MATH 110: LINEAR ALGEBRA HOMEWORK #2

§1.5: LINEAR DEPENDENCE AND LINEAR INDEPENDENCE

Problem 1.

- (a) False. The set $\{(1,0), (0,1), (0,-1)\}$ is linearly dependent but (1,0) is not a linear combination of the other 2 vectors.
- (b) True. If 0_V is in the set, then $1 \cdot 0_V = 0_V$ is a nontrivial linear relation.
- (c) False. Without any vectors in the set, we cannot form any linear relations.
- (d) False. Take the set in (a), and look at the subset $\{(1,0), (0,1)\}$.
- (e) True, by corollary to theorem 1.6 on page 39.
- (f) True. This is precisely the definition of linear independence.

Problem 2.

(b) Linearly independent. For suppose that

$$\left(\begin{array}{cc} 0 & 0\\ 0 & 0 \end{array}\right) = a \left(\begin{array}{cc} 1 & -2\\ -1 & 4 \end{array}\right) + b \left(\begin{array}{cc} -1 & 1\\ 2 & -4 \end{array}\right) = \left(\begin{array}{cc} a-b & -2a+b\\ -a+2b & 4a-4b \end{array}\right)$$

for some $a, b \in \mathbb{R}$. The corresponding four linear equations are 0 = a - b, 0 = -2a + b, 0 = -a + 2b, and 0 = 4a - 4b. By the first equation, a = b, and so, by the second equation, 0 = -b. Therefore, a = b = 0.

(d) Linearly dependent, because $-2(x^3 - x) + (3/2)(2x^2 + 4) - 1(-2x^3 + 3x^2 + 2x + 6) = -2x^3 + 2x + 3x^2 + 6 - (-2x^3 + 3x^2 + 2x + 6) = 0.$

Problem 8.

- (a) Suppose that a(1,1,0) + b(1,0,1) + c(0,1,1) = 0 for some $a, b, c \in \mathbb{R}$. Then (a+b, a+c, b+c) = 0, and so a, b, and c must satisfy the following system of linear equations: a+b=0, a+c=0, b+c=0. Subtracting the second equation from the first, we obtain b-c=0. Adding this to the third equation, we see that 2b=0. Multiplying this equation by 1/2 on both sides, we obtain b=0. Consequently, a=c=0 as well. Hence S must be linearly independent.
- (b) If F has characteristic 2, then we can no longer multiply the above equation 2b = 0by 1/2 to conclude that b = 0. In fact, in this case, 2b = 0 is satisfied by all $b \in F$. So if we let b be any nonzero element of F and take a = c = -b (= b), we will have a solution to a(1,1,0) + b(1,0,1) + c(0,1,1) = 0 where the scalars are nonzero. In particular, 1(1,1,0) + 1(1,0,1) + 1(0,1,1) = 0, and so S is linearly dependent.

Problem 9. Suppose that $\{u, v\}$ is linearly dependent. Then au + bv = 0 for some $a, b \in F$, where at least one of a and b is nonzero. Without loss of generality, we may assume that $a \neq 0$. Since F is a field, a must have a multiplicative inverse, $a^{-1} \in F$. So $u = (-a^{-1}b)v$, i.e., u is a multiple of v.

Conversely, suppose that u or v is a multiple of the other. Without loss of generality, we may assume that u is a multiple of v, that is u = av for some $a \in F$. Hence, 1u - av = 0, and so $\{u, v\}$ is linearly dependent, by definition of linear dependence.

Problem 12. For theorem 1.6, suppose S_1 is linearly dependent. Hence we can find elements $s_1, s_2, \ldots, s_n \in S_1$, and scalars c_1, \ldots, c_n (not all 0), such that

$$c_1 s_1 + c_2 s_2 + \dots + c_n s_n = 0.$$

Since $S_1 \subseteq S_2$, each s_i is also an element of S_2 . Thus, the above linear relation in S_1 gives us a linear relation in S_2 , and we see that S_2 is linearly dependent.

The corollary follows since it is precisely the contrapositive statement of theorem 1.6. In other words, saying $A \implies B$ is the same as saying $\neg B \implies \neg A$.

