MATH 110: LINEAR ALGEBRA HOMEWORK \#2

§1.5: Linear Dependence and Linear Independence

Problem 1.

(a) False. The set $\{(1,0),(0,1),(0,-1)\}$ is linearly dependent but $(1,0)$ is not a linear combination of the other 2 vectors.
(b) True. If 0_{V} is in the set, then $1 \cdot 0_{V}=0_{V}$ is a nontrivial linear relation.
(c) False. Without any vectors in the set, we cannot form any linear relations.
(d) False. Take the set in (a), and look at the subset $\{(1,0),(0,1)\}$.
(e) True, by corollary to theorem 1.6 on page 39.
(f) True. This is precisely the definition of linear independence.

Problem 2.

(b) Linearly independent. For suppose that

$$
\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)=a\left(\begin{array}{rr}
1 & -2 \\
-1 & 4
\end{array}\right)+b\left(\begin{array}{rr}
-1 & 1 \\
2 & -4
\end{array}\right)=\left(\begin{array}{rr}
a-b & -2 a+b \\
-a+2 b & 4 a-4 b
\end{array}\right)
$$

for some $a, b \in \mathbb{R}$. The corresponding four linear equations are $0=a-b, 0=-2 a+b$, $0=-a+2 b$, and $0=4 a-4 b$. By the first equation, $a=b$, and so, by the second equation, $0=-b$. Therefore, $a=b=0$.
(d) Linearly dependent, because $-2\left(x^{3}-x\right)+(3 / 2)\left(2 x^{2}+4\right)-1\left(-2 x^{3}+3 x^{2}+2 x+6\right)=$ $-2 x^{3}+2 x+3 x^{2}+6-\left(-2 x^{3}+3 x^{2}+2 x+6\right)=0$.

Problem 8.

(a) Suppose that $a(1,1,0)+b(1,0,1)+c(0,1,1)=0$ for some $a, b, c \in \mathbb{R}$. Then $(a+b, a+$ $c, b+c)=0$, and so a, b, and c must satisfy the following system of linear equations: $a+b=0, a+c=0, b+c=0$. Subtracting the second equation from the first, we obtain $b-c=0$. Adding this to the third equation, we see that $2 b=0$. Multiplying this equation by $1 / 2$ on both sides, we obtain $b=0$. Consequently, $a=c=0$ as well. Hence S must be linearly independent.
(b) If F has characteristic 2 , then we can no longer multiply the above equation $2 b=0$ by $1 / 2$ to conclude that $b=0$. In fact, in this case, $2 b=0$ is satisfied by all $b \in F$. So if we let b be any nonzero element of F and take $a=c=-b(=b)$, we will have a solution to $a(1,1,0)+b(1,0,1)+c(0,1,1)=0$ where the scalars are nonzero. In particular, $1(1,1,0)+1(1,0,1)+1(0,1,1)=0$, and so S is linearly dependent.

Problem 9. Suppose that $\{u, v\}$ is linearly dependent. Then $a u+b v=0$ for some $a, b \in F$, where at least one of a and b is nonzero. Without loss of generality, we may assume that $a \neq 0$. Since F is a field, a must have a multiplicative inverse, $a^{-1} \in F$. So $u=\left(-a^{-1} b\right) v$, i.e., u is a multiple of v.

Conversely, suppose that u or v is a multiple of the other. Without loss of generality, we may assume that u is a multiple of v, that is $u=a v$ for some $a \in F$. Hence, $1 u-a v=0$, and so $\{u, v\}$ is linearly dependent, by definition of linear dependence.

Problem 12. For theorem 1.6, suppose S_{1} is linearly dependent. Hence we can find elements $s_{1}, s_{2}, \ldots, s_{n} \in S_{1}$, and scalars c_{1}, \ldots, c_{n} (not all 0), such that

$$
c_{1} s_{1}+c_{2} s_{2}+\cdots+c_{n} s_{n}=0
$$

Since $S_{1} \subseteq S_{2}$, each s_{i} is also an element of S_{2}. Thus, the above linear relation in S_{1} gives us a linear relation in S_{2}, and we see that S_{2} is linearly dependent.

The corollary follows since it is precisely the contrapositive statement of theorem 1.6. In other words, saying $A \Longrightarrow B$ is the same as saying $\neg B \Longrightarrow \neg A$.

Problem 13.

