
MATH 110: LINEAR ALGEBRA
HOMEWORK #2

§1.5: Linear Dependence and Linear Independence

Problem 1.

(a) False. The set {(1, 0), (0, 1), (0,−1)} is linearly dependent but (1, 0) is not a linear
combination of the other 2 vectors.

(b) True. If 0V is in the set, then 1 · 0V = 0V is a nontrivial linear relation.
(c) False. Without any vectors in the set, we cannot form any linear relations.
(d) False. Take the set in (a), and look at the subset {(1, 0), (0, 1)}.
(e) True, by corollary to theorem 1.6 on page 39.
(f) True. This is precisely the definition of linear independence.

Problem 2.

(b) Linearly independent. For suppose that(
0 0
0 0

)
= a

(
1 −2

−1 4

)
+ b

( −1 1
2 −4

)
=

(
a − b −2a + b

−a + 2b 4a − 4b

)

for some a, b ∈ R. The corresponding four linear equations are 0 = a−b, 0 = −2a+b,
0 = −a + 2b, and 0 = 4a − 4b. By the first equation, a = b, and so, by the second
equation, 0 = −b. Therefore, a = b = 0.

(d) Linearly dependent, because −2(x3 −x)+ (3/2)(2x2 +4)− 1(−2x3 +3x2 +2x+6) =
−2x3 + 2x + 3x2 + 6 − (−2x3 + 3x2 + 2x + 6) = 0.

Problem 8.

(a) Suppose that a(1, 1, 0)+b(1, 0, 1)+c(0, 1, 1) = 0 for some a, b, c ∈ R. Then (a+b, a+
c, b + c) = 0, and so a, b, and c must satisfy the following system of linear equations:
a + b = 0, a + c = 0, b + c = 0. Subtracting the second equation from the first, we
obtain b− c = 0. Adding this to the third equation, we see that 2b = 0. Multiplying
this equation by 1/2 on both sides, we obtain b = 0. Consequently, a = c = 0 as
well. Hence S must be linearly independent.

(b) If F has characteristic 2, then we can no longer multiply the above equation 2b = 0
by 1/2 to conclude that b = 0. In fact, in this case, 2b = 0 is satisfied by all b ∈ F .
So if we let b be any nonzero element of F and take a = c = −b (= b), we will have
a solution to a(1, 1, 0) + b(1, 0, 1) + c(0, 1, 1) = 0 where the scalars are nonzero. In
particular, 1(1, 1, 0) + 1(1, 0, 1) + 1(0, 1, 1) = 0, and so S is linearly dependent.

Problem 9. Suppose that {u, v} is linearly dependent. Then au+ bv = 0 for some a, b ∈ F ,
where at least one of a and b is nonzero. Without loss of generality, we may assume that
a �= 0. Since F is a field, a must have a multiplicative inverse, a−1 ∈ F . So u = (−a−1b)v,
i.e., u is a multiple of v.
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Conversely, suppose that u or v is a multiple of the other. Without loss of generality, we
may assume that u is a multiple of v, that is u = av for some a ∈ F . Hence, 1u − av = 0,
and so {u, v} is linearly dependent, by definition of linear dependence.

Problem 12. For theorem 1.6, suppose S1 is linearly dependent. Hence we can find elements
s1, s2, . . . , sn ∈ S1, and scalars c1, . . . , cn (not all 0), such that

c1s1 + c2s2 + · · · + cnsn = 0.

Since S1 ⊆ S2, each si is also an element of S2. Thus, the above linear relation in S1 gives
us a linear relation in S2, and we see that S2 is linearly dependent.

The corollary follows since it is precisely the contrapositive statement of theorem 1.6. In
other words, saying A =⇒ B is the same as saying ¬B =⇒ ¬A.

Problem 13.

(a) Suppose that {u, v} is linearly independent and that a(u+v)+ b(u−v) = 0 for some
a, b ∈ F . Then (a + b)u + (a − b)v = 0. Since {u, v} is linearly independent, this
means that a + b = 0 and a − b = 0. Adding these two equations together, we get
2a = 0. Since the characteristic of F is not equal to two, we conclude that a = 0.
Consequently, b = 0 as well. Hence {u + v, u − v} is linearly independent.

Conversely, suppose that {u + v, u− v} is linearly independent. Let s = u + v and
t = u−v. Since {s, t} is linearly independent, by the previous paragraph, {s+t, s−t}
is linearly independent. But, s+ t = 2u and s−t = 2v. Now, the fact that {2u, 2v} is
linearly independent implies that {u, v} is linearly independent. (Since if au+ bv = 0
for some a, b ∈ F , then 2au + 2bv = a(2u) + b(2v) = 0, implying that a = b = 0.)