Problem 13.

(a) Suppose that $\{u, v\}$ is linearly independent and that a(u+v) + b(u-v) = 0 for some $a, b \in F$. Then (a+b)u + (a-b)v = 0. Since $\{u, v\}$ is linearly independent, this means that a+b=0 and a-b=0. Adding these two equations together, we get 2a = 0. Since the characteristic of F is not equal to two, we conclude that a = 0. Consequently, b = 0 as well. Hence $\{u+v, u-v\}$ is linearly independent.

Conversely, suppose that $\{u + v, u - v\}$ is linearly independent. Let s = u + v and t = u - v. Since $\{s, t\}$ is linearly independent, by the previous paragraph, $\{s+t, s-t\}$ is linearly independent. But, s+t = 2u and s-t = 2v. Now, the fact that $\{2u, 2v\}$ is linearly independent implies that $\{u, v\}$ is linearly independent. (Since if au + bv = 0 for some $a, b \in F$, then 2au + 2bv = a(2u) + b(2v) = 0, implying that a = b = 0.)

(b) Suppose that $\{u, v, w\}$ is linearly independent and that a(u+v)+b(u+w)+c(v+w) = 0 for some $a, b, c \in F$. Then (a+b)u+(a+c)v+(b+c)w = 0. Since $\{u, v, w\}$ is linearly independent, this means that a + b = 0, a + c = 0, and b + c = 0. Subtracting the second equation from the first, we get b - c = 0. Adding this to the third equation, we get 2b = 0. Since the characteristic of F is not equal to two, we conclude that b = 0. Consequently, a = c = 0 as well. Hence $\{u + v, u + w, v + w\}$ is linearly independent.

Conversely, suppose that $\{u + v, u + w, v + w\}$ is linearly independent. Note that $u = \frac{1}{2}(u + v) + \frac{1}{2}(u + w) - \frac{1}{2}(v + w), v = \frac{1}{2}(u + v) - \frac{1}{2}(u + w) + \frac{1}{2}(v + w)$, and $w = -\frac{1}{2}(u + v) + \frac{1}{2}(u + w) + \frac{1}{2}(v + w)$. (We can divide by 2, since the characteristic of F is not equal to 2.) Suppose that au + bv + cw = 0 for some $a, b, c \in F$. Then $a(\frac{1}{2}(u + v) + \frac{1}{2}(u + w) - \frac{1}{2}(v + w)) + b(\frac{1}{2}(u + v) - \frac{1}{2}(u + w) + \frac{1}{2}(v + w)) + c(-\frac{1}{2}(u + v) + \frac{1}{2}(u + w) + \frac{1}{2}(v + w)) = 0$, and so $\frac{a+b-c}{2}(u+v) + \frac{a-b+c}{2}(u+w) + \frac{-a+b+c}{2}(v+w) = 0$. Since $\{u + v, u + w, v + w\}$ is linearly independent, we have that $\frac{a+b-c}{2} = 0, \frac{a-b+c}{2} = 0$, and $\frac{-a+b+c}{2} = 0$. Clearly, the only solution to this system of equations is a = b = c = 0. So $\{u, v, w\}$ is linearly independent.

Problem 17. If M is an $n \times n$ upper triangular matrix with nonzero entries, then

$$M = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2n} \\ 0 & 0 & a_{33} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{nn} \end{pmatrix},$$

where each $a_{ij} \in F$, and $a_{11}, a_{22}, \ldots, a_{nn}$ are not zero. To show that the columns are linearly independent, suppose that

$$r_{1}\begin{pmatrix}a_{11}\\0\\0\\\vdots\\0\end{pmatrix}+r_{2}\begin{pmatrix}a_{12}\\a_{22}\\0\\\vdots\\0\end{pmatrix}+\dots+r_{n}\begin{pmatrix}a_{1n}\\a_{2n}\\a_{3n}\\\vdots\\a_{nn}\end{pmatrix}=\begin{pmatrix}0\\0\\0\\\vdots\\0\end{pmatrix}$$

for some $r_1, r_2, \ldots, r_n \in F$. This leads to a system of n linear equations: $r_1a_{11} + r_2a_{12} + r_3a_{13} + \cdots + r_na_{1n} = 0$ $0 + r_2a_{22} + r_3a_{23} + \cdots + r_na_{2n} = 0$ $0 + 0 + r_3a_{33} + \cdots + r_na_{3n} = 0$ \vdots $0 + \cdots + 0 + r_{n-1}a_{n-1} + r_na_{n-1} = 0$

$$0 + \dots + 0 + r_{n-1}a_{n-1,n-1} + r_na_{n-1,n} = 0 + \dots + 0 + 0 + r_na_{nn} = 0.$$

