MATH 110: LINEAR ALGEBRA HOMEWORK \#1

CHU-WEE LIM

(1) Let us suppose $x, y, z \in F$, such that $x+z=y+z$. There exists an additive inverse of z, i.e. we can find $z^{\prime} \in F$ such that $z+z^{\prime}=z^{\prime}+z=0_{F}$. Then

$$
\begin{aligned}
& x+z=y+z \Rightarrow(x+z)+z^{\prime}=(y+z)+z^{\prime} \Rightarrow x+\left(z+z^{\prime}\right)=y+\left(z+z^{\prime}\right) \\
\Rightarrow & x+0_{F}=y+0_{F} \Rightarrow x=y .
\end{aligned}
$$

(2) Since \mathbb{Z}_{2} has only 2 elements, to verify the axioms, we can check all possible cases. E.g. to check distributivity:

$$
\begin{aligned}
& 0(0+0)=0 \cdot 0+0 \cdot 0, \text { since they are both } 0 ; \\
& 0(0+1)=0 \cdot 0+0 \cdot 1, \text { since they are both } 0 ; \\
& 0(1+0)=0 \cdot 1+0 \cdot 0, \text { since they are both } 0 ; \\
& 0(1+1)=0 \cdot 1+0 \cdot 1, \text { since they are both } 0 ; \\
& 1(0+0)=1 \cdot 0+1 \cdot 0, \text { since they are both } 0 ; \\
& 1(0+1)=1 \cdot 0+1 \cdot 1, \text { since they are both } 1 ; \\
& 1(1+0)=1 \cdot 1+1 \cdot 0, \text { since they are both } 1 ; \\
& 1(1+1)=1 \cdot 1+1 \cdot 1, \text { since they are both } 0
\end{aligned}
$$

(3) To prove that \mathbb{Z}_{p} forms a field, we first have to make sense of what \mathbb{Z}_{p} actually is, and what the addition/product operations are.

Consider the set of integers \mathbb{Z}. For $i=0,1, \ldots, p-1$, let A_{i} be the subset of \mathbb{Z} consisting of all j such that $j \equiv i(\bmod p)$ (i.e. $p \mid(j-i)$). For example, A_{0} comprises of all multiples of p, while $A_{1}=\{\ldots, 1, p+1,2 p+1, \ldots\}$. Then the disjoint union of A_{0}, \ldots, A_{p-1} is \mathbb{Z}. In other words, if $i \neq j$, then $A_{i} \cap A_{j}=\emptyset$; while $A_{0} \cup A_{1} \cup \cdots \cup A_{p-1}=\mathbb{Z}$.

Now, \mathbb{Z}_{p} is the set $\left\{A_{0}, A_{1}, \ldots, A_{p-1}\right\}$ (that's right, it's a set of sets). To add A_{i} and A_{j}, we pick any elements $a \in A_{i}$ and $b \in A_{j}$. Now $A_{i}+A_{j}$ is simply the unique A_{k} which contains the integer $a+b$. Likewise, $A_{i} \cdot A_{j}$ is the unique A_{l} which contains the integer $a \cdot b$. There is a slight caveat here: what if we pick a different $a^{\prime} \in A_{i}$ and $b^{\prime} \in A_{j}$? It turns out that since

$$
a^{\prime} b^{\prime}-a b=a^{\prime}\left(b^{\prime}-b\right)+b\left(a^{\prime}-a\right)
$$

we still have $a b \equiv a^{\prime} b^{\prime}(\bmod p)$.

To make sense of the above abstract definition, let us take $p=7$. Then we have $A_{0}, A_{1}, \ldots, A_{6}$:

$$
A_{0}=\{\ldots, 0,7,14, \ldots\}, \quad A_{1}=\{\ldots, 1,8,15, \ldots\}, \quad \text { etc. }
$$

Suppose we want to compute $A_{3} \cdot A_{4}$. Let us pick elements from A_{3} and A_{4}, say $10 \in A_{3}$ and $18 \in A_{4}$. Then $18 \cdot 10=180 \in A_{5}$, so we have $A_{3} \cdot A_{4}=A_{5}$.

Now that we're done with the definition of \mathbb{Z}_{p}, associativity and commutativity becomes clear. These follow immediately from the fact that addition and multiplication on integers are associative and commutative. For example, to show that $A_{i}+A_{j}=A_{j}+A_{i}$, let us pick $a \in A_{i}$ and $b \in A_{j}$. Then $A_{i}+A_{j}\left(\right.$ resp. $\left.A_{j}+A_{i}\right)$ is the unique A_{k} which contains $a+b$ (resp. $b+a$). Since a and b are integers, we have $a+b=b+a$.