(a) Suppose that $\{u, v\}$ is linearly independent and that $a(u+v)+b(u-v)=0$ for some $a, b \in F$. Then $(a+b) u+(a-b) v=0$. Since $\{u, v\}$ is linearly independent, this means that $a+b=0$ and $a-b=0$. Adding these two equations together, we get $2 a=0$. Since the characteristic of F is not equal to two, we conclude that $a=0$. Consequently, $b=0$ as well. Hence $\{u+v, u-v\}$ is linearly independent.

Conversely, suppose that $\{u+v, u-v\}$ is linearly independent. Let $s=u+v$ and $t=u-v$. Since $\{s, t\}$ is linearly independent, by the previous paragraph, $\{s+t, s-t\}$ is linearly independent. But, $s+t=2 u$ and $s-t=2 v$. Now, the fact that $\{2 u, 2 v\}$ is linearly independent implies that $\{u, v\}$ is linearly independent. (Since if $a u+b v=0$ for some $a, b \in F$, then $2 a u+2 b v=a(2 u)+b(2 v)=0$, implying that $a=b=0$.)
(b) Suppose that $\{u, v, w\}$ is linearly independent and that $a(u+v)+b(u+w)+c(v+w)=$ 0 for some $a, b, c \in F$. Then $(a+b) u+(a+c) v+(b+c) w=0$. Since $\{u, v, w\}$ is linearly independent, this means that $a+b=0, a+c=0$, and $b+c=0$. Subtracting the second equation from the first, we get $b-c=0$. Adding this to the third equation, we get $2 b=0$. Since the characteristic of F is not equal to two, we conclude that $b=0$. Consequently, $a=c=0$ as well. Hence $\{u+v, u+w, v+w\}$ is linearly independent.

Conversely, suppose that $\{u+v, u+w, v+w\}$ is linearly independent. Note that $u=\frac{1}{2}(u+v)+\frac{1}{2}(u+w)-\frac{1}{2}(v+w), v=\frac{1}{2}(u+v)-\frac{1}{2}(u+w)+\frac{1}{2}(v+w)$, and $w=-\frac{1}{2}(u+v)+\frac{1}{2}(u+w)+\frac{1}{2}(v+w)$. (We can divide by 2 , since the characteristic of F is not equal to 2.) Suppose that $a u+b v+c w=0$ for some $a, b, c \in F$. Then $a\left(\frac{1}{2}(u+v)+\frac{1}{2}(u+w)-\frac{1}{2}(v+w)\right)+b\left(\frac{1}{2}(u+v)-\frac{1}{2}(u+w)+\frac{1}{2}(v+w)\right)+c\left(-\frac{1}{2}(u+v)+\right.$ $\left.\frac{1}{2}(u+w)+\frac{1}{2}(v+w)\right)=0$, and so $\frac{a+b-c}{2}(u+v)+\frac{a-b+c}{2}(u+w)+\frac{-a+b+c}{2}(v+w)=0$. Since $\{u+v, u+w, v+w\}$ is linearly independent, we have that $\frac{a+b-c}{2}=0, \frac{a-b+c}{2}=0$, and $\frac{-a+b+c}{2}=0$. Clearly, the only solution to this system of equations is $a=b=c=0$. So $\{u, v, w\}$ is linearly independent.

Problem 17. If M is an $n \times n$ upper triangular matrix with nonzero entries, then

$$
M=\left(\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
0 & a_{22} & a_{23} & \ldots & a_{2 n} \\
0 & 0 & a_{33} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & a_{n n}
\end{array}\right)
$$

where each $a_{i j} \in F$, and $a_{11}, a_{22}, \ldots, a_{n n}$ are not zero. To show that the columns are linearly independent, suppose that

$$
r_{1}\left(\begin{array}{c}
a_{11} \\
0 \\
0 \\
\vdots \\
0
\end{array}\right)+r_{2}\left(\begin{array}{c}
a_{12} \\
a_{22} \\
0 \\
\vdots \\
0
\end{array}\right)+\cdots+r_{n}\left(\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
a_{3 n} \\
\vdots \\
a_{n n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

for some $r_{1}, r_{2}, \ldots, r_{n} \in F$. This leads to a system of n linear equations:
$r_{1} a_{11}+r_{2} a_{12}+r_{3} a_{13}+\cdots+r_{n} a_{1 n}=0$
$0+r_{2} a_{22}+r_{3} a_{23}+\cdots+r_{n} a_{2 n}=0$
$0+0+r_{3} a_{33}+\cdots+r_{n} a_{3 n}=0$
\vdots
$0+\cdots+0+r_{n-1} a_{n-1, n-1}+r_{n} a_{n-1, n}=0$
$0+\cdots+0+0+r_{n} a_{n n}=0$.
Now, since $a_{n n} \neq 0$, the last equations implies that $r_{n}=0$. Substituting this into the next to the last equation, we see that $r_{n-1}=0$. Continuing in this fashion, we conclude that $r_{1}=r_{2}=\cdots=r_{n}=0$. Hence the columns are linearly independent.