Now, since $a_{nn} \neq 0$, the last equations implies that $r_n = 0$. Substituting this into the next to the last equation, we see that $r_{n-1} = 0$. Continuing in this fashion, we conclude that $r_1 = r_2 = \cdots = r_n = 0$. Hence the columns are linearly independent.

$\S1.6$: Basis and Dimension

Problem (2). (Not from the book.) Recall that $\{E^{ij}: 1 \le i \le n, 1 \le j \le n\}$ forms a basis for $M_{n\times n}(F)$, where E^{ij} is the matrix whose only nonzero entry is a 1 in the *i*th row and *j*th column. (See Example 1.6.3 or the lecture notes.) So any matrix $M \in M_{n\times n}(F)$ can be written as $M = \sum_{i,j=1}^{n} a_{ij} E^{ij}$ for some elements $a_{ij} \in F$. Also, recall that $M^t = \sum_{i,j=1}^{n} a_{ij} (E^{ij})^t$ (see p. 17 and Exercise 1.3.3). Now $(E^{ij})^t = E^{ji}$, so $M^t = \sum_{i,j=1}^{n} a_{ij} E^{ji} = \sum_{i,j=1}^{n} a_{ji} E^{ij}$. If M is symmetric, then $M = M^t$, and so $0 = M - M^t = \sum_{i,j=1}^{n} (a_{ij} - a_{ji}) E^{ij}$. Since $\{E^{ij}: 1 \le i \le n, 1 \le j \le n\}$ is linearly independent, this implies that $a_{ij} = a_{ji}$ for all i, j ($1 \le i \le n, 1 \le j \le n$). Hence, $M = \sum_{i=1}^{n} a_{ii} E^{ii} + \sum_{i < j} a_{ij} (E^{ij} + E^{ji})$, i.e. M can be written as a diagonal matrix plus a linear combination of matrices of the form $E^{ij} + E^{ji}$. Therefore, the set $S = \{E^{ii}: 1 \le i \le n\} \cup \{E^{ij} + E^{ji}: 1 \le i < j \le n\}$ spans the subspace of symmetric matrices, or W. We claim that S is actually a basis for W. To show this, we need to prove that S is linearly independent. Suppose that a linear combination of the elements $a_{ij} \in F$. Then $0 = \sum_{i=1}^{n} a_{ii}E^{ii} + \sum_{i < j} a_{ij}E^{ij}$. Since $\{E^{ij}: 1 \le i \le n, 1 \le j \le n\}$ is linearly independent, this implies that $a_{ij} \in F$. Then $0 = \sum_{i=1}^{n} a_{ii}E^{ii} + \sum_{i < j} a_{ij}E^{ij}$. Since $\{E^{ij}: 1 \le i \le n, 1 \le j \le n\}$ is linearly independent, this implies that each $a_{ij} = 0$. Hence, S is linearly independent, and therefore a basis for W. Since S consists of $n + \frac{n^2 - n}{2} = \frac{n^2 + n}{2}$ elements, the dimension of W is $\frac{n^2 + n}{2}$.

Problem 1.

- (a) False. The empty set is a basis for the zero vector space. (See Example 1 in Sect. 1.6.)
- (b) True. See Theorem 1.9.
- (c) False. An infinite-dimensional vector space has no finite basis (e.g, P(F)).
- (d) False. See Examples 2 and 15 in Sect. 1.6 for two different bases for $V = \mathbb{R}^4$.
- (e) True. See Corollary 1 in Sect. 1.6.