The tricky part is to verify that A_{1}, \ldots, A_{p-1} have inverses. Let $a \in A_{i}$, where $i \neq 0$. There are two ways we can proceed.

- We can use the fact that if p, q are coprime integers, then there exist integers c, d such that $p c+q d=1$. Hence since a is not a multiple of p, and p is prime, a and p must be relatively prime. Thus, we can find $c, d \in \mathbb{Z}$, such that $a c+p d=1$. This means $a c \equiv 1(\bmod p)$ and so the unique A_{k} which contains c must be the multiplicative inverse of A_{i}.
- Or, if we're forced to use the hint provided in the problem, consider

$$
a, 2 a, \ldots,(p-1) a
$$

Since p is prime and a is not a multiple of p, none of the above numbers is a multiple of p. So each of them must belong to some A_{k}. Now, if none of them belongs to A_{1}, then we're left with $A_{2}, A_{3}, \ldots, A_{p-1}$ ($p-2$ sets). By pigeonhole principle, two of the numbers (say $m a$ and $n a$) must belong to the same set; whence $m a-n a=(m-n) a$ is a multiple of p which contradicts the fact that m, n are distinct elements of $\{1,2, \ldots, p-1\}$. Hence, one of the $n a$'s must belong to A_{1}, which gives $n a \equiv 1(\bmod p)$.

§1.2: Vector Spaces

Problem 1.

(a) True. This is one of the axioms.
(b) False. Corollary 1 to Theorem 1.1.
(c) False. E.g. $a=b=1$, and $x=0_{V}$ is the zero vector.
(d) False. E.g. $a=0$, and x, y can be any two distinct vectors.
(e) True. We may regard a vector as a column vector.
(f) False. It should have m rows and n columns.
(g) False. E.g. x^{2} and $x+3$ can be added to give $x^{2}+x+3$.
(h) False. E.g. $x^{2}+x$ and $-x^{2}$ (of degree 2) can be added to give x (of degree 1).
(i) True. The leading coefficient (of x^{n}) is still nonzero, after mutiplying with a nonzero scalar.
(j) True, since $c \neq 0$ can be written as $c \cdot x^{0}$ and $x^{0}=1$.
(k) True. That's the definition of $\mathcal{F}(S, F)$ on page 9 , example 3 .

Problem 7. The function $f \in \mathcal{F}(S, \mathbb{R})$ takes $0 \mapsto 1,1 \mapsto 3$; while the function g takes $0 \mapsto 1,1 \mapsto 3$. Hence $f+g$ takes $0 \mapsto 1+1=2$ and $1 \mapsto 3+3=6$. Since h takes $0 \mapsto 2$ and $1 \mapsto 6$ as well, we see that $f+g=h$.
Problem 9. To prove corollary 1 , let's suppose 0 and 0^{\prime} are both additive identities of V, i.e. $0+x=0^{\prime}+x=x$ for all $x \in V$. Now, if we let $x=0^{\prime}$, we get $0+0^{\prime}=0^{\prime}$. And if we let $x=0$, we get $0=0^{\prime}+0=0+0^{\prime}$. Hence this shows that $0=0^{\prime}$.

For corollary 2 , suppose y and y^{\prime} are both additive inverses of x, i.e. $x+y=x+y^{\prime}=0$. Then by cancellation law, $y=y^{\prime}$.

For theorem 1.2 c , we have $a 0+a 0=a(0+0)=a 0=a 0+0$. By cancellation law, $a 0=0$.
Problem 12. An easy shortcut is to "cheat" and apply the results in $\S 1.3$ here. The set W of odd functions is a subset of $V=\mathcal{F}(\mathbb{R}, \mathbb{R})$. Let us prove that W is in fact a subspace of V. First, the 0 function is clearly odd since it takes $-t$ to $0=-0$. Now to show that W is closed under addition and scalar multiplication, let $f, g \in W$ and $c \in \mathbb{R}$ be a scalar.

$$
\begin{aligned}
& (f+g)(-t)=f(-t)+g(-t)=(-f(t))+(-g(t))=-(f(t)+g(t))=-(f+g)(t), \\
& (c \cdot f)(-t)=c \cdot(f(-t))=c \cdot(-f(t))=-c \cdot f(t)=-(c \cdot f)(t) .
\end{aligned}
$$

Hence, $f+g$ and $c \cdot f$ are odd and hence in W as well.
Problem 15. No, it is not a vector space over \mathbb{R}. For instance, if $(0,1) \in V$ and $i=\sqrt{-1} \in$ \mathbb{C}, then $i(0,1)=(0, i) \notin V$.