(b) Suppose that {u, v, w} is linearly independent and that a(u+v)+b(u+w)+c(v+w) =
0 for some a, b, c ∈ F . Then (a+b)u+(a+c)v+(b+c)w = 0. Since {u, v, w} is linearly
independent, this means that a + b = 0, a + c = 0, and b + c = 0. Subtracting the
second equation from the first, we get b − c = 0. Adding this to the third equation,
we get 2b = 0. Since the characteristic of F is not equal to two, we conclude that
b = 0. Consequently, a = c = 0 as well. Hence {u + v, u + w, v + w} is linearly
independent.

Conversely, suppose that {u + v, u + w, v + w} is linearly independent. Note that
u = 1

2
(u + v) + 1

2
(u + w) − 1

2
(v + w), v = 1

2
(u + v) − 1

2
(u + w) + 1

2
(v + w), and

w = −1
2
(u + v) + 1

2
(u + w) + 1

2
(v + w). (We can divide by 2, since the characteristic

of F is not equal to 2.) Suppose that au + bv + cw = 0 for some a, b, c ∈ F . Then
a(1

2
(u+v)+ 1

2
(u+w)− 1

2
(v +w))+ b(1

2
(u+v)− 1

2
(u+w)+ 1

2
(v +w))+ c(−1

2
(u+v)+

1
2
(u+w)+ 1

2
(v+w)) = 0, and so a+b−c

2
(u+v)+ a−b+c

2
(u+w)+ −a+b+c

2
(v+w) = 0. Since

{u + v, u + w, v + w} is linearly independent, we have that a+b−c
2

= 0, a−b+c
2

= 0, and
−a+b+c

2
= 0. Clearly, the only solution to this system of equations is a = b = c = 0.

So {u, v, w} is linearly independent.

Problem 17. If M is an n × n upper triangular matrix with nonzero entries, then

M =

⎛
⎜⎜⎜⎜⎝

a11 a12 a13 . . . a1n

0 a22 a23 . . . a2n

0 0 a33 . . . a2n
...

...
...

. . .
...

0 0 0 . . . ann

⎞
⎟⎟⎟⎟⎠ ,
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where each aij ∈ F , and a11, a22, . . . , ann are not zero. To show that the columns are linearly
independent, suppose that

r1

⎛
⎜⎜⎜⎜⎝

a11

0
0
...
0

⎞
⎟⎟⎟⎟⎠ + r2

⎛
⎜⎜⎜⎜⎝

a12

a22

0
...
0

⎞
⎟⎟⎟⎟⎠ + · · ·+ rn

⎛
⎜⎜⎜⎜⎝

a1n

a2n

a3n
...

ann

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0
0
0
...
0

⎞
⎟⎟⎟⎟⎠

for some r1, r2, . . . , rn ∈ F . This leads to a system of n linear equations:
r1a11 + r2a12 + r3a13 + · · · + rna1n = 0
0 + r2a22 + r3a23 + · · ·+ rna2n = 0
0 + 0 + r3a33 + · · · + rna3n = 0

...
0 + · · ·+ 0 + rn−1an−1,n−1 + rnan−1,n = 0
0 + · · ·+ 0 + 0 + rnann = 0.
Now, since ann �= 0, the last equations implies that rn = 0. Substituting this into the next
to the last equation, we see that rn−1 = 0. Continuing in this fashion, we conclude that
r1 = r2 = · · · = rn = 0. Hence the columns are linearly independent.

§1.6: Basis and Dimension

Problem (2). (Not from the book.) Recall that {Eij : 1 ≤ i ≤ n, 1 ≤ j ≤ n} forms a
basis for Mn×n(F ), where Eij is the matrix whose only nonzero entry is a 1 in the ith row
and jth column. (See Example 1.6.3 or the lecture notes.) So any matrix M ∈ Mn×n(F )
can be written as M =

∑n
i,j=1 aijE

ij for some elements aij ∈ F . Also, recall that M t =∑n
i,j=1 aij(E

ij)t (see p. 17 and Exercise 1.3.3). Now (Eij)t = Eji, so M t =
∑n

i,j=1 aijE
ji =∑n

i,j=1 ajiE
ij. If M is symmetric, then M = M t, and so 0 = M −M t =

∑n
i,j=1(aij − aji)E

ij .