- (f) False. By Example 10 in Sect. 1.6, $P_n(F)$ has dimension n + 1.
- (g) False. By Example 9 in Sect. 1.6, $M_{m \times n}(F)$ has dimension mn.
- (h) True. See Theorem 1.10.
- (i) False. For example, if we set $v_1 = (1, 0)$, $v_2 = (0, 1)$, and $v_3 = (1, 1)$, then $\{v_1, v_2, v_3\}$ generates \mathbb{R}^2 , but (1, 1) can written both as $1*v_1+1*v_2+0*v_3$ and as $0*v_1+0*v_2+1*v_3$.
- (j) True. See Theorem 1.11.
- (k) True. By Theorem 1.11, if a subspace of V has dimension n, then that subspace is equal to V. The only vector space that has dimension 0 is the zero vector space.
- (1) True. If S is linearly independent, then S spans V, by Corollary 2 (b) (Sect. 1.6). Conversely, if S spans V, then S is linearly independent, by part (a) of that corollary.

Problem 5. No. By Example 8 (Sect. 1.6), the dimension of \mathbb{R}^3 is 3, and it is thus generated by a 3-element set. So, by Theorem 1.10, any linearly independent subset of \mathbb{R}^3 can have at most 3 elements. Therefore, $\{(1, 4, -6), (1, 5, 8), (2, 1, 1), (0, 1, 0)\}$ cannot be linearly independent. Or, more directly, -15(1, 4, -6) - 13(1, 5, 8) + 14(2, 1, 1) + 111(0, 1, 0) = 0.

Problem 11. Since $\{u, v\}$ is a basis, V must have dimension 2. So, by Corollary 2 (b) (Sect. 1.6), to show that $\{u + v, au\}$ and $\{au, bv\}$ are bases, it is enough to show that they are linearly independent.

Suppose that c(u+v) + d(au) = 0 for some $c, d \in F$. Then (c+da)u + cv = 0, and so c+da = 0 and c = 0, by the linear independence of $\{u, v\}$. But, since $a \neq 0$, d must also be zero. So $\{u+v, au\}$ is linearly independent.

Suppose that c(au) + d(bu) = 0 for some $c, d \in F$. Then, ca = 0 = db, since $\{u, v\}$ is linearly independent. Since a and b are nonzero, c = d = 0. So $\{au, bv\}$ is linearly independent.

Problem 12. As in the previous problem, it is enough to show that $\{u + v + w, v + w, w\}$ is linearly independent. Suppose that a(u + v + w) + b(v + w) + cw = 0 for some $a, b, c \in F$. Then au + (a + b)v + (a + b + c)w = 0. Since $\{u, v, w\}$ is linearly independent, a = 0, a + b = 0, and a + b + c = 0. Solving this linear system, we see that a = b = c = 0, and so $\{u + v + w, v + w, w\}$ is linearly independent.

Problem 13. Subtracting the first equation from the second, we see that $x_1 = x_2$. Plugging this back into the first equation, we see that $x_2 = x_3$. Hence, the solutions to this system are precisely triplets (x_1, x_2, x_3) of the form (x, x, x) = x(1, 1, 1). So $\{(1, 1, 1)\}$ spans the subspace of \mathbb{R}^3 consisting of solutions to the given system. Also, the set $\{(1, 1, 1)\}$ is clearly linearly independent. Thus, $\{(1, 1, 1)\}$ is a basis for the subspace in question.

Problem 29.

(a) Let $\{u_1, u_2, \ldots, u_k\}$ be a basis for $W_1 \cap W_2$. Since $\{u_1, u_2, \ldots, u_k\}$ is a linearly independent set that is contained in W_1 , it can be extended to a basis $\{u_1, u_2, \ldots, u_k, v_1, v_2, \ldots, v_m\}$ for W_1 , by Corollary 2 (c) (Sect. 1.6). Similarly, $\{u_1, u_2, \ldots, u_k\}$ can be extended to a basis $\{u_1, u_2, \ldots, u_k, w_1, w_2, \ldots, w_p\}$ for W_2 . Now, each element of W_1 can be written as a linear combination of $\{u_1, u_2, \ldots, u_k, v_1, v_2, \ldots, v_m\}$, and each element of W_2 can be written as a linear combination of $\{u_1, u_2, \ldots, u_k, v_1, v_2, \ldots, v_m\}$, $w_1, w_2, \ldots, w_p\}$. So each element of $W_1 + W_2$ can be written as a linear combination of $\{u_1, u_2, \ldots, u_k, v_1, v_2, \ldots, v_m, w_1, w_2, \ldots, w_p\}$, by definition of sum. In other words, $\{u_1, u_2, \ldots, u_k, v_1, v_2, \ldots, v_m, w_1, w_2, \ldots, w_p\}$ spans $W_1 + W_2$.