Problem 16. Yes, it is a vector space over \mathbb{Q}, because multiplying a real number by a rational number gives us a real number. Hence, multiplying an element of V by a rational number gives us an element of V. The rest of the axioms are easy to verify.

Problem 19. No, distributivity fails. E.g. we have $1(1,1)=(1,1)$ but $2(1,1)=\left(2, \frac{1}{2}\right)$. Hence, this gives $1(1,1)+1(1,1) \neq(1+1)(1,1)$.

§1.3: SubsPaces

Problem 1.

(a) False. This is rather pedantic though. What happens if W is a subset of V that is a vector space, under some other operations?
(b) False. That's why we need the axiom $0 \in W$.
(c) True. We can always take the zero subspace $\{0\} \subsetneq V$.
(d) False. It would be true for any two subspaces though.
(e) True, since there are only n diagonal entries and all other entries are 0 .
(f) False. It's the sum.
(g) False. It's not equal to \mathbb{R}^{2} per se, although it certainly is isomorphic (as you'll learn in a few weeks' time).

Problem 2d. The transpose is $\left(\begin{array}{ccc}10 & 2 & -5 \\ 0 & -4 & 7 \\ -8 & 3 & 6\end{array}\right)$ while the trace is $10+(-4)+6=12$.
Problem 5. The $i j$-th entry of the matrix A^{t} is $a_{j i}$. Hence, the $i j$-th entry of $A+A^{t}$ is $a_{i j}+a_{j i}$. This shows that the $i j$-th entry and the $j i$-th entry of $A+A^{t}$ are the same. Thus $A+A^{t}$ is symmetric.

Problem 8.

(a) Yes, it contains $(0,0,0)$ since $0=3(0)$ and $0=-0$. Also, suppose (a_{1}, a_{2}, a_{3}) and $\left(b_{1}, b_{2}, b_{3}\right)$ are in W_{1}, and $c \in \mathbb{R}$ is a scalar. Then $a_{1}=3 a_{2}, a_{3}=-a_{2}$ and $b_{1}=3 b_{2}$, $b_{3}=-b_{2}$. So this gives: $a_{1}+b_{1}=3\left(a_{2}+b_{2}\right)$ and $a_{3}+b_{3}=-\left(a_{2}+b_{2}\right)$ which shows that $\left(a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right) \in W_{1}$ as well.

Finally, $c a_{1}=c\left(3 a_{2}\right)$ and $c a_{3}=-\left(c a_{2}\right)$, so $\left(c a_{1}, c a_{2}, c a_{3}\right)=c\left(a_{1}, a_{2}, a_{3}\right)$ is in W_{1}. This shows that W_{1} is closed under addition and scalar multiplication.
(b) No, it does not contain 0 .
(c) Yes, it contains $(0,0,0)$ since $2(0)-7(0)+0=0$. Next, if $\left(a_{1}, a_{2}, a_{3}\right)$ and $\left(b_{1}, b_{2}, b_{3}\right)$ are in $W_{1}, c \in \mathbb{R}$, then $2 a_{1}-7 a_{2}+a_{3}=2 b_{1}-7 b_{2}+b_{3}=0$. Adding these two equations give $2\left(a_{1}+b_{1}\right)-7\left(a_{2}+b_{2}\right)+\left(a_{3}+b_{3}\right)=0$, which shows W_{3} is closed under addition. Also, $0=c\left(2 a_{1}-7 a_{2}+a_{3}\right)=2\left(c a_{1}\right)-7\left(c a_{2}\right)+\left(c a_{3}\right)$, which shows that W_{3} is closed under scalar multiplication.
(d) Yes, and the proof is identical to (c).
(e) No, it does not contain the zero vector $(0,0,0)$.
(f) No, it is not closed under addition. E.g. it contains $(0, \sqrt{2}, 1)$ and $(0, \sqrt{2},-1)$ but $\operatorname{not}(0, \sqrt{2}, 1)+(0, \sqrt{2},-1)=(0,2 \sqrt{2}, 0)$.