§1.6: Basis and Dimension

Problem (2). (Not from the book.) Recall that $\left\{E^{i j}: 1 \leq i \leq n, 1 \leq j \leq n\right\}$ forms a basis for $\mathrm{M}_{n \times n}(F)$, where $E^{i j}$ is the matrix whose only nonzero entry is a 1 in the i th row and j th column. (See Example 1.6.3 or the lecture notes.) So any matrix $M \in \mathrm{M}_{n \times n}(F)$ can be written as $M=\sum_{i, j=1}^{n} a_{i j} E^{i j}$ for some elements $a_{i j} \in F$. Also, recall that $M^{t}=$ $\sum_{i, j=1}^{n} a_{i j}\left(E^{i j}\right)^{t}$ (see p. 17 and Exercise 1.3.3). Now $\left(E^{i j}\right)^{t}=E^{j i}$, so $M^{t}=\sum_{i, j=1}^{n} a_{i j} E^{j i}=$ $\sum_{i, j=1}^{n} a_{j i} E^{i j}$. If M is symmetric, then $M=M^{t}$, and so $0=M-M^{t}=\sum_{i, j=1}^{n}\left(a_{i j}-a_{j i}\right) E^{i j}$. Since $\left\{E^{i j}: 1 \leq i \leq n, 1 \leq j \leq n\right\}$ is linearly independent, this implies that $a_{i j}=a_{j i}$ for all $i, j(1 \leq i \leq n, 1 \leq j \leq n)$. Hence, $M=\sum_{i=1}^{n} a_{i i} E^{i i}+\sum_{i<j} a_{i j}\left(E^{i j}+E^{j i}\right)$, i.e, M can be written as a diagonal matrix plus a linear combination of matrices of the form $E^{i j}+E^{j i}$. Therefore, the set $S=\left\{E^{i i}: 1 \leq i \leq n\right\} \cup\left\{E^{i j}+E^{j i}: 1 \leq i<j \leq n\right\}$ spans the subspace of symmetric matrices, or W. We claim that S is actually a basis for W. To show this, we need to prove that S is linearly independent. Suppose that a linear combination of the elements of this set is $0: \sum_{i=1}^{n} a_{i i} E^{i i}+\sum_{i<j} a_{i j}\left(E^{i j}+E^{j i}\right)=0$ for some elements $a_{i j} \in F$. Then $0=\sum_{i=1}^{n} a_{i i} E^{i i}+\sum_{i<j} a_{i j} E^{i j}+\sum_{i<j} a_{i j} E^{j i}$. Since $\left\{E^{i j}: 1 \leq i \leq n, 1 \leq j \leq n\right\}$ is linearly independent, this implies that each $a_{i j}=0$. Hence, S is linearly independent, and therefore a basis for W. Since S consists of $n+\frac{n^{2}-n}{2}=\frac{n^{2}+n}{2}$ elements, the dimension of W is $\frac{n^{2}+n}{2}$.

Problem 1.

(a) False. The empty set is a basis for the zero vector space. (See Example 1 in Sect. 1.6.)
(b) True. See Theorem 1.9.
(c) False. An infinite-dimensional vector space has no finite basis (e.g, $\mathrm{P}(F)$).
(d) False. See Examples 2 and 15 in Sect. 1.6 for two different bases for $V=\mathbb{R}^{4}$.
(e) True. See Corollary 1 in Sect. 1.6.
(f) False. By Example 10 in Sect. 1.6, $\mathrm{P}_{n}(F)$ has dimension $n+1$.
(g) False. By Example 9 in Sect. 1.6, $\mathrm{M}_{m \times n}(F)$ has dimension $m n$.
(h) True. See Theorem 1.10.
(i) False. For example, if we set $v_{1}=(1,0), v_{2}=(0,1)$, and $v_{3}=(1,1)$, then $\left\{v_{1}, v_{2}, v_{3}\right\}$ generates \mathbb{R}^{2}, but $(1,1)$ can written both as $1 * v_{1}+1 * v_{2}+0 * v_{3}$ and as $0 * v_{1}+0 * v_{2}+1 * v_{3}$.
(j) True. See Theorem 1.11.
(k) True. By Theorem 1.11, if a subspace of V has dimension n, then that subspace is equal to V. The only vector space that has dimension 0 is the zero vector space.
(l) True. If S is linearly independent, then S spans V, by Corollary 2 (b) (Sect. 1.6). Conversely, if S spans V, then S is linearly independent, by part (a) of that corollary.

