a2 + b2) + (a3 + b3) = 0, which shows W3 is closed under addition.
Also, 0 = c(2a1 − 7a2 + a3) = 2(ca1)− 7(ca2) + (ca3), which shows that W3 is closed
under scalar multiplication.

(d) Yes, and the proof is identical to (c).
(e) No, it does not contain the zero vector (0, 0, 0).
(f) No, it is not closed under addition. E.g. it contains (0,

√
2, 1) and (0,

√
2,−1) but

not (0,
√

2, 1) + (0,
√

2,−1) = (0, 2
√

2, 0).

Problem 9. The vector (a1, a2, a3) is in W1 ∩ W3 iff it lies in both W1 and W3. Hence it
must satisfy a1 = 3a2 and a3 = −a2; as well as 2a1 − 7a2 + a3 = 0. Solving them, we get
a2 = 0 and hence a1 = a3 = 0. This shows that W1 ∩ W3 = {0}.

Using similar techniques, we find that W1∩W4 = W1 and W3∩W4 consists of all multiples
of (11, 3,−1).

Problem 11. No, because W contains xn + 1 and −xn + 1 but not their sum 1.
However, in the alternate problem where W has all f(x) of degree ≤ n, W is a subspace.

Note that W is precisely the set of polynomials of the form a0 + a1x + · · ·+ anxn, where the
ai’s are scalars (possibly zero). Hence if f(x), g(x) ∈ W , then we may write:

f(x) = a0 + a1x + · · ·+ anxn, g(x) = b0 + b1x + · · · + bnxn,

for some scalars ai’s and bi’s. This gives:

(f + g)(x) = (a0 + b0) + (a1 + b1)x + · · ·+ (an + bn)xn

which has degree at most n. Hence f + g ∈ W . Similarly, any constant scalar multiple of f
lies in W as well.

Problem 12. Let A and B be upper-triangular matrices. Hence the entries Aij and Bij are
0 whenever i > j. This means the entry (A + B)ij = Aij + Bij would also be 0 when i > j.
Hence, A + B is upper-triangular.

Likewise, if c is a constant scalar, then the entry (cA)ij = c · Aij would also be 0 when
i > j. Hence cA is upper-triangular. Finally, the zero matrix is clearly upper-triangular.
Thus, the upper-triangular matrices form a subspace of Mm×n(F ).

Problem 15. Yes. Again, suppose f, g ∈ C(R) are differentiable functions R → R. By
elementary calculus, we know that f + g is also differentiable and in fact, (f + g)′(t) =
f ′(t)+g′(t) for any t ∈ R. Also, if c is a scalar (i.e. constant function), then (c·f)′(t) = c·f ′(t).
Finally, the zero function f(t) = 0 is clearly differentiable. This shows that the set of
differentiable real-valued functions on R is a subspace of C(R).
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Problem 23. (a) To show that W1 ⊆ W1 + W2, let w1 ∈ W1. Then since 0 ∈ W2, we have
w1 = w1 + 0 ∈ W1 + W2. Hence, this proves our inclusion. The proof for W2 ⊆ W1 + W2 is
similar.

Next, we have to show W1 + W2 is a subspace of V :

• Since 0 ∈ W1 and 0 ∈ W2, 0 = 0 + 0 ∈ W1 + W2.
• Suppose x ∈ W1 + W2 and x′ ∈ W1 + W2. We have to show x + x′ ∈ W1 + W2.

By definition, x is of the form w1 + w2 for some w1 ∈ W1, w2 ∈ W2. Likewise,
x′ = w′

1 + w′
2, for some w′

1 ∈ W1, w
′
2 ∈ W2. Hence,

x + x′ = (w1 + w2) + (w′
1 + w′

2) = (w1 + w′
1) + (w2 + w′

2) ∈ W1 + W2,

since w1 + w′
1 ∈ W1 and w2 + w′

2 ∈ W2.
• Suppose x ∈ W1 + W2 and c is a scalar. Then we can write x = w1 + w2, where

w1 ∈ W1 and w2 ∈ W2; whence cx = (cw1) + (cw2). Since cw1 ∈ W1 and cw2 ∈ W2,
we have cx ∈ W1 + W2.

(b) Suppose W is a subspace of V that contains W1 and W2. We wish to prove
that it contains W1 + W2. But every element of W1 + W2 is of the form w1 + w2 (for
some w1 ∈ W1 and w2 ∈ W2); and w1 ∈ W1 ⊆ W and w2 ∈ W2 ⊆ W . Since W is a
subspace of V , it is closed under addition and so w1 + w2 ∈ W . This shows that W
contains W1 + W2.

Problem 28. To summarize, a square matrix M is symmetric if M = M t and skew-
symmetric if M t = −M . First, we want to show W1 ⊆ Mn×n(F ) is a subspace.

• 0t = 0 = −0, so 0 ∈ W1.
• If A, B ∈ W1, then At = −A and Bt = −B. Hence, (A + B)t = At + Bt =

(−A) + (−B) = −(A + B), so A + B is also in W1.
• If A ∈ W1 and c is a scalar, then (cA)t = c · At = c(−A) = −(cA), so cA is also in

W1.

This shows that W1 is a subspace of Mn×n(F ). Our next task is to show that Mn×n(F ) is
the direct sum of W1 and W2. Thus, we have two statements to prove.

• To show W1 ∩ W2 = {0} : suppose A ∈ W1 ∩ W2. Hence A is both symmetric and
skew-symmetric, i.e. At = A and At = −A. This gives A + A = 0, or 2A = 0. Since
the characteristic is not 2, we can divide by 2 to get A = 0.

• To show Mn×n(F ) = W1 + W2 : let A ∈ Mn×n(F ) be any n × n matrix. Write A as
the sum:

A =
A + At

2
+

A − At

2
.

Note that we have no qualms dividing by 2 since the characteristic of F is not 2.
Now:(

A + At

2

)t

=
At + Att

2
=

At + A

2
,

(
A − At

2

)t

=
At − Att

2
=

At − A

2
= −A − At

2
.

Since we can write A as a sum of a symmetric matrix and a skew-symmetric matrix,
we see that A ∈ W1 + W2.
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§1.4: Linear Combinations and Systems of Linear Equations

Problem 1.

(a) True. We can take all coefficients to be 0 in the linear combination, which will give
us the zero vector.

(b) False. The span of ∅ is the zero vector space {0}.
(c) True. That is simply restating theorem 1.5 (page 30).
(d) False, we can multiply by any constant except 0.
(e) True. See step 3 on page 27.
(f) False. For example, x + y = 1 and x + y = 2 have no simulateneous solutions.

Problem 13. Let w be any element of the span of S1. This means we can write

w = c1s1 + c2s2 + . . . cnsn,

for some elements s1, . . . , sn ∈ S1 and scalars c1, . . . , cn. Since S1 is a subset of S2, we see
that the si’s are also elements of S2. Hence, w is a finite linear combination of elements of
S2. This proves that w lies in the span of S2, and so span(S1) ⊆ span(S2).

For the second statement, if span(S1) = V then V = span(S1) ⊆ span(S2) by the above
paragraph. On the other hand, since S2 ⊆ V , the span of S2 must be a subspace of V . Hence
span(S2) ⊆ V . By these two inclusions, span(S2) = V .