Problem 9. The vector $\left(a_{1}, a_{2}, a_{3}\right)$ is in $W_{1} \cap W_{3}$ iff it lies in both W_{1} and W_{3}. Hence it must satisfy $a_{1}=3 a_{2}$ and $a_{3}=-a_{2}$; as well as $2 a_{1}-7 a_{2}+a_{3}=0$. Solving them, we get $a_{2}=0$ and hence $a_{1}=a_{3}=0$. This shows that $W_{1} \cap W_{3}=\{0\}$.

Using similar techniques, we find that $W_{1} \cap W_{4}=W_{1}$ and $W_{3} \cap W_{4}$ consists of all multiples of $(11,3,-1)$.

Problem 11. No, because W contains $x^{n}+1$ and $-x^{n}+1$ but not their sum 1 .
However, in the alternate problem where W has all $f(x)$ of degree $\leq n, W$ is a subspace. Note that W is precisely the set of polynomials of the form $a_{0}+a_{1} x+\cdots+a_{n} x^{n}$, where the a_{i} 's are scalars (possibly zero). Hence if $f(x), g(x) \in W$, then we may write:

$$
f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}, \quad g(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n},
$$

for some scalars a_{i} 's and b_{i} 's. This gives:

$$
(f+g)(x)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\cdots+\left(a_{n}+b_{n}\right) x^{n}
$$

which has degree at most n. Hence $f+g \in W$. Similarly, any constant scalar multiple of f lies in W as well.

Problem 12. Let A and B be upper-triangular matrices. Hence the entries $A_{i j}$ and $B_{i j}$ are 0 whenever $i>j$. This means the entry $(A+B)_{i j}=A_{i j}+B_{i j}$ would also be 0 when $i>j$. Hence, $A+B$ is upper-triangular.

Likewise, if c is a constant scalar, then the entry $(c A)_{i j}=c \cdot A_{i j}$ would also be 0 when $i>j$. Hence $c A$ is upper-triangular. Finally, the zero matrix is clearly upper-triangular. Thus, the upper-triangular matrices form a subspace of $M_{m \times n}(F)$.
Problem 15. Yes. Again, suppose $f, g \in C(\mathbb{R})$ are differentiable functions $\mathbb{R} \rightarrow \mathbb{R}$. By elementary calculus, we know that $f+g$ is also differentiable and in fact, $(f+g)^{\prime}(t)=$ $f^{\prime}(t)+g^{\prime}(t)$ for any $t \in \mathbb{R}$. Also, if c is a scalar (i.e. constant function), then $(c \cdot f)^{\prime}(t)=c \cdot f^{\prime}(t)$. Finally, the zero function $f(t)=0$ is clearly differentiable. This shows that the set of differentiable real-valued functions on \mathbb{R} is a subspace of $C(\mathbb{R})$.

Problem 23. (a) To show that $W_{1} \subseteq W_{1}+W_{2}$, let $w_{1} \in W_{1}$. Then since $0 \in W_{2}$, we have $w_{1}=w_{1}+0 \in W_{1}+W_{2}$. Hence, this proves our inclusion. The proof for $W_{2} \subseteq W_{1}+W_{2}$ is similar.

Next, we have to show $W_{1}+W_{2}$ is a subspace of V :

- Since $0 \in W_{1}$ and $0 \in W_{2}, 0=0+0 \in W_{1}+W_{2}$.
- Suppose $x \in W_{1}+W_{2}$ and $x^{\prime} \in W_{1}+W_{2}$. We have to show $x+x^{\prime} \in W_{1}+W_{2}$. By definition, x is of the form $w_{1}+w_{2}$ for some $w_{1} \in W_{1}, w_{2} \in W_{2}$. Likewise, $x^{\prime}=w_{1}^{\prime}+w_{2}^{\prime}$, for some $w_{1}^{\prime} \in W_{1}, w_{2}^{\prime} \in W_{2}$. Hence,

$$
x+x^{\prime}=\left(w_{1}+w_{2}\right)+\left(w_{1}^{\prime}+w_{2}^{\prime}\right)=\left(w_{1}+w_{1}^{\prime}\right)+\left(w_{2}+w_{2}^{\prime}\right) \in W_{1}+W_{2}
$$

since $w_{1}+w_{1}^{\prime} \in W_{1}$ and $w_{2}+w_{2}^{\prime} \in W_{2}$.