Since {Eij : 1 ≤ i ≤ n, 1 ≤ j ≤ n} is linearly independent, this implies that aij = aji for
all i, j (1 ≤ i ≤ n, 1 ≤ j ≤ n). Hence, M =

∑n
i=1 aiiE

ii +
∑

i<j aij(E
ij + Eji), i.e, M can

be written as a diagonal matrix plus a linear combination of matrices of the form Eij + Eji.
Therefore, the set S = {Eii : 1 ≤ i ≤ n} ∪ {Eij + Eji : 1 ≤ i < j ≤ n} spans the subspace
of symmetric matrices, or W . We claim that S is actually a basis for W . To show this,
we need to prove that S is linearly independent. Suppose that a linear combination of the
elements of this set is 0:

∑n
i=1 aiiE

ii +
∑

i<j aij(E
ij + Eji) = 0 for some elements aij ∈ F .

Then 0 =
∑n

i=1 aiiE
ii +

∑
i<j aijE

ij +
∑

i<j aijE
ji. Since {Eij : 1 ≤ i ≤ n, 1 ≤ j ≤ n} is

linearly independent, this implies that each aij = 0. Hence, S is linearly independent, and

therefore a basis for W . Since S consists of n + n2−n
2

= n2+n
2

elements, the dimension of W

is n2+n
2

.

Problem 1.

(a) False. The empty set is a basis for the zero vector space. (See Example 1 in Sect.
1.6.)

(b) True. See Theorem 1.9.
(c) False. An infinite-dimensional vector space has no finite basis (e.g, P(F )).
(d) False. See Examples 2 and 15 in Sect. 1.6 for two different bases for V = R

4.
(e) True. See Corollary 1 in Sect. 1.6.
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(f) False. By Example 10 in Sect. 1.6, Pn(F ) has dimension n + 1.
(g) False. By Example 9 in Sect. 1.6, Mm×n(F ) has dimension mn.
(h) True. See Theorem 1.10.
(i) False. For example, if we set v1 = (1, 0), v2 = (0, 1), and v3 = (1, 1), then {v1, v2, v3}

generates R
2, but (1, 1) can written both as 1∗v1+1∗v2+0∗v3 and as 0∗v1+0∗v2+1∗v3.

(j) True. See Theorem 1.11.
(k) True. By Theorem 1.11, if a subspace of V has dimension n, then that subspace is

equal to V . The only vector space that has dimension 0 is the zero vector space.
(l) True. If S is linearly independent, then S spans V , by Corollary 2 (b) (Sect. 1.6).

Conversely, if S spans V , then S is linearly independent, by part (a) of that corollary.

Problem 5. No. By Example 8 (Sect. 1.6), the dimension of R
3 is 3, and it is thus

generated by a 3-element set. So, by Theorem 1.10, any linearly independent subset of R
3 can

have at most 3 elements. Therefore, {(1, 4,−6), (1, 5, 8), (2, 1, 1), (0, 1, 0)} cannot be linearly
independent. Or, more directly, −15(1, 4,−6) − 13(1, 5, 8) + 14(2, 1, 1) + 111(0, 1, 0) = 0.

Problem 11. Since {u, v} is a basis, V must have dimension 2. So, by Corollary 2 (b)
(Sect. 1.6), to show that {u + v, au} and {au, bv} are bases, it is enough to show that they
are linearly independent.

Suppose that c(u + v) + d(au) = 0 for some c, d ∈ F . Then (c + da)u + cv = 0, and so
c + da = 0 and c = 0, by the linear independence of {u, v}. But, since a �= 0, d must also be
zero. So {u + v, au} is linearly independent.

Suppose that c(au) + d(bu) = 0 for some c, d ∈ F . Then, ca = 0 = db, since {u, v}
is linearly independent. Since a and b are nonzero, c = d = 0. So {au, bv} is linearly
independent.

Problem 12. As in the previous problem, it is enough to show that {u + v + w, v + w, w}
is linearly independent. Suppose that a(u + v + w) + b(v + w) + cw = 0 for some a, b, c ∈ F .
Then au + (a + b)v + (a + b + c)w = 0. Since {u, v, w} is linearly independent, a = 0,
a + b = 0, and a + b + c = 0. Solving this linear system, we see that a = b = c = 0, and so
{u + v + w, v + w, w} is linearly independent.