Problem 5. No. By Example 8 (Sect. 1.6), the dimension of \mathbb{R}^{3} is 3, and it is thus generated by a 3 -element set. So, by Theorem 1.10 , any linearly independent subset of \mathbb{R}^{3} can have at most 3 elements. Therefore, $\{(1,4,-6),(1,5,8),(2,1,1),(0,1,0)\}$ cannot be linearly independent. Or, more directly, $-15(1,4,-6)-13(1,5,8)+14(2,1,1)+111(0,1,0)=0$.

Problem 11. Since $\{u, v\}$ is a basis, V must have dimension 2. So, by Corollary 2 (b) (Sect. 1.6), to show that $\{u+v, a u\}$ and $\{a u, b v\}$ are bases, it is enough to show that they are linearly independent.

Suppose that $c(u+v)+d(a u)=0$ for some $c, d \in F$. Then $(c+d a) u+c v=0$, and so $c+d a=0$ and $c=0$, by the linear independence of $\{u, v\}$. But, since $a \neq 0, d$ must also be zero. So $\{u+v, a u\}$ is linearly independent.

Suppose that $c(a u)+d(b u)=0$ for some $c, d \in F$. Then, $c a=0=d b$, since $\{u, v\}$ is linearly independent. Since a and b are nonzero, $c=d=0$. So $\{a u, b v\}$ is linearly independent.
Problem 12. As in the previous problem, it is enough to show that $\{u+v+w, v+w, w\}$ is linearly independent. Suppose that $a(u+v+w)+b(v+w)+c w=0$ for some $a, b, c \in F$. Then $a u+(a+b) v+(a+b+c) w=0$. Since $\{u, v, w\}$ is linearly independent, $a=0$, $a+b=0$, and $a+b+c=0$. Solving this linear system, we see that $a=b=c=0$, and so $\{u+v+w, v+w, w\}$ is linearly independent.
Problem 13. Subtracting the first equation from the second, we see that $x_{1}=x_{2}$. Plugging this back into the first equation, we see that $x_{2}=x_{3}$. Hence, the solutions to this system are precisely triplets $\left(x_{1}, x_{2}, x_{3}\right)$ of the form $(x, x, x)=x(1,1,1)$. So $\{(1,1,1)\}$ spans the subspace of \mathbb{R}^{3} consisting of solutions to the given system. Also, the set $\{(1,1,1)\}$ is clearly linearly independent. Thus, $\{(1,1,1)\}$ is a basis for the subspace in question.

Problem 29.

(a) Let $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ be a basis for $W_{1} \cap W_{2}$. Since $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ is a linearly independent set that is contained in W_{1}, it can be extended to a basis $\left\{u_{1}, u_{2}, \ldots, u_{k}\right.$, $\left.v_{1}, v_{2}, \ldots, v_{m}\right\}$ for W_{1}, by Corollary 2 (c) (Sect. 1.6). Similarly, $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ can be extended to a basis $\left\{u_{1}, u_{2}, \ldots, u_{k}, w_{1}, w_{2}, \ldots, w_{p}\right\}$ for W_{2}. Now, each element of W_{1} can be written as a linear combination of $\left\{u_{1}, u_{2}, \ldots, u_{k}, v_{1}, v_{2}, \ldots, v_{m}\right\}$, and each element of W_{2} can be written as a linear combination of $\left\{u_{1}, u_{2}, \ldots, u_{k}\right.$, $\left.w_{1}, w_{2}, \ldots, w_{p}\right\}$. So each element of $W_{1}+W_{2}$ can be written as a linear combination of $\left\{u_{1}, u_{2}, \ldots, u_{k}, v_{1}, v_{2}, \ldots, v_{m}, w_{1}, w_{2}, \ldots, w_{p}\right\}$, by definition of sum. In other words, $\left\{u_{1}, u_{2}, \ldots, u_{k}, v_{1}, v_{2}, \ldots, v_{m}, w_{1}, w_{2}, \ldots, w_{p}\right\}$ spans $W_{1}+W_{2}$.