- Suppose $x \in W_{1}+W_{2}$ and c is a scalar. Then we can write $x=w_{1}+w_{2}$, where $w_{1} \in W_{1}$ and $w_{2} \in W_{2}$; whence $c x=\left(c w_{1}\right)+\left(c w_{2}\right)$. Since $c w_{1} \in W_{1}$ and $c w_{2} \in W_{2}$, we have $c x \in W_{1}+W_{2}$.
(b) Suppose W is a subspace of V that contains W_{1} and W_{2}. We wish to prove that it contains $W_{1}+W_{2}$. But every element of $W_{1}+W_{2}$ is of the form $w_{1}+w_{2}$ (for some $w_{1} \in W_{1}$ and $w_{2} \in W_{2}$); and $w_{1} \in W_{1} \subseteq W$ and $w_{2} \in W_{2} \subseteq W$. Since W is a subspace of V, it is closed under addition and so $w_{1}+w_{2} \in W$. This shows that W contains $W_{1}+W_{2}$.

Problem 28. To summarize, a square matrix M is symmetric if $M=M^{t}$ and skewsymmetric if $M^{t}=-M$. First, we want to show $W_{1} \subseteq M_{n \times n}(F)$ is a subspace.

- $0^{t}=0=-0$, so $0 \in W_{1}$.
- If $A, B \in W_{1}$, then $A^{t}=-A$ and $B^{t}=-B$. Hence, $(A+B)^{t}=A^{t}+B^{t}=$ $(-A)+(-B)=-(A+B)$, so $A+B$ is also in W_{1}.
- If $A \in W_{1}$ and c is a scalar, then $(c A)^{t}=c \cdot A^{t}=c(-A)=-(c A)$, so $c A$ is also in W_{1}.
This shows that W_{1} is a subspace of $M_{n \times n}(F)$. Our next task is to show that $M_{n \times n}(F)$ is the direct sum of W_{1} and W_{2}. Thus, we have two statements to prove.
- To show $W_{1} \cap W_{2}=\{0\}$: suppose $A \in W_{1} \cap W_{2}$. Hence A is both symmetric and skew-symmetric, i.e. $A^{t}=A$ and $A^{t}=-A$. This gives $A+A=0$, or $2 A=0$. Since the characteristic is not 2 , we can divide by 2 to get $A=0$.
- To show $M_{n \times n}(F)=W_{1}+W_{2}$: let $A \in M_{n \times n}(F)$ be any $n \times n$ matrix. Write A as the sum:

$$
A=\frac{A+A^{t}}{2}+\frac{A-A^{t}}{2}
$$

Note that we have no qualms dividing by 2 since the characteristic of F is not 2 . Now:

$$
\left(\frac{A+A^{t}}{2}\right)^{t}=\frac{A^{t}+A^{t t}}{2}=\frac{A^{t}+A}{2}, \quad\left(\frac{A-A^{t}}{2}\right)^{t}=\frac{A^{t}-A^{t t}}{2}=\frac{A^{t}-A}{2}=-\frac{A-A^{t}}{2} .
$$

Since we can write A as a sum of a symmetric matrix and a skew-symmetric matrix, we see that $A \in W_{1}+W_{2}$.

§1.4: Linear Combinations and Systems of Linear Equations

Problem 1.

(a) True. We can take all coefficients to be 0 in the linear combination, which will give us the zero vector.
(b) False. The span of \emptyset is the zero vector space $\{0\}$.
(c) True. That is simply restating theorem 1.5 (page 30).
(d) False, we can multiply by any constant except 0 .
(e) True. See step 3 on page 27.
(f) False. For example, $x+y=1$ and $x+y=2$ have no simulateneous solutions.

Problem 13. Let w be any element of the span of S_{1}. This means we can write

$$
w=c_{1} s_{1}+c_{2} s_{2}+\ldots c_{n} s_{n}
$$

for some elements $s_{1}, \ldots, s_{n} \in S_{1}$ and scalars c_{1}, \ldots, c_{n}. Since S_{1} is a subset of S_{2}, we see that the s_{i} 's are also elements of S_{2}. Hence, w is a finite linear combination of elements of S_{2}. This proves that w lies in the span of S_{2}, and so $\operatorname{span}\left(S_{1}\right) \subseteq \operatorname{span}\left(S_{2}\right)$.

For the second statement, if $\operatorname{span}\left(S_{1}\right)=V$ then $V=\operatorname{span}\left(S_{1}\right) \subseteq \operatorname{span}\left(S_{2}\right)$ by the above paragraph. On the other hand, since $S_{2} \subseteq V$, the span of S_{2} must be a subspace of V. Hence $\operatorname{span}\left(S_{2}\right) \subseteq V$. By these two inclusions, $\operatorname{span}\left(S_{2}\right)=V$.