Problem 13. Subtracting the first equation from the second, we see that x1 = x2. Plugging
this back into the first equation, we see that x2 = x3. Hence, the solutions to this system
are precisely triplets (x1, x2, x3) of the form (x, x, x) = x(1, 1, 1). So {(1, 1, 1)} spans the
subspace of R

3 consisting of solutions to the given system. Also, the set {(1, 1, 1)} is clearly
linearly independent. Thus, {(1, 1, 1)} is a basis for the subspace in question.

Problem 29.

(a) Let {u1, u2, . . . , uk} be a basis for W1 ∩ W2. Since {u1, u2, . . . , uk} is a linearly in-
dependent set that is contained in W1, it can be extended to a basis {u1, u2, . . . , uk,
v1, v2, . . . , vm} for W1, by Corollary 2 (c) (Sect. 1.6). Similarly, {u1, u2, . . . , uk}
can be extended to a basis {u1, u2, . . . , uk, w1, w2, . . . , wp} for W2. Now, each ele-
ment of W1 can be written as a linear combination of {u1, u2, . . . , uk, v1, v2, . . . , vm},
and each element of W2 can be written as a linear combination of {u1, u2, . . . , uk,
w1, w2, . . . , wp}. So each element of W1 + W2 can be written as a linear combination
of {u1, u2, . . . , uk, v1, v2, . . . , vm, w1, w2, . . . , wp}, by definition of sum. In other words,
{u1, u2, . . . , uk, v1, v2, . . . , vm, w1, w2, . . . , wp} spans W1 + W2.
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Also, note that span(u1, u2, . . . , uk, v1, v2, . . . , vm) ∩ span(w1, w2, . . . , wp) = {0},
since if there is a nonzero element t that is in both sets, then it is contained in
W1 ∩ W2, and hence must be a linear combination of {u1, u2, . . . , uk}. Writing t =
a1u1 + · · ·+ akuk and t = b1w1 + · · ·+ bpwp for some a1, . . . ak, b1, . . . , bp ∈ F , we get
a1u1+· · ·+akuk−b1w1−· · ·−bpwp = 0. Since we assumed that t is nonzero, this gives
a nontrivial linear combination of {u1, u2, . . . , uk, w1, w2, . . . , wp}, contradicting the
assumption that this is a linearly independent set. Hence, there can be no nonzero
element in span(u1, u2, . . . , uk, v1, v2, . . . , vm) ∩ span(w1, w2, . . . , wp).

Now, suppose that a1u1+a2u2+· · ·+akuk+b1v1+b2v2+· · ·+bmvm+c1w1+c2w2+· · ·+
cpwp = 0 for some a1, . . . ak, b1, . . . , bm, c1, . . . , cp ∈ F . Then a1u1+a2u2+ · · ·+akuk +
b1v1+b2v2+· · ·+bmvm = −c1w1−c2w2−· · ·−cpwp, and so each side of this expression
must equal zero, by the previous paragraph. Since {u1, u2, . . . , uk, v1, v2, . . . , vm} and
{w1, w2, . . . , wp} are linearly independent sets, this means that a1 = · · · = ak = b1 =
· · · = bm = c1 = · · · = cp = 0. Hence, {u1, u2, . . . , uk, v1, v2, . . . , vm, w1, w2, . . . , wp}
is linearly independent and thus is a basis for W1 + W2. In particular, W1 + W2 is
finite-dimensional, and dim(W1 + W2) = k + m + p.

Now, looking at our bases for W1∩W2, W1, and W2 we see that dim(W1∩W2) = k,
dim(W1) = k + m, and dim(W2) = k + p. So dim(W1) + dim(W2)− dim(W1 ∩W2) =
k + m + p, and hence dim(W1 + W2) = dim(W1) + dim(W2) − dim(W1 ∩ W2).

(b) Since V = W1 + W2, by part (a), dim(V ) = dim(W1) + dim(W2) − dim(W1 ∩ W2).
Then dim(V ) = dim(W1) + dim(W2) ⇔ dim(W1 ∩ W2) = 0 ⇔ W1 ∩ W2 = {0} ⇔ V
is the direct sum of W1 and W2.

Problem 31.

(a) W1 ∩ W2 ⊆ W2, so dim(W1 ∩ W2) ≤ dim(W2) = n, by Theorem 1.11.
(b) By Problem 29, dim(W1 + W2) = dim(W1) + dim(W2) − dim(W1 ∩ W2) = m + n −

dim(W1 ∩ W2) ≤ m + n, since dim(W1 ∩ W2) is a nonnegative integer.