Also, note that $\operatorname{span}\left(u_{1}, u_{2}, \ldots, u_{k}, v_{1}, v_{2}, \ldots, v_{m}\right) \cap \operatorname{span}\left(w_{1}, w_{2}, \ldots, w_{p}\right)=\{0\}$, since if there is a nonzero element t that is in both sets, then it is contained in $W_{1} \cap W_{2}$, and hence must be a linear combination of $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$. Writing $t=$ $a_{1} u_{1}+\cdots+a_{k} u_{k}$ and $t=b_{1} w_{1}+\cdots+b_{p} w_{p}$ for some $a_{1}, \ldots a_{k}, b_{1}, \ldots, b_{p} \in F$, we get $a_{1} u_{1}+\cdots+a_{k} u_{k}-b_{1} w_{1}-\cdots-b_{p} w_{p}=0$. Since we assumed that t is nonzero, this gives a nontrivial linear combination of $\left\{u_{1}, u_{2}, \ldots, u_{k}, w_{1}, w_{2}, \ldots, w_{p}\right\}$, contradicting the assumption that this is a linearly independent set. Hence, there can be no nonzero element in $\operatorname{span}\left(u_{1}, u_{2}, \ldots, u_{k}, v_{1}, v_{2}, \ldots, v_{m}\right) \cap \operatorname{span}\left(w_{1}, w_{2}, \ldots, w_{p}\right)$.

Now, suppose that $a_{1} u_{1}+a_{2} u_{2}+\cdots+a_{k} u_{k}+b_{1} v_{1}+b_{2} v_{2}+\cdots+b_{m} v_{m}+c_{1} w_{1}+c_{2} w_{2}+\cdots+$ $c_{p} w_{p}=0$ for some $a_{1}, \ldots a_{k}, b_{1}, \ldots, b_{m}, c_{1}, \ldots, c_{p} \in F$. Then $a_{1} u_{1}+a_{2} u_{2}+\cdots+a_{k} u_{k}+$ $b_{1} v_{1}+b_{2} v_{2}+\cdots+b_{m} v_{m}=-c_{1} w_{1}-c_{2} w_{2}-\cdots-c_{p} w_{p}$, and so each side of this expression must equal zero, by the previous paragraph. Since $\left\{u_{1}, u_{2}, \ldots, u_{k}, v_{1}, v_{2}, \ldots, v_{m}\right\}$ and $\left\{w_{1}, w_{2}, \ldots, w_{p}\right\}$ are linearly independent sets, this means that $a_{1}=\cdots=a_{k}=b_{1}=$ $\cdots=b_{m}=c_{1}=\cdots=c_{p}=0$. Hence, $\left\{u_{1}, u_{2}, \ldots, u_{k}, v_{1}, v_{2}, \ldots, v_{m}, w_{1}, w_{2}, \ldots, w_{p}\right\}$ is linearly independent and thus is a basis for $W_{1}+W_{2}$. In particular, $W_{1}+W_{2}$ is finite-dimensional, and $\operatorname{dim}\left(W_{1}+W_{2}\right)=k+m+p$.

Now, looking at our bases for $W_{1} \cap W_{2}, W_{1}$, and W_{2} we see that $\operatorname{dim}\left(W_{1} \cap W_{2}\right)=k$, $\operatorname{dim}\left(W_{1}\right)=k+m$, and $\operatorname{dim}\left(W_{2}\right)=k+p$. So $\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)-\operatorname{dim}\left(W_{1} \cap W_{2}\right)=$ $k+m+p$, and hence $\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)-\operatorname{dim}\left(W_{1} \cap W_{2}\right)$.
(b) Since $V=W_{1}+W_{2}$, by part (a), $\operatorname{dim}(V)=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)-\operatorname{dim}\left(W_{1} \cap W_{2}\right)$. Then $\operatorname{dim}(V)=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right) \Leftrightarrow \operatorname{dim}\left(W_{1} \cap W_{2}\right)=0 \Leftrightarrow W_{1} \cap W_{2}=\{0\} \Leftrightarrow V$ is the direct sum of W_{1} and W_{2}.

Problem 31.

(a) $W_{1} \cap W_{2} \subseteq W_{2}$, so $\operatorname{dim}\left(W_{1} \cap W_{2}\right) \leq \operatorname{dim}\left(W_{2}\right)=n$, by Theorem 1.11.
(b) By Problem 29, $\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)-\operatorname{dim}\left(W_{1} \cap W_{2}\right)=m+n-$ $\operatorname{dim}\left(W_{1} \cap W_{2}\right) \leq m+n$, since $\operatorname{dim}\left(W_{1} \cap W_{2}\right)$ is a nonnegative integer.