Also, note that $\operatorname{span}(u_1, u_2, \ldots, u_k, v_1, v_2, \ldots, v_m) \cap \operatorname{span}(w_1, w_2, \ldots, w_p) = \{0\}$, since if there is a nonzero element t that is in both sets, then it is contained in $W_1 \cap W_2$, and hence must be a linear combination of $\{u_1, u_2, \ldots, u_k\}$. Writing $t = a_1u_1 + \cdots + a_ku_k$ and $t = b_1w_1 + \cdots + b_pw_p$ for some $a_1, \ldots, a_k, b_1, \ldots, b_p \in F$, we get $a_1u_1 + \cdots + a_ku_k - b_1w_1 - \cdots - b_pw_p = 0$. Since we assumed that t is nonzero, this gives a nontrivial linear combination of $\{u_1, u_2, \ldots, u_k, w_1, w_2, \ldots, w_p\}$, contradicting the assumption that this is a linearly independent set. Hence, there can be no nonzero element in $\operatorname{span}(u_1, u_2, \ldots, u_k, v_1, v_2, \ldots, v_m) \cap \operatorname{span}(w_1, w_2, \ldots, w_p)$.

Now, suppose that $a_1u_1+a_2u_2+\cdots+a_ku_k+b_1v_1+b_2v_2+\cdots+b_mv_m+c_1w_1+c_2w_2+\cdots+c_pw_p=0$ for some $a_1,\ldots,a_k,b_1,\ldots,b_m,c_1,\ldots,c_p\in F$. Then $a_1u_1+a_2u_2+\cdots+a_ku_k+b_1v_1+b_2v_2+\cdots+b_mv_m=-c_1w_1-c_2w_2-\cdots-c_pw_p$, and so each side of this expression must equal zero, by the previous paragraph. Since $\{u_1,u_2,\ldots,u_k,v_1,v_2,\ldots,v_m\}$ and $\{w_1,w_2,\ldots,w_p\}$ are linearly independent sets, this means that $a_1=\cdots=a_k=b_1=\cdots=b_m=c_1=\cdots=c_p=0$. Hence, $\{u_1,u_2,\ldots,u_k,v_1,v_2,\ldots,v_m,w_1,w_2,\ldots,w_p\}$ is linearly independent and thus is a basis for W_1+W_2 . In particular, W_1+W_2 is finite-dimensional, and $\dim(W_1+W_2)=k+m+p$.

Now, looking at our bases for $W_1 \cap W_2$, W_1 , and W_2 we see that $\dim(W_1 \cap W_2) = k$, $\dim(W_1) = k + m$, and $\dim(W_2) = k + p$. So $\dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2) = k + m + p$, and hence $\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)$.

(b) Since $V = W_1 + W_2$, by part (a), $\dim(V) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)$. Then $\dim(V) = \dim(W_1) + \dim(W_2) \Leftrightarrow \dim(W_1 \cap W_2) = 0 \Leftrightarrow W_1 \cap W_2 = \{0\} \Leftrightarrow V$ is the direct sum of W_1 and W_2 .

Problem 31.

- (a) $W_1 \cap W_2 \subseteq W_2$, so dim $(W_1 \cap W_2) \leq \dim(W_2) = n$, by Theorem 1.11.
- (b) By Problem 29, $\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) \dim(W_1 \cap W_2) = m + n \dim(W_1 \cap W_2) \le m + n$, since $\dim(W_1 \cap W_2)$ is a nonnegative integer.